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Abstract— Accumulating efforts have been made to
discover effective solutions for fatigue recovery with the
ultimate aim of reducing adverse consequences of men-
tal fatigue in real life. The previously-reported behavioral
benefits of physical exercise on mental fatigue recovery
prompted us to investigate the restorative effect and reveal
the underlying neural mechanisms. Specifically, we intro-
duced an empirical method to investigate the beneficial
effect of physical exercise on the reorganization of EEG
functional connectivity (FC) in a two-session experiment
where one session including a successive 30-min psy-
chomotor vigilance task (PVT) (No-intervention session)
compared to an insertion of a mid-task 15-min cycling
exercise (Intervention session). EEG FC was obtained from
21 participants and quantitatively assessed via graph theo-
retical analysis and a classification framework. The findings
demonstrated the effectiveness of exercise intervention on
behavioral performance as shown in improved reaction time
and response accuracy. Although we found significantly
altered network alterations towards the end of experiment
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in both sessions, no significant differences between the
two sessions and no interaction between session and time
were found in EEG network topology. Further interrogation
of functional connectivity through classification analysis
showed decreased FC in distributed brain areas, which may
lead to the significant reduction of network efficiency in
both sessions. Moreover, we showed distinct patterns of FC
alterations between the two sessions, indicating different
information processing strategies adopted in the interven-
tion session. In sum, these results provide some of the first
quantitative insights into the complex neural mechanism
of exercise intervention for fatigue recovery and lead a
new direction for further application research in real-world
situations.

Index Terms— Fatigue recovery, functional connectivity,
physical exercise, EEG, classification.

I. INTRODUCTION

EXCESSIVE demands of prolonged daily activities on
cognitive systems are associated with mental fatigue,

usually manifested as the performance deterioration caused
by failure to maintain vigilant attention [1], [2]. Specifically,
longer response time and more operation lapses/errors [3] may
lead to a decrease in work efficiency or even have serious
consequences. For example, driving or medical accidents have
been consistently revealed to be attributed at least partly to
sleepiness and/or fatigue [4], [5]. To reverse these detrimental
effects, continuous efforts have been made to investigate the
underlying neural mechanism of mental fatigue [6]–[8]. More-
over, effective means of fatigue recovery are correspondingly
needed to help regain vitality and cope with immediate work,
which is extremely important for maintaining daily production
as well as improving operation safety.

Among the limited researches on fatigue recovery, rest is
the most common countermeasure to be utilized. For instance,
Lim and Kwok [9] investigated the effect of rest intervals
of 1, 5, or 10 min on mental fatigue during the execution of a
1-hr auditory task, and showed that longer rest break brought
greater improvement in reaction time (RT), but a significantly
steeper decline in performance was observed in the subse-
quent task. Similar results were found by the same group in
their recent study of a self-paced blocked symbol decoding
task (BSDT) with 12 s or 28 s breaks [10], the implicit
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resource deployment in post-break period was changed by the
length of mid-task rest. However, in our previous study [11],
no significant difference in task performance was detected
between the mid-task break session and the no-break session.
Inconsistent findings among these studies may be due to
different characteristics of rest breaks, such as the length of
rest and the nature of break. Of note, Helton and Russell [12]
reported that specific activities during the break are important
moderators of recovery. The study investigated the visuospa-
tial vigilance performance after different interruptions, and
revealed the best performance post-interruption was for rest
break, worst for continuous vigilance task, and varied for
other interruption tasks. They explained that there may be
interference when the primary task and activities occupy the
same resources. To further explore different ways of fatigue
recovery in addition to performing tasks, Li and Sullivan [13]
reported green landscapes could promote students to recover
from stress and mental fatigue during the breaks. However,
finding the right environment to reduce mental fatigue may
not be straightforward [14]. In addition, numerous studies
have shown continuous aerobic exercises of moderate intensity
are beneficial to attention in people of different ages [15].
For instance, cancer patients in the exercise program were
reported to show less increase in fatigue [16]. Similarly,
Ashrafinia et al. [17] explored the effect of Pilates exercises on
postpartum fatigue, and the results showed physical exercise
reduced the level of mental fatigue. Nevertheless, the training
foundation is required for these regular exercises, and the
mental fatigue and recovery mechanisms of patients are likely
to be different from normal people [18]. Thus, the neural
mechanism of acute exercise on mental fatigue recovery in
healthy individuals has been almost ignored.

The measurements of behavioral data and brain activity
indicators are widely used in fatigue-related studies to quantify
the effects of mental fatigue recovery. Regarding the evaluation
of brain activity, electroencephalogram (EEG) is increasingly
utilized for its high temporal resolution, comfort to wear, and
more importantly applicability of transferring to real-life con-
ditions [7]. Tops and Boksem [19] reported the shift of EEG
power toward low-frequency bands with increasing fatigue
may be related to the decrease of arousal level. Moreover,
numerous fatigue studies have found that frontal theta EEG
activity is closely related to cognitive control by investigating
response monitoring [19], [20]. Moreover, recent advances in
brain networks and graph theoretical analysis have gained sub-
stantial interest in fatigue studies for its strength in providing
the scene of synchronization changes among different brain
regions. For instance, network functional connectivity (FC)
was employed in the state classification of mental fatigue
induced by psychomotor vigilance task (PVT) [21]. Using
the same experiment of PVT, cortical FC analyses were
implemented to investigate the neural mechanism of mental
fatigue [22]. The findings demonstrated the effectiveness of
PVT in inducing mental fatigue, and the most discriminative
connectivity features were discovered in the middle frontal
gyrus and motor areas. In a simulation study of daily activ-
ities, the investigation of driving fatigue revealed the altered
network topology and information integration capabilities [23].

They found increased coherence in the frontal, central and
temporal regions, and clustering coefficient for alpha, beta,
and delta bands and the characteristic path length for all
bands were also increased. Thus, the low wiring costs in the
functional networks and disruption in the effective connections
between and across cortical areas were demonstrated, and a
more economic but less efficient configuration of topology
structure in driving fatigue was reported. The different fatigue
paradigms posed a question whether the level of mental
fatigue caused by simulated driving [8], [24], [25] is similar
to that caused by cognitive tasks [11], [22]. Most recently,
Dimitrakopoulos et al. [26] conducted a study to reveal and
systematically compare different neural mechanisms of fatigue
underlying simulate driving and cognitive task. The study
showed distinct network reorganizations between these two
paradigms, which indicates the complex neural mechanisms
of mental fatigue and points out the role of workload on
mental fatigue. As described above, brain network analyses
were widely employed to explore the complex mechanism of
mental fatigue, and the changes of brain signals related to
mental fatigue were effectively measured. However, there is a
lack of research on the brain network reorganization of EEG
signals during fatigue recovery.

Fatigue recovery is related to the nature of the interven-
tion [7]. To the best of our knowledge, no literature has
explored the neural mechanism of exercise intervention on
fatigue recovery in healthy adults. Therefore, we adopted the
network evaluation method of FC to investigate the effect of
mid-task physical exercise on mental fatigue. A continuous
30-min PVT experiment was implemented in the no-
intervention session, while the intervention session included
a 15-min cycling in the middle of the task. According to
the resource theory, repeated consumption of finite cognitive
resources that cannot be replenished immediately would lead
to vigilance decrements and performance deterioration [27].
Moreover, the benefits of aerobic exercise on executive func-
tion [28] and mood states [29] have been already demon-
strated. We made a hypothesis that mid-task physical exercise
would lead to recovery of mental resources, which could be
shown in the behavioral data and network analyses. In the
present study, we directly focused on the activities of alpha and
theta bands, which are reported to be reliable measurements
of mental fatigue [20]. EEG FC was constructed by the phase
lag index (PLI) based on these two bands to evaluate the
phase synchronization of all pairs of channels. Subsequently,
we calculated network metrics to quantitatively assess alter-
ations of functional brain networks. A further investigation
was performed for state classification, which would provide
localized changes in FC caused by exercise intervention on
task execution.

II. MATERIALS AND METHODS

A. Participants

Twenty-four participants recruited from Zhejiang University
were right-handed students (13 males, age: 22.0 ± 2.8 years),
and they reported normal or corrected-to-normal vision. These
participants were pre-screened to exclude those with chronic
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Fig. 1. The experimental paradigm. (a) Participants performed a 30-min PVT in the no-intervention session. Each participant was asked to press
the space bar as soon as possible when the red stimulus appeared. The inter-stimulus interval (ISI) is a random value in the range of 2 - 10s. The
30-min PVT was divided into six 5-min time bins, T1 and T4 correspond to the first and last time bins, respectively. T2 and T3 correspond to the two
time bins in the middle. (b) In the intervention session, participants were required to perform a 15-min cycling in the middle of the PVT execution.
The PVT before and after the exercise intervention was divided into 5-min time bins, T2 and T3 correspond to the pre- and post-intervention time
bins, respectively.

physical or mental illness such as high blood pressure, dia-
betes, sleep disorder, or long-term medication. Meanwhile,
they were required to get a minimum of 7 h of sleep for 2 days
prior to the study, and not to drink alcohol or coffee and to
perform strenuous activities before the experiment. Written
informed consent was obtained from each participant after the
explanation of the whole experiment. The study was conducted
in compliance with relevant laws and institutional guidelines
and approved by the Institutional Review Board of Zhejiang
University (IRB2019001).

B. Experimental Settings

To explore the recovery effect of mid-task physical exer-
cise, a within-subject experiment was designed in this study.
Participants performed a 30-min PVT in the no-intervention
session, while in the intervention session, 15-min mid-task
cycling was conducted after a 15-min PVT and followed by
another 15-min PVT. There was a one-week interval between
the execution of the two sessions, and the session order was
counterbalanced. On arrival of the laboratory, participants were
introduced to the entire experiment process when preparing
for EEG recording. To avoid the training effect, subjects first
practiced until they were familiar with the PVT procedure.
A schematic diagram of the experimental setup is shown in
Fig. 1. Briefly, once the stimulus was presented, participants
were required to press the space bar as quickly as possible.
The inter-stimulus interval (ISI) was a random value between
2 and 10 s (mean = 6 s). A detailed introduction to PVT
has been described previously [22]. False responses less than
100 ms and lapses greater than 500 ms were rejected in
subsequent analysis. The PVT duration is typically 10 min,
here, a 30-min PVT was employed to elicit greater levels of
fatigue. Moreover, participants used a Monark 975 stationary
exercise bicycle to perform moderate-intensity exercise in the
intervention session. They were required to maintain aerobic

exercise with 55% - 65% intensity of heart rate reserve (HRR)
during the exercise execution. The subjective fatigue states
of each participant were evaluated by short stress state ques-
tionnaire (SSSQ) [30] prior to and after each session. Task
engagement, distress, and worry factors were measured in the
24-item SSSQ.

C. EEG Recordings and Pre-Processing

EEG data were recorded as participants conducted the
30-min PVT through a 64-channel BrainAmp EEG amplifier
(Model: Brain Products, Gilching, Germany) according to the
international 10 - 20 system. The impedance of each electrode
was controlled below 5 k� during data collection, and a
50 Hz notch filter was employed to avoid main interference.
Standard pre-processing procedures were adopted. Raw EEG
signals were digitized at a sample rate of 256 Hz, bandpass
filtered (0.1 – 45 Hz), and average re-referenced. Moreover,
the artifacts of blinking and muscle activities were removed
by independent components analysis (ICA). EEG signals in
each trial were then segmented into epochs in the range
of 0 – 500 ms after the stimulus onset, the epochs in 5 min
were collected to explore the changes of fatigue states, thus the
30-min PVT was divided into six 5-min bins in both sessions.
Data of three subjects were excluded due to the recording fail-
ure or incomplete information. The remaining 21 participants
were further analyzed. All preprocessing procedures of EEG
signals were carried out using in-house scripts and EEGLAB
toolbox [31].

D. Network Connectivity

To obtain reliable estimates of phase synchronization that
are invariant against volume conduction, PLI method was
utilized to construct the FC [32]. The validity of PLI in
detecting intrinsic characteristics of physiological signals has
already been proven [33]. Let x j (t) represents a real-time
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series of the j th channel, the instantaneous phase φ j (t) of
the channel was calculated as:

φ j (t) = arctan(
x̃ j(t)

x j(t)
), (1)

where x̃ j (t) is the Hilbert transform for x j (t). If φk(t) indi-
cates a real-time series of the kth channel, the difference in
phase between two channels can be expressed as:

�φ(t) = φ j (t) − φk(t). (2)

PLI is an index of the asymmetry of the phase difference
distribution, which can be obtained from a series of phase
differences �φ j ,k (ti ), i = 1, . . . , N in the following way:

P L I j ,k (t) = | < sign[�φ j ,k (ti )] > |, (3)

where < • > refers to the mean value, |•| is the absolute value,
and sign denotes signum function. PLI values range between
0 and 1, e.g., a value of 0 means either no coupling or coupling
with a phase difference centered around 0 and π , while a value
of 1 shows perfect phase locking with a completely consistent
phase difference. The above PLI calculation was performed
for all pairs of channels and assembled to form a connectivity
matrix. Meanwhile, EEG time series for each session were
decomposed into theta (4 − 7 Hz) and alpha (8 − 12 Hz)
frequency bands. PLI was calculated in each trial and then
averaged within the 5-min bin, and finally, a 63 × 63 weighted
adjacency matrix was obtained in each band. The estimation of
PLI was realized through in-house scripts written in MATLAB
R2018b (The MathWorks Inc., U.S.).

E. Network Analysis

The characteristics of functional brain networks could be
measured by corresponding network metrics. Prior to the
network analysis, the sparsity threshold was adopted to remove
a large number of uncorrelated or weakly correlated spurious
connections and maintain a consistent wiring cost. Specifically,
a sparsity means the ratio of actual edges to the number
of possible edges in the network [34]. Given that no clear
definition of an accurate threshold has been made, a wide
sparsity ranging from 0.1 to 0.3 with a step of 0.01 was
employed in this work to preserve the reachability of the
functional network and small-world properties. To provide
explicit physical meaning to the concept of small-world prop-
erties, the efficiency of information transfer was employed to
measure the changes of network properties in the intervention
and no-intervention sessions. Specifically, the global efficiency
(Eglob) and local efficiency(Eloc) of the brain network were
estimated [35], [36]. Eglob measures the global efficiency of
parallel information transfer throughout the network. For a
weighted network, the global efficiency is obtained as:

Eglob = 1

N(N − 1)

∑
i �= j∈G

1

Li , j
, (4)

where the shortest path length L between node i and j is
the smallest sum of the physical distances throughout all
the possible paths in the graph. Eloc indicates how well

each subgraph exchanges information when the index node
is eliminated, which is defined as:
Eloc = 1

N

∑
i∈G

Eglob(i) = 1

N
(

1

NGi (NGi − 1)

∑
j,k∈Gi

1

L j ,k
),

(5)

where NGi is the number of nodes in the subgraph (Gi )
of the neighbors of node i . To further balance individual
differences and avoid significant differences caused by the
arbitrary selection of a specific threshold, the integrated net-
work metrics were adopted over the predetermined range of
sparsity. Specifically, the integrated values correspond to the
areas under the metric curve [36]. The implementation of
graph theoretical metrics estimation was based on the Brain
Connectivity Toolbox [34].

F. State Classification and Discriminative Feature
Identification

The alterations of FC in different states were investigated
by performing state classifications using the PLI as features.
To remove the substantial irrelevant connectivity and avoid
the possible overfitting issue due to the fact that the number
of features is much larger than that of samples, linear support
vector machine recursive feature elimination (SVM-RFE) with
correlation bias reduction (CBR) [37] was utilized. SVM-RFE
is a backward elimination method, which starts with a full
feature set, then selecting important and independent features
in succession based on the coefficients calculated from the
SVM model. Given that correlations of FC in brain network
may cause the importance of features to be underestimated,
the CBR method was employed to reduce this correlation
bias. The stability and effectiveness of the SVM-RFE+CBR
ensemble method have already been verified [38]. When the
method converges, a ranked feature space of all features is
constructed based on the discriminative power.

It is worth noting that studies have shown recovery effects
of rest intervention were transient [10], with longer rest
leading to faster performance deterioration after the post-
break improvement in behavior. Thus, we chose four time
bins (T1, T2, T3, and T4) to explore the immediate effect
and the general effect of mid-task exercise. In particular,
the immediate effect was evaluated by comparing the pre-
intervention time bin with the post-intervention time bin (i.e.,
T2 vs. T3). Since the first (T1) and last (T4) bins of the
task represent the most alert and fatigued states in both
sessions, the general recovery effect of exercise intervention
was assessed via comparing these two time bins between both
sessions (Fig. 1). Therefore, two groups of classifications were
performed in the intervention and no-intervention sessions
respectively to analyze the immediate (i.e., T2 vs. T3) and
general (i.e., T1 vs. T4) effects of mid-task exercise on
brain networks. For each participant, feature vectors cross
epochs for alpha and theta bands were merged to obtain the
original dataset (2 × 63 × (63 − 1) / 2 = 3,906 features).
Subsequently, the SVM-RFE+CBR method was applied in all
the data, and two ranked feature sets of each session were
obtained based on the significance of each feature. For the
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selection of optimal features, the classification accuracy was
calculated by successively adding one-by-one the previously
ranked features with a null feature set. Through the evaluation
of different numbers of features, the optimal feature subset
with the highest classification accuracy was obtained. Taking
into account the small number of samples and the possible
effect of training set variability, the optimal feature selection
and the classification were performed 100 repetitions, and 10-
fold cross-validation was used. Training and testing were done
by randomly splitting all data for the cross-validation folds.

