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EEG-Based Prediction of Successful Memory
Formation During Vocabulary Learning

Taeho Kang , Yiyu Chen, Siamac Fazli , and Christian Wallraven

Abstract— Previous Electroencephalography (EEG) and
neuroimaging studies have found differences between brain
signals for subsequently remembered and forgotten items
during learning of items - it has even been shown that single
trial prediction of memorization success is possible with
a few target items. There has been little attempt, however,
in validating the findings in an application-oriented context
involving longer test spans with realistic learning materials
encompassing more items. Hence, the present study inves-
tigates subsequent memory prediction within the applica-
tion context of foreign-vocabularylearning. We employed an
off-line, EEG-based paradigm in which Korean participants
without prior German language experience learned 900 Ger-
man words in paired-associate form. Our results using
convolutional neural networks optimized for EEG-signal
analysis show that above-chance classification is possible
in this context allowing us to predict during learning which
of the words would be successfully remembered later.

Index Terms— Electroencephalography (EEG), learning,
subsequent memory prediction, BCI.

I. INTