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Abstract— It is reported that the symptoms of autism
spectrum disorder (ASD) could be improved by effective
early interventions, which arouses an urgent need for large-
scale early identification of ASD. Until now, the screening
of ASD has relied on the child psychiatrist to collect med-
ical history and conduct behavioral observations with the
help of psychological assessment tools. Such screening
measures inevitably have some disadvantages, including
strong subjectivity, relying on experts and low-efficiency.
With the development of computer science, it is possi-
ble to realize a computer-aided screening for ASD and
alleviate the disadvantages of manual evaluation. In this
study, we propose a behavior-based automated screening
method to identify high-risk ASD (HR-ASD) for babies aged
8-24 months. The still-face paradigm (SFP) was used to elicit
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baby’s spontaneous social behavior through a face-to-face
interaction, in which a mother was required to maintain
a normal interaction to amuse her baby for 2 minutes
(a baseline episode) and then suddenly change to the no-
reaction and no-expression status with 1 minute (a still-
face episode). Here, multiple cues derived from baby’s
social stress response behavior during the latter episode,
including head-movements, facial expressions and vocal
characteristics,were statisticallyanalyzedbetweenHR-ASD
and typical developmental (TD) groups. An automated iden-
tification model of HR-ASD was constructed based on
these multi-cue features and the support vector machine
(SVM) classifier; moreover, its screening performance was
satisfied, for all the accuracy, specificity and sensitivity
exceeded 90% on the cases included in this study. The
experimental results suggest its feasibility in the early
screening of HR-ASD.

Index Terms— High-risk autism spectrum disorder, auto-
mated screening, multi-cue features, still-face paradigm,
head-movements, facial expressions, vocal characteristics.

I. INTRODUCTION

ASD is a lifelong neurodevelopmental disorder related
to impaired social-emotional functioning [1]. The core

behavioral symptoms of ASD that appear within two years
after birth involve facial expressions, body behaviors and
voices, on which the diagnosis of ASD is based [2], [3]. The
exact cause of autism is still unclear, and there is no evidence
for a cure in the near future [2], but some studies [2], [4], [5]
have found that effective early interventions can improve ASD
symptoms and outcomes. A delayed diagnosis leads to missing
opportunities of early interventions. Therefore, the screening
of ASD much earlier than typical diagnosis age at 3-4 years
after birth is essential to early interventions. The good news
is that some early warning signs before 24 months of age,
including less joint attention, lack of social smiles, no response
to calling name and communication impairments, etc. [6], [7],
have been found in social interactions of babies later diagnosed
with ASD. Based on these atypical early symptoms, it is
possible to perform an early screening of HR-ASD, which
will bring a ray of hope for the babies at risk of ASD.
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Currently, the early detection of HR-ASD relies on time-
consuming manual measures, including collecting medical
history, interviews and behavioral observations. To improve the
screening efficiency, an increasing number of researchers focus
on developing computer-aided technologies for early identifi-
cation of ASD [2], [8]. These studies mainly belong to one
of two broad categories, including human brain biomarkers
and extrinsic behavioral markers. For studies related to the
brain, some non-invasive measurements, such as electroen-
cephalography (EEG), magnetic resonance imaging (MRI) and
functional magnetic resonance imaging (fMRI), have been
employed for finding biomarkers between ASD and healthy
comparison groups [9]. Wang et al. [3] conducted infant
tissue segmentations based on brain MRI scans and performed
statistical analyses to identify autistic and normal subjects
aged 6 months. Bosl et al. [10] proposed using non-linear
features, derived from EEG signals, and the SVM calssifier to
diagnose HR-ASD cases at 3-36 months of age. On the basis
of fMRI signals, Emerson et al. [11] defined infants’ functional
brain connections at 6 months, which was also related to
the scores of social behavior, language, motor development
and repetitive behavior arising at 24 months of age, and they
also used such brain connections as features for identification
of HR-ASD. In addition to such automated diagnoses based
on costly medical examinations for infants’ brains, some
researchers proposed to develop behavioral markers-based
diagnostic tools [12], where video signals, audio signals and
RGB-D (RGB image+depth map) signals captured by low-
cost sensors were utilized.

For example, Jaiswal et al. [13] designed a paradigm with
adult subjects reading and listening to short stories, after
which they proposed using computer vision cues derived
from RGB-D data as features for detection of ASD and
attention-deficit/hyperactivity disorder (ADHD). Liu et al. [14]
developed a machine learning method for identifying ASD
for 4- to 11-year-old children through tracked eye-movement
data, which was collected in an experimental scenario where
children were asked to distinguish between two races based
on facial images. Li et al. [15] collected a video-based eye-
movement dataset from ASD children (4- to 7-year-old) and
TD (6- to 8-year-old) children, and they achieved a diagnostic
classification accuracy of 93.7% based on the trajectory of
eye movement. Guha et al. [16] proposed a computational
approach to reveal the facial expressions imitation details at
9-14 years of life for high-functioning autism (HFA) and
TD children, where the reduced complexity in dynamic
facial behaviors was found to arise primarily from the
eye region for those HFA children. Although the existing
researches [13]–[16] focusing on an automatic diagnosis of
ASD have achieved some progress, yet these studies were
based on comparatively older subjects who belonged to
groups of children, teenagers or adults. Some aforementioned
experimental paradigms and methods are even not applica-
ble to the babies before 24 months of age, because their
language skills, behavioral abilities and IQs are still in devel-
opment. Due to such development gaps, which led to chal-
lenges for designing effective behavioral paradigms applicable
to babies, the behavior-based automated early screening

of HR-ASD was a less-touched problem in the existing
researches.

Hashemi et al. [17] first designed a mobile application using
short movie stimuli to elicit behavioral and social responses
from babies, and utilized computer vision algorithms for inves-
tigating baby behavioral markers. Sarrett et al. [18] applied
eye-tracking equipment to study eye fixation in infants later
diagnosed with ASD and found that these infants exhibited
a mean decline in eye fixation from 2 to 6 months of life.
Sheinkopf et al. [19] found that HR-ASD infants produced
pain-related cries with higher and more variable pitch than
those babies in a low-risk group. However, a lack of decision
models of binary prediction or severity score is one of common
limitations for these markers-related researches, where a final
diagnosis can not be provided. Besides, their performance in
the scenarios of actual daily social interactions also remains
to be seen.

Tronick et al. [20] proposed a pioneering paradigm, the still-
face paradigm, to assess babies’ emotion regulation abilities
in actual social interactions. Generally, the still-face paradigm
contains 3 episodes, i.e., caregiver-child interaction episode,
still-face (SF) episode and reunion episode [20], [21]. The still-
face effect has been found robust in most sample variations
(infant gender and risk status) and procedural variations (the
length of the still-face episodes and the use of intervals
between episodes) [21]. A number of studies have employed
this paradigm [22] for exploring behavioral markers to fur-
ther diagnose ASD in adult-baby interaction scenarios. Some
initial findings, regarding SF episodes, related to HR-ASD
babies before 24 months of age have been achieved, such
as more neutral affects [23], fewer frequent gaze shifts [24],
longer durations of gazing away from caregiver’s face [24],
fewer smiles [25], more typical SF effects [26]. Our previous
finding [27] showed that babies’ social behaviors in the still-
face episode were more relevant to the severity of ASD symp-
toms compared to those in the former mother-baby interaction
episode.

To the best of our knowledge, most of the existing
SFP-based studies in autism-related fields still undergo the
process of manual coding and evaluation. Babies’ emotion
regulation-relevant cues in the still-face episode, including
facial expressions, voices and head-movements, have not
been explored for developing automated screening tools to
identify HR-ASD.

Overall, the main contributions of this paper are as follows:
1) Multiple vocal and visual features derived from babies’

social stress response behaviors were first studied to
reveal behavioral differences between HR-ASD and
healthy babies aged 8-24 months.

2) A novel behavior-based automated method was proposed
for identification of HR-ASD. It has advantages of
high-accuracy, low-cost and high-efficiency, and it has
potentials for large-scale applications.

II. DATA COLLECTION

A. Participants

In this study, 45 infants and toddlers with positive out-
comes through the Modified Checklist for Autism in Toddlers
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(M-CHAT) screening were preliminarily enrolled to HR-ASD
group and 43 typical developmental (TD) infants and toddlers
were enrolled to healthy control group. The study was carried
out in Nanjing Brain Hospital and was approved by the
Medical Ethics Committee of Affiliated Brain Hospital of
Nanjing Medical University (2017-KY089-01). All the sub-
jects’ guardians agreed that the subjects would participate in
this study and signed the informed consent form. For trial
registration information, please refer to the Chinese Clinical
Trial Registry (ChiCTR-OPC-17011995).

The inclusion conditions for the HR-ASD were as fol-
lows: (1) positive screening results based on the M-CHAT;
(2) 8 ≤ age < 24 months; and (3) the mother was the
major caregiver. The exclusion conditions for the HR-ASD
consisted of (a) genetic or metabolic disease, such as Rett’s
syndrome, Fragile X syndrome, etc.; (b) neurodevelopmental
disorders, including language developmental disorder, intel-
lectual disability, etc.; (c) traumatic brain injury history; and
(d) severe neurological disease history and serious physical
illness history.

Participants in the TD group must have met the inclusion
conditions of (2) and (3) and all the exclusion criteria as listed
for the HR-ASD group.

All participants were assessed with the Gesell develop-
mental schedules [28] at the time of enrollment. To assess
the severity of ASD, the babies subjects in the HR-ASD
group were assessed with the Communication and Sym-
bolic Behavior Scales Developmental Profile (CSBS-DP) [29],
the Childhood Autism Rating Scale (CARS) [30] and the
Autism Behavior Checklist (ABC) [31]. Two pediatric psy-
chiatrists provided a final diagnosis based on the Autism
Diagnosis Interview-Revised (ADI-R) [32], the Autism Diag-
nostic Observation Schedule (ADOS) [33] and the Diagnostic
and Statistical Manual of Mental Disorders, Fifth Edition
(DSM-5) within one month after their birthdays at 2 years
of age.

After re-diagnoses, 5 cases (1 female and 4 males) in
the group at risk of ASD were diagnosed with other dis-
orders (language delay) and were categorized to non-ASD
group in this study. Limited to the small number of cases
with other disorders, a reliable analysis for overall non-ASD
group with varying cases could be overgeneralization. There-
fore, we narrowed the subsequent analysis to HR-ASD and
TD groups.

The demographics of participants in HR-ASD and
TD groups are shown in Table I, where the sex of participants
was evaluated by the χ2 test while the age and developmental
quotient-based skills were evaluated by the Mann-Whitney
U test.

B. Experimental Setup

To capture the data of babies’ social behaviors, we
employed 4 wireless Ezviz CS-C2C-1B2WFR (1080P) cam-
eras to record videos at a sampling rate of 25 fps. At the
same time, the audio data were collected at a sampling rate
of 44.1 kHz with a built-in microphone, which is incorporated
in a wireless camera device. The experimental scene layout is
shown in Fig. S1 that is provided in Supplementary Material.

TABLE I
DEMOGRAPHICS OF PARTICIPANTS (MEAN±SD)

Fig. 1. A snapshot of SFP with two episodes, including an amusing
interaction episode (left) and a still-face episode (right).

C. Still-Face Process

In the preparation stage, an experimenter who had assess-
ment experience of babies’ behaviors explained the experi-
mental instructions to the mother subject. In the process of
face-to-face interaction, the mother subject sat in front of
her baby, and the baby subject sat in a baby chair. To avoid
unexpected interruptions for the experiment, the experimenter
kept quiet and monitored the behavioral experiment from the
other side of the same room. At the end of the first episode,
the experimenter provided a short voice notice to ask the
mother subject to start a new episode.

Following [34], we introduced the SFP by eliminating the
reunion episode to make the video and audio data collec-
tion procedures more convenient. During the first episode,
the mother amused her baby without any touch of body as
if at home for 2 minutes. Then, the mother maintained the no-
reaction and no-expression status, and placed her gaze above
baby’s head during the 1-minute still-face episode. A snapshot
of our slightly modified SFP procedure is illustrated in Fig. 1.

III. METHODS

In this section, we describe the methods for extracting
features from visual and vocal cues. The diagram of our pro-
posed method for the identification of HR-ASD is illustrated
in Fig. 2.

A. Head-Movement Feature

To obtain the head-movements features, the OpenPose
toolbox [35]–[37] was employed for the estimation of key
head points, including the eyes, ears and nose. Among these
points, nose point location was found to be more accurate
in our preliminary experiment than the other key points.
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Fig. 2. The proposed automatic method for the identification
of HR-ASD. The feature set contains three parts, including 3-dimensional
head-movement (HM) features, 384-dimensional vocal characteristics
(VoC) features and 900-dimensional HOG-based frame-level average
facial appearance (FA) features. Multi-cue-based features were concate-
nated in serial order to obtain the final fused feature representation for
classification.

As a result, the nose point was selected to represent the head
center for subsequent head-movement feature analyses.

The babies’ atypical head-movements in a social interaction
environment could reveal the social impairment of ASD [38].
Here, the babies’ head-movements data during the still-face
episode were utilized as a distinguishing cue for the classifi-
cation between the HR-ASD and TD groups. The following
statistical indicators for head-movements, including the max-
value and mean-value of the head-movement displacement
and time delay from the first frame to the frame where the
max-value of the head-movement displacement appeared, were
computed for analyses.

The point representing the head center for each frame is
denoted by [c1, c2, · · · , ci , · · · , cL], where L is equal to
the length of the video duration multiplied by its frame rate.
Then, the computation of the head-movement-based feature is
as follows:

i. Calculate the Mahalanobis distance between ci and c1,
and then denote the distance vector by d = [d1, d2, · · · , di ,
· · · , dL ], where d1 = 0;

ii. Calculate the max-value, mean-value of the vector d,
i.e., max_dL, mean_dL , then calculate the time delay δt
between the first frame and the frame where the max_dL

appears;
iii. Combine the results into a feature vector v = (max_dL,

mean_dL , δt).

B. Facial Appearance Feature

In our experimental scenario, as illustrated in Fig. S1,
we set up three cameras to capture baby’s facial expressions,
i.e., one near-frontal camera and two non-frontal cameras.

Fig. 3. Visualization for face normalization and masking. From left to
right, the images are (a) 68 detected facial landmarks, (b) source: a
detected face marked with triangular patches and (c) target: a normalized
face with face masking, respectively.

The near-frontal camera aims to capture more facial expression
information for favoring the subsequent analysis. As a result,
its derived video data were utilized to calculate the facial
appearance features.

Some babies showed head-movements during the still-
face episode, which resulted in more difficulties for detect-
ing faces, compared with the conditions of the frontal-view
facial images. To handle the problem induced by head-
movements, we introduced a face detection and alignment
toolbox, MTCNN [39], which was designed by deep convolu-
tional neural networks (CNN) and was robust to challenges in
unconstrained environments, such as various poses, illumina-
tions and occlusions. The MTCNN toolbox was widely used
in the field of face-relevant preprocessing. We re-implemented
the face detection framework based on the MTCNN for
accurate face locating in sequential frames. The flowchart of
re-implementation for MTCNN-based face detection is illus-
trated in Figure S2, see the Supplementary Material. For small
head-movement scenarios, the detected facial region within
the predicted bounding box by MTCNN was fed into the
OpenFace [40] toolbox for facial image registration as in [41].
First, the toolbox outputted 68 key facial landmarks coordi-
nates for each face, and the face shape can be represented
by these points. Then, the current detected face was aligned
to the target through a similarity transform, on the basis of
the detected facial landmarks and the reference of a frontal
facial template [41]. The resolution for a normalized face
is 112 ×112 pixels with a fixed distance of 45 pixels between
two pupils. After face normalization, the points surrounding
the facial edge were used to mask the face through con-
structing convex hull. An example for visualization of facial
normalization and masking is illustrated in Fig. 3.

Through the face preprocessing as aforementioned, the noise
induced by head-movements could be largely reduced for the
detected facial images. However, we simply omitted the facial
image frame as in [42] for large head-movement scenarios,
where the baby’s face may not be detected by the face detector.

After face preprocessing, the babies’ face detection rates
were summarized. Since the face detection rate was not
normally distributed, we employed the Mann-Whitney U test
to assess significant differences between the two groups. The
comparison for face detection rates (mean±sd) corresponding
to the HR-ASD and TD groups during the still-face episode
is shown in Table II.

Each normalized face was used to calculate the frame-
level average facial appearance features. During this process,
the facial images were divided into nonoverlapping 12 × 12
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TABLE II
COMPARISON FOR FACE DETECTION RATES OF PARTICIPANTS

blocks. To alleviate the side effects induced by misregistration
error, the blocks on the outermost edge were eliminated and
the central 10 × 10 blocks remained for each facial image.

Some pioneering studies [23], [42] have revealed the facial
expressions differences between ASD and non-ASD partic-
ipants. Here, we further verify this finding by proposing a
computational method to detail the differences between the
HR-ASD and TD groups.

Human facial expressions are produced by facial muscle
deformation according to the well-acknowledged facial action
coding system (FACS) [43]. For example, a smile expression
is composed of AU6 (Cheeks raised) and AU12 (Lip corners
pulled up). Each type of facial muscle deformations corre-
sponds to an unique local facial appearance feature. Motivated
by FACS and the development of image descriptors, such as
histogram of oriented gradients (HOG), a good representation
of appearance and shape information [44], we propose to dis-
tinguish the HR-ASD and TD groups through analyzing HOG
features that were extracted from local facial regions. It has
also shown a more satisfied representation ability than the raw
image pixel from the view of better invariance to changes
in illumination and shadowing [44]. Concretely, we describe
the computation of HOG-based frame-level average facial
appearance feature for an image sequence in Algorithm 1,
which is presented in Supplementary Material.

C. Vocal Feature

Since the core symptoms of ASD are also involved with
voice-related cues [45], we propose to reveal the differences
between the HR-ASD and TD groups from the perspective of
babies’ voices during the still-face episode.

We employed Audacity1 software for denoising. Both the
noise from background and recording device were eliminated
as much as possible by the software. Only the baby’s voice
could be heard after preprocessing.

To quantify the information of voice, low-level descriptors
(LLDs) were employed to characterize vocal data from the
views of frequency, energy and spectrum. The following
sixteen low-level descriptors [45]–[47] were taken into con-
sideration:

• Root Mean Square Energy (RMSE): a characterization
that is related to the loudness of a sound signal

• Twelve Mel-Frequency Cepstral Coefficients
(MFCC 1-12): a representation of phoneme based on
different short-term power spectrums of sound signals [48];

1Audacity® software is copyright ©1999-2019 Audacity Team. Web site:
https://audacityteam.org/. It is free software distributed under the terms of the
GNU General Public License. The name Audacity® is a registered trademark
of Dominic Mazzoni.

• Zero-Crossing Rate (ZCR) of sound signals: the rate of the
signal changing from positive to zero then to negative or vice
a verse, which is used for voice activity detection;

• Probability of Voicing (VP): a representation of the
probability of detecting the sound signals as voiced;

• Fundamental Frequency (F0): the frequency of vocal
chords vibrating in voiced sounds, which is related to prosody.

The LLDs contain two groups of elements, including
smoothing of the short-term descriptors (16 elements) and
their first-order delta coefficients (16 elements). Twelve sta-
tistical functions were computed for these 32 elements to
obtain 384-dimensional vocal features (12×32). The employed
statistical functions [45], [47] are as follows: arithmetic
mean (amean), maximum (max), minimum (min), range
(maximum-minimum), maxPos (an absolute position corre-
sponding to a maximum value), minPos (an absolute posi-
tion corresponding to a minimum value), stddev (standard
deviation), slope (slope of a linear contour approximation),
offset (offset of a linear contour approximation), qerror (the
quadratic error computed from the actual contour and its
linear approximation), skewness (3th order central moment)
and kurtosis (4th order central moment).

Finally, the vocal feature was extracted through the open-
source toolkit openSMILE using the off-the-shelf feature set
with aforementioned 384 elements [45], [46].

D. Feature Fusion and Normalization

Motivated by some audio-video-based studies [49], [50],
where multiple cues derived from multi-modal signals were
fused to attain a better representation, we fused the head-
movement, facial appearance and vocal characteristics features
to facilitate the improvement of classification performance.
At the fusion stage, each unimodal feature vector was concate-
nated in serial order to attain the final multi-cue representation.

Since each attribute has a different range, it is necessary
to conduct column-based feature normalization (samples are
represented by row-vectors). The normalization was performed
on the training set and then applied to test set. We normalized
the value range [xmin , xmax] to [0,1], and the normalization
process can be formulated as follows:

xn = x − xmin

xmax − xmin
. (1)

E. Classification and Evaluation

Subsequent to the feature extraction and feature normaliza-
tion, we employed the support vector machine (SVM) [51]
with a linear kernel for classification. SVM seeks a classifica-
tion hyperplane in a high-dimensional space to separate dif-
ferent types of cases from different categories by maximizing
the space between positive and negative groups.

We denote the samples and the corresponding labels as
{x1, · · · , xi , · · · , xn} and {y1, · · · , yi , · · · , yn}, respectively,
where yi∈{−1,+1} and n is the number of samples. The
classification hyperplane is as follows:

wT x − b = 0, (2)
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TABLE III
CLASSIFICATION RESULTS OF UNIMODAL FEATURES AND MULTI-CUE FEATURES

where w = (w1, w2, · · · , wm) is the normal vector of the
hyperplane, and b represents the displacement term.

To evaluate the performance of the binary classification,
we employed accuracy (Acc.), sensitivity (Sen.), specificity
(Spe.), the area under the curve of the receiver operator
characteristic (ROC) and the positive predictive value (PPV)
as our evaluation indicators. Concretely, sensitivity, namely,
the true positive (TP) rate, means the rate of the HR-ASD
correctly assigned to the HR-ASD group. Similarly, specificity,
namely, the true negative (TN) rate, represents the rate of
the subjects in the TD group correctly classified as TD. The
value higher than 0.7-0.8 is acceptable for the sensitivity and
specificity of a screening tool [52]. The accuracy is computed
by (TP+TN)/N, where N is the number of all subjects in both
groups. ROC is a probability curve, and the AUC provides
the distinguishing capability of the classifier between classes,
i.e., HR-ASD and TD. Here, the PPV is a probability that
subjects with a positive screening test truly have ASD, where
the value higher than 0.5 is acceptable [52].

For performance and generalization evaluation, we adopted
a subject-independent 10-fold cross-validation protocol to con-
duct the experiments. In each fold, ∼90% subjects were used
for training, and the remaining ∼10% subjects were tested.
We repeated this process 10 times to cover each fold of the
data.

To check if the classification accuracy was attained by
coincidence, we employed two different classifiers, i.e., SVM
(linear kernel, less hyper-parameters compared with other
kernels) and KNN (a non-parametric method), for comparison.

IV. RESULTS AND ANALYSIS

A. Classification Results

The classification results corresponding to SVM and KNN
classifiers are detailed in Table III. For comparison of screen-
ing accuracies between two classifiers, we can find that the
SVM classifier (linear kernel) outperformed the KNN (k=5)
classifier over all unimodal features. The proposed fusion of
three types of features from different modalities shows satis-
fied performance with all the accuracy, sensitivity, specificity,
AUC and PPV exceeding 90% for both classifiers. It also
indicates that the fused feature representation is of good
discriminability and demonstrates some stabilities for different
classifiers.

To evaluate the performance of different kinds of features,
we compare each type of feature under the SVM classifier.

TABLE IV
DIAGNOSTIC PREDICTIONS OF MULTI-CUE FEATURES

Fig. 4. Visualization for misclassified samples on the 2-D plane by a
t-distributed stochastic neighbor embedding.

For unimodal features, the facial appearance (FA) feature
achieves the best performance compared with the head-
movement (HM) and vocal characteristics (VoC). Fusion
of the HM and FA improves the accuracy by ∼1.2%,
while HM+VoC does not show such an improvement. The
fused FA+VoC significantly enhances the accuracy by 7.23%
compared with the FA feature which has best classifica-
tion performance in unimodal field. However, the fusion of
FA+VoC+HM does not further improve performance. This
may be attributed to the slight contribution of the HM that
contains only three statistical elements.

The comparison between diagnostic predictions and actual
results of HR-ASD and TD cases is illustrated in Table IV.
In total, there were three subjects falsely classified based on
the fusion of HM, FA and VoC under the SVM classifier.

In Fig. 4, the misclassified samples are visualized on the
2-D plane through a nonlinear projection. As seen in
the Fig. 4, two misclassified HR-ASD samples are close to
the samples in the TD group, while the misclassified sample
in the TD group seems to be located in the HR-ASD group
on the 2-D plane. This may be induced by the comparatively
large intraclass covariances for two groups.
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Fig. 5. The classification accuracy and participant number distribution
among different month groups.

To assess the statistical significance of the classifier and its
classification performance, a permutation test was used. The
classification accuracy for each case of 1000 trials (randomly
permuting the labels for 1000 times) is presented in Figure S3.
Here, the p-value is represented by the proportion of
1000 trials in which the classification performance is the same
as or better than the original status under a null hypothesis.
From the test results, we find that the classification accuracy
corresponding to each case in the permutation test is not
higher than the original one before random permutation; thus,
the p-value of the permutation test is less than 0.001, which
indicates that the alternative hypothesis is true. It implies that
the classifier can learn the relationship between the samples’
features and corresponding labels. In other words, the multi-
cue features can well characterize the discriminant information
hidden in the raw video and audio data between the HR-ASD
and TD groups.

The recruited subjects in two groups had an overall aver-
age age difference of ∼3 months (as shown in Table I).
The classification accuracy and subject number distribution
among different month groups are further analyzed to check
if the classification model has a bias due to their ages. As can
be seen from Fig. 5, the classification accuracies (blue and red
solid lines) are comparatively invariant to age changes. Thus,
we can conclude that our identification model does not use age
information for classification with a 10-fold cross-validation,
where about 10% (8-9/83) independent subjects were used for
testing in each fold. Within the same age group (blue and red
bar), no category biases can be found because the model does
not vote all predictions to TD group or HR-ASD group which
contains a comparatively large number of samples. We also
find that the proposed method can well predict HR-ASD as
early as 8 months of age. The falsely classified samples are
in the range between 16 to 18 months and the range between
22 to 24 months, respectively.

B. Statistical Test Analyses for the Extracted Features

We conducted a significant difference test for the extracted
features with the Mann-Whitney U test (α = 0.05) and
employed false discovery rate (FDR) estimation for multiple
testing correction.

1) Analyses of Head-Movement Features: The group-level
statistical analyses of the head-movement parameters are

TABLE V
STATISTICAL ANALYSIS OF HEAD-MOVEMENT PARAMETERS

BETWEEN HR-ASD AND TD (MEAN±SD)

TABLE VI
GROUP-LEVEL MEAN GRADIENT MAGNITUDES FROM FACIAL REGIONS

WITH SIGNIFICANT DIFFERENCES BETWEEN TD AND HR-ASD

illustrated in Table V. The results of the U test show that
there are no significant differences in max_dL, mean_dL and
δt between the HR-ASD and TD groups, respectively; this
may be the result of missing social reference-related head-
pose information, which is one of the limitations in this
study.

2) Analyses of Facial Appearance Features: Among the
900 facial appearance features, there are 383 features showing
significant differences (FDR-corrected p < 0.05). The summa-
tion of gradient magnitudes from 9 bins in a histogram for each
local facial region was also statistically assessed. As a result,
we find that 38 corresponding facial regions (vs. 100 facial
regions representing the whole central parts of the face) show
significant differences between the two groups (FDR-corrected
p < 0.05). The group-level mean values for the summation of
gradient magnitudes corresponding to these 38 facial regions
are shown in Table VI.

Fig. 6 illustrates the visualization for the grayscale frame-
level average faces from the HR-ASD and TD groups.
From Fig. 6(a)(b), we find that the HR-ASD babies reveal
comparatively larger head-poses, which may be induced by
a lack of social attention. As for the frame-level average
faces, facial expressions from the individuals in the HR-ASD
group seem more awkward while most TD babies present
expectations or curiosities when their mothers maintain the
no-reaction and no-expression status. From Table VI and
Fig. 6(c), we find that the group-level mean gradient magni-
tudes are larger for the right facial regions close to babies’
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Fig. 6. Visualization for the frame-level average grayscale faces
from the TD and HR-ASD groups. (a) TD; (b) HR-ASD; and (c) The
highlighted HR-ASD baby facial regions as listed in Table VI. In (c),
the regions indexes are with column priority, and yellow color indicates
larger gradient magnitudes with blue color for lower gradient magnitudes.
This figure should be better viewed in color.

eyes and mouth corner (corresponding to the left part of
the image) in the HR-ASD group, this could be induced by
HR-ASD babies’ awkward facial expressions arising with
larger facial muscle deformations. Furthermore, the group-
level mean gradient magnitude values are found to be different
for partial regions around babies facial edges. One possi-
ble explanation is individuals’ head-pose differences in the
HR-ASD and TD groups.

3) Analyses of Vocal Features: Significant differences
between the HR-ASD group versus the TD group can be found
from 224 vocal features (FDR-corrected p <0.05). These
224 vocal features are composed of mel-frequency cepstral
coefficients (MFCC, 80.8%), root mean square energy (RMSE,
5.8%), zero-crossing rate (ZCR, 8.5%), probability of voicing
(VP, 3.1%) and fundamental frequency (F0, 1.8%). F0 (a major
cue of prosody)-related features show a significant difference
between the HR-ASD and TD groups, which is consistent
with the conclusion that those with ASD have problems in
prosody [45]. Regarding the rest of the vocal features, includ-
ing MFCC, ZCR, VP and RMSE, no consistent conclusions
have been reached, to the best of our knowledge. In terms of
our dataset, we find that most MFCC-based parameters show
significant differences between the HR-ASD and TD groups.

C. Visualization of Weights for the Fused Features

The weights denoted in Eq.(2) were computed for visualiz-
ing the contribution of each element from the fused features.
The top 20 positive and negative weight coefficients and the
corresponding features names are illustrated in Fig. 7. As can
be seen in this figure, 67.5% of these features belong to the
vocal field, and the remaining are related to facial appearance.
The results also show that our multi-cue-based method takes
advantage of both visual and vocal information.

V. DISCUSSION

In this study, multi-cue features derived from babies’
social response behaviors in a frustration environment were
statistically analyzed to reveal behavioral differences between

Fig. 7. Visualization for the top 20 positive and negative weight
coefficients and the corresponding attribute names. Regarding the
appearance feature named FA-R19, the feature is a subtype element
of the histogram corresponding to the 19th facial region in Fig. 6.
For the vocal features, the features with ‘mfcc’ prefix in names are
subtype elements corresponding to the MFCC descriptor. The ‘sma’
and ‘sma_de’ represent smoothing of the short-term descriptors and
1st-order delta coefficients of the smoothed descriptors, respectively.
The digital id following ‘sma’ or ‘sma-de’ within the ‘mfcc’ -related feature
names corresponds to the one in 12 Mel-bands. The suffix of ‘offset’ in
the name is an indication of the corresponding statistical function.

HR-ASD and TD groups. The developed multi-cue-based
screening method has advantages of high-accuracy, low-
cost and noncontact. Different from some pioneering
studies [23]–[25], [27], where conventional social behavior
indicators under the SF paradigm were manually coded and
used for statistical analyses, we proposed a data-driven method
that is free of manual coding. This objective measurement,
derived from behavioral data, also provides evidence in early
screening of HR-ASD. Such a data-driven exploration will
inspire researchers from computer vision, pattern recognition
and etc. fields to develop more advanced but low-cost behav-
ioral measurement tools in diagnoses of mental disorders.

Limited to the small number of cases with other devel-
opment disorders in this study, we did not provide a spe-
cific analysis for the 5 cases later diagnosed with language
delay. Here, a preliminary extension was conducted, and those
5 cases as well as 43 TD cases were merged to non-ASD group
for further verification. The diagnostic evaluation for 48 non-
ASD cases and 40 HR-ASD cases was conducted through a
leave-one-out cross-validation protocol (LOOCV). The SVM
(linear kernel) classification model was trained and verified
on the proposed multi-cue features, and overall sensitivity,
specificity and PPV for total 88 cases were 97.5%(39/40),
89.6%(43/48) and 88.6%(39/44), respectively. Two of the
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TABLE VII
COMPARISON BETWEEN RELEVANT SCREENING TOOLS AND OURS

five cases were correctly predicted as non-ASD while the
rest 3 cases and 2 TD cases were falsely classified into
HR-ASD group. An overall false positive rate of our method is
10.4%(5/48). The comparison between some relevant screen-
ing tools and our method is illustrated in Table VII. As can
be seen in Table VII, our screening method is appropriate
for younger babies than widely used instruments including
the checklist for autism in toddlers (CHAT) [53], M-CHAT
and the M-CHAT [54], revised with follow-up (M-CHAT-R/F)
[55]. The sensitivity of our automated screening method is
comparable to M-CHAT, while the PPV seems much better
than that of M-CHAT and its modification. Since less negative
cases were included in this study compared with [53]–[55],
it is still necessary to include a large number of cases for
further verification.

Despite the success of the extracted features, there are
still opportunities for improving the performance. A lack of
robust head-pose measurement for babies’ head-movements
led this study to using 1st-order indicators for representing
head-movement information. The 1st-order statistical analysis
for head-movement trajectory is insufficient for understanding
atypical social reference. An advanced head-pose estimator
may help social reference analysis for babies, which has shown
some effectiveness in distinguishing HR-ASD and TD cases
under the SF paradigm [6]. Future methods need to incorporate
such estimators for further analyses.

Due to a lack of a large number of included cases, this
study mainly focused on finding differences between HR-ASD
and TD groups. More varying cases with other development
disorders were not covered. A large number of cases with
matched age need to be included, it could provide opportuni-
ties to train a more reliable and robust diagnostic model. The
model trained on large-scale samples would be convictive for
medical community, and other researchers can employ the off-
the-shelf diagnostic model for more explorations. Moreover,
it is significant to include more younger babies earlier than
8 months of age, and it will reveal the earliest age when
the automated screening method could provide an acceptable
diagnostic result.

In order to be applicable to unconstrained environments
including homes and child health care centers, future work
should refine the experimental layout, e.g., an example video
for guiding participants how to perform under the paradigm
should be incorporated. The proposed method should be
extended to an end-to-end system which could be installed
on some smart devices for large-scale applications.

VI. CONCLUSION

This paper presents a multi-cue-based automated screening
method for early identification of infants and toddlers at high
risk for ASD before 24 months of life. Under the simple but
effective still-face paradigm, multiple features derived from
babies’ visual and vocal behavior were analyzed to reveal
differences between HR-ASD and TD. The proposed multi-
cue features showed better diagnostic performance than the
unimodal features, which verifies the effectiveness of our
proposed method. Such an automated identification tool could
meet the need of large-scale screening for ASD.
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