G. Statistical Analysis

To analyze the difference in self-report states before and
after the task, three factors of SSSQ (engagement, distress, and
worry) were first analyzed using repeated-measures ANOVA.
Then paired t-test was used to measure the changes of behav-
ioral RT with the execution of both sessions. Furthermore,
repeated-measures two-way ANOVA with factor #1 session
(i.e., intervention vs. no-intervention), factor #2 time (i.e.,
T1 vs. T4) was implemented to explore the general effect of
exercise intervention on RT, accuracy, and integrated network
metrics. Similarly, the immediate effect brought about by mid-
task exercise was evaluated by comparing time bins before and
after the exercise intervention (i.e., T2 vs. T3). The Bonferroni
method was employed for the post-hoc test. The probability
value less than 0.05 (p < 0.05) was considered significant.
Statistical analyses were performed by the SPSS 25 software
(IBM, New York).

To estimate the significance of the classification accuracy,
the permutation test suitable for small samples was per-
formed [39]. The test was conducted 1000 times through the
random permutation of class labels to achieve reliable results.
The statistic P-value was calculated as the proportion in the
randomized samples greater or equal to that in the original
samples. Classification accuracy is significant when the p
value is less than 0.05.

III. RESULTS

A. Behavioral Results

Statistical analyses for three factors of SSSQ were car-
ried out. The engagement and distress factors of the SSSQ
questionnaire showed significant time effects, while no sig-
nificant difference was shown in the worry factor. The post-
session engagement decreased significantly (F1,20 = 19.151,
p < 0.001) in both conditions. However, the interaction effect
was not statistically significant. Meanwhile, participants were
significantly more distressed (F1,20 = 12.755, p = 0.002)
after performing the experiment.

The RT and accuracy in each 5-min bin were averaged to
show the behavioral performance of the participants (Fig. 2).
To evaluate the state before exercise intervention, paired t-test
was performed and found consistent fatigue states between
the two sessions. The RT in the second time bin (T2)
increased significantly compared to the first 5-min bin (T1)
in the intervention (t20 = −4.933, p < 0.001) and no-
intervention (t20 = −7.208, p < 0.001) sessions. With the
introduction of mid-task exercise, the performance of the

Fig. 2. Behavioral results. Mean and standard error of RT and accuracy
were calculated within each 5-min bin in both sessions.

TABLE I
STATISTICAL COMPARISONS OF BEHAVIORAL RESULTS

two sessions exhibited different patterns. The immediate and
general effects of mid-task exercise on behavioral performance
were analyzed by the two-factor repeated measures ANOVA.
For the general effect (i.e., T1 vs. T4) of mid-task exercise,
the results of the RT revealed a significant main time effect
(F1,20 = 47.833, p < 0.001) and interaction effect (F1,20 =
5.469, p = 0.03) between the two conditions (Table 1).
Further post-hoc tests showed that the significant interaction
was attributed to the higher RT increment of the intervention
session (F1,20 = 31.962, p < 0.001) compared to that of
the no-intervention session (F1,20 = 11.759, p = 0.003).
Meanwhile, the response accuracy of the two sessions was
significantly decreased (F1,20 = 10.335, p = 0.004) towards
the end of the experiment. Furthermore, the investigation
on the immediate effect (T2 vs. T3) of RT revealed main
session effect (F1,20 = 12.079, p = 0.002) and time effect
(F1,20 = 12.332, p = 0.002), while there was a mar-
ginal significance level of interaction effect (F1,20 = 4.306,
p = 0.051). Regarding the response accuracy, significant
interaction (F1,20 = 4.718, p = 0.042) was found, which
was attributed to the decreased accuracy in the no-intervention
session and the increased accuracy in the intervention session
(F1,20 = 7.127, p = 0.015).

B. Analysis of Networks Metrics

The analysis results of network topological metrics are
displayed in Fig.3. For the general effect of the mid-task
exercise, a significant time effect of local efficiency (F1,20 =
7.547, p = 0.012) was found in the theta band, manifested as
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Fig. 3. Post-hoc statistical analyses of global efficiency and local efficiency. Bars represent mean ± standard error. � represents p < 0.05,
�� represents p < 0.01. T1 and T4 represent the first and last 5-min bins of the PVT respectively, T2 and T3 represent the pre-intervention and
post-intervention periods respectively. Eglob_alpha is the global efficiency of the alpha band, Eloc_alpha is the local efficiency of the alpha band. (a)
The general effect of mid-task exercise on network metrics. (b) The immediate effect of mid-task exercise on network metrics.

a decrease at the final period of the experiment. However,
regarding the alpha frequency band, the measure of local
efficiency was significantly higher (F1,20 = 7.284, p = 0.014)
in T4 than that derived in T1. Meanwhile, global efficiency
decreased significantly (F1,20 = 8.09, p = 0.010) at the end
of the vigilance task in both sessions. Corresponding to the
general effect, the immediate effect of the intervention on the
network metrics showed no significant difference between the
two sessions. Of note, a decreasing trend of global efficiency
in the alpha band was shown in the no-intervention session,
while an increasing trend was exhibited in the intervention
session.

C. Discriminative Functional Connectivity

State classifications were performed to delve into the
changes of FC. The optimal classification accuracy was
adopted to obtain discriminative FC regardless of the number
of features selected. The acquired number was 80 out of
the 3906 features in the intervention session after performing
general effect classification, and the determined number in the
no-intervention session was 140 to achieve high classification
accuracy. The obtained accuracy was 92.65% (p < 0.001) in
the intervention session and 88.26% (p < 0.001) in the no-
intervention session. Similarly, in the immediate effect classifi-
cation, the accuracy of 110 features was 88.50% (p < 0.001) in
the no-intervention session, and that in the intervention session
was 88.66% (p < 0.001), using 90 connectivity features.

The selected discriminative features were further evalu-
ated as increased or decreased connectivity, and the detailed
distribution was presented in Fig. 4 and Fig. 5. We found
more weakened FC in the general effect classification, which
accounted for 63.57% (89/140) in the no-intervention session,
and 58.75% (47/80) in the intervention session. Moreover,
most of the reduced FC was found in the theta frequency
band. The ratio of decreased connectivity in the theta band
to the total number of decreased connectivity was 69.66%
(62/89) in the no-intervention session and 85.11% (40/47)
in the intervention session. In contrast, enhanced connectiv-
ity was mostly located in the alpha rather than the theta
band, of which 60.48% (31/51) in the no-intervention session,

Fig. 4. The selected discriminative features in the general effect
classification (i.e., T1 vs. T4). (a) The percentage of increased and
decreased FC in the alpha band. The color bars indicate the different
weights of FC. The negative values indicate the decreased FC and
the positive values indicate the increased FC. (b) The percentage of
increased and decreased FC in the theta band. The yellow boxes
represent the increased connectivity, and blue boxes represent the
decreased connectivity.

Fig. 5. The selected discriminative features in the immediate effect
classification (i.e., T2 vs. T3). (a) The percentage of increased and
decreased FC in the alpha band. (b) The percentage of increased and
decreased FC in the theta band.

and 63.64% (21/33) in the intervention session. However,
this phenomenon was not revealed in the immediate effect
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classification. In addition, both the general and immediate
effect classifications found a large proportion of distinct dis-
criminative features between these two sessions. Nonetheless,
there were 5 common FCs in the general effect classification,
including C5-F5, CP5-FC5, FT8-FP2, AF7-F7, and AF3-
FZ. For the investigation of immediate effect, the 12 com-
mon features of the two sessions were CP6-P8, FT10-CP6,
C1-CP1, F1-FZ, FC6-F4, CP1-PZ, P8-T8, F1-F3, F2-F3,
AF8-FC4, AF7-F5, and PO8-T8. To further investigate the
distribution of these features on a larger scale, the locations
of discriminative features in five brain regions of frontal,
central, parietal, occipital, and temporal lobes were analyzed
according to the international standard 10-20 system [40]. The
results demonstrated that frontal lobe was an important area,
as more connectivity was found in this region. Meanwhile,
distinct patterns of FC alterations between the two sessions
were discovered. As observed, there were more declines in
the occipital cortical area of the no-intervention session, while
the activation level increased in the intervention session after
performing the exercise intervention. A similar situation also
occurred in the parietal region, more enhanced connectivity
was found only in the intervention session.

IV. DISCUSSION

To investigate the effect of mid-task physical exercise on
mental fatigue recovery, we measured behavioral performance
and brain network properties in a vigilance task with and
without exercise intervention. Firstly, we found the improve-
ment of behavioral performance brought by mid-task exercise,
indicating the effectiveness of exercise intervention on mental
fatigue. Secondly, the reorganization of brain networks was
shown at the end of the task. Meanwhile, the alterations
caused by exercise intervention were not detected, which
could be explained by the overlapped resource utilization.
Thirdly, further state classifications found more reduced FC
in both sessions, as well as distinct patterns of FC alterations
in distributed brain areas, indicating the altered information
processing strategies due to the exercise intervention. These
findings were mostly consistent with the hypothesis that the
effect of physical exercise intervention would be shown in
the behavioral data and brain network analyses. The detailed
descriptions are as follows.

A. Behavioral Performance Improvement in the
Intervention Session

As expected, the execution of the PVT led to significant
increments in RT and decrements in response accuracy, which
was consistent with previous studies [26]. Continuous attention
to simple and monotonous tasks is high demand, and the
essential mental faculty of vigilant attention is necessary to
perform tasks. The resource depletion [41] caused by the
continuous allocation of attention resources makes it difficult
for the subjects to maintain a high level of task performance,
which in turn causes mental fatigue, reflected as compro-
mised performance monitoring and inadequate performance
adjustments [42]. Fatigue is often accompanied by worsening
performance on cognitive tasks, seen in slowed reaction times

and increased errors [43], [44], which indicate that fatigue
negatively affects attention control ability [45].

The intervention session exhibited significant improvement
in behavioral performance with the introduction of mid-
task exercise. In fact, growing evidence has demonstrated
general advantages of exercise in physical and psychological
health [46]. A variety of morphological, neurochemical, and
electrophysiological alterations in the brain were found in
a model of wheel running, which was considered to under-
lie the behavioral improvements caused by exercise [47].
Nonetheless, the complex relationship between exercise and
cognitive function cannot be ignored. Enhanced or impaired
cognitive performance during task execution depends on when
the task is measured, the type of cognitive tasks, and the
type of exercise [48]. Kamiji et al. investigated the influence
of exercise intensity on cognitive processing and arousal
level [49]. The results showed electromyographic reaction time
(EMG-RT) after medium-intensity exercise was faster than
in a control condition (perform the reaction task) and after
low- and high-intensity exercise. Moreover, the P3 (a late
positive component of the average evoked potential, with a
latency of about 300 msec) amplitude of neuroelectric mea-
sures associated with attention resources allocated to tasks was
found to increase in moderate-intensity exercise, but decreased
in high-intensity exercise [50]. They suggested the fastest
EMG-RT and the largest P3 amplitude after medium-intensity
exercise were caused by the optimal arousal level. Their
previous study revealed the changes in contingent negative
variation (CNV), which implied the arousal level was reduced
after high-intensity exercise and reached a near optimal level
after medium-intensity exercise [50]. Furthermore, some evi-
dences suggested the relationship between exercise-induced
arousal and cognitive performance improvement [51], [52].
These may be helpful to explain the decrease in RT and the
increase in response accuracy after exercise intervention in
this study with the increased neural activation and physio-
logical arousal. In addition, the significant improvement of
cognitive performance was shown after a delay following the
exercise [53]. During this period, accelerated mental processes
and the restoration of memory continue to be promoted by
arousal, thus having a relatively prolonged effect on behavior.
Researchers suggested the metabolic recovery occurs gradu-
ally, and high levels of arousal in the post-exercise period facil-
itates cognitive function [48], [54]. Thus, it is speculative to
consider that the continuous influence of exercise intervention
under fatigued conditions may change the original information
processing strategy, and achieves long-term benefits of high-
level arousal more economically.

B. Network Organization of the Intervention and
No-Intervention Sessions

Several studies revealed the disintegration of functional
brain connectivity in the state of mental fatigue, such as the
higher path length or lower global efficiency [7]. For example,
increased path length was observed in a 20-min PVT [22],
and significantly reduced global efficiency and increased local
efficiency were discovered through a visual oddball task with
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four successive blocks [55]. These findings imply that brain
resources might be reorganized, resulting in the decrements
of global integration. Thus, the significantly reduced global
efficiency of the two sessions in this paper further verified
the network reorganization under mental fatigue. However,
no interaction effect of the information transmission effi-
ciency was found between the intervention and no-intervention
sessions. The explanation according to the resource theory
could be the domain specific interference [12]. The execu-
tion of the vigilance task is associated with a considerable
level of stress and workload [56], as well as motor cortical
regions, especially the primary motor cortex [57]. A study by
Derosière et al. [58] on motor neural structures and attention
revealed the increment of corticospinal excitability (CSE)
and primary motor (M1) activity during the execution of a
sustained-attention task. Recently, increased oxygenation in
the frontal, parietal-occipital, M1, and supplementary motor
regions was shown during driving fatigue through the com-
bination of EEG and functional near-infrared spectroscopy
(fNIRS) [59]. Therefore, the execution of PVT and exercise
process consume partially overlapped motor mental resources,
which may result in the incomplete recovery of related mental
resources. Another possible explanation might be the duration
of the exercise intervention [7]. Positive effects were observed
when the exercise time was no less than 20 min [48], [53].
Thus, longer intervention time is worthy of further study,
which may produce a significant influence on network effi-
ciency.

The Pearson correlation coefficients were calculated
between the behavioral data (RT and accuracy) and the inte-
grated network metrics (global and local efficiency). Only
those statistically significant network metrics were analyzed.
However, no significant differences were found in the two
sessions. It is speculated that a small number of participants
may result in no significant results being observed. Further-
more, the existence of individual differences may be another
possible explanation [60]. Significant individual differences of
behavioral change were observed, with approximately half the
participants showing a decrease and half showing an improve-
ment following the mid-task break [61]. They explained
that trait-like psychological mechanisms may underlie these
individual differences. Subsequently, interesting results were
revealed through analyses of correlations between resting
EEG power and reaction time changes, that the significant
correlation between RT and upper alpha was observed, while
no associations with lower alpha or theta bands. These findings
suggest that more careful and thoughtful analyses should be
performed in our further study.

C. Differences of Discrimintative Functional Connectivity

To make a further investigation from the perspective of
single FC, state classifications were performed. The findings
revealed reduced FC was more located in the theta than the
alpha band in the general effect classification. Previous studies
indicated the changes in theta band seem to be directly related
to the deterioration of task performance [20]. Meanwhile, more
increased FC was revealed in the alpha band, which may be

related to the task-positive networks [62]. Neural activities in
these networks, such as the fronto-parietal attention network
(FAN), are usually increasing during the execution of cognitive
tasks [62]. However, reduced alertness would show up as the
task progresses, and the compensatory efforts afforded to the
task may increase to maintain performance levels [20]. More
importantly, the compensatory efforts of the alpha band might
not sufficient to balance the weakened connectivity activity
of the theta band. The selected weakened theta connectivity
and enhanced alpha connectivity may accordingly implicate
the deterioration of performance in vigilance task execution.
In addition, the significant decrease in left frontal-parietal
connectivity caused by mental fatigue has been reported [22].
In this study, the reduced FC accounted for a large part
of the discriminative features obtained in the general effect
investigation, which may be the reason for the significant
decreases of the brain network efficiency. Using the fMRI
technique, Nakagawa et al. [63] observed diminished activities
that exist in most brain regions, including the frontal, temporal,
occipital, and parietal areas. The activities of wide brain areas
were demonstrated to be reduced with ongoing mental fatigue,
especially in the prefrontal cortex [64]. Similarly, we found
the selected features were more located in the frontal area
that plays an important role in cognitive control. Of note,
regarding the occipital and temporal areas, more reduced
FC was chosen in the no-intervention session, but there
were more enhanced connectivity features in the intervention
session. Similarly, more increased FC was observed in the
parietal region, which only appeared in the immediate effect
classification. The increased FC in these regions may play a
role in the improvement of behavioral performance. Distinct
patterns of FC alterations between the two sessions were
also demonstrated, indicating different information processing
strategies adopted in the intervention session.

D. Future Consideration

In this paper, some factors should be considered when
interpreting our results. First, we constructed the FC in
sensor space, a number of studies have utilized the source
localization approach to investigate the brain network in the
source space [21], [22]. Given its theoretical and practical
issues [65], we adopted a feasible method to solve the
influence of common source and volume conduction [32].
Nonetheless, the cortical space could be further explored to
investigate the relationship between cortical areas involved in
fatigue recovery. Second, regarding the intervention period,
it is worth noting that EEG activity of the rest period was
reported to be associated with the behavioral performance in
the subsequent vigilant task [61]. In this work, we mainly
investigated the general and immediate effects of mid-task
exercise intervention on mental fatigue recovery, thus the task
periods after exercise intervention were especially analyzed.
Complete data should be considered to further investigate the
neural mechanism of exercise intervention in view of the insuf-
ficient studies on fatigue recovery. Finally, though the aerobic
exercise of moderate intensity is demonstrated to be beneficial
to attention [15], these investigations were not carried out
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under mental fatigue. The execution of exercise inevitably
brings interruption to the vigilance task, which may contribute
to the changes in behavioral data and FC and have an impact
on the credibility of the conclusion. Thus, the supplementary
rest intervention would be necessary to obtain more convincing
results, which will also be considered in future experiments.

V. CONCLUSION

In this study, we estimated the fatigue recovery effect of
mid-task physical exercise using functional brain network and
feature classification approaches. The findings revealed that
mid-task exercise intervention may change the information
processing strategies during task execution, as evidenced by
significant improvement of behavioral performance in the
intervention session, distinct patterns of FC alterations in sev-
eral brain areas, as well as the distinguishing features between
the two sessions. In addition, reduced FC was revealed in
distributed brain areas, which may lead to the significantly
decreased network efficiency. Moreover, no interaction effect
of network metrics could be explained by the overlapped con-
sumption of mental resources between the two sessions. Our
findings might contribute to the understanding of the neural
mechanisms of exercise intervention and fatigue recovery, and
provide new ideas for the safety and efficiency in real-life
situations.
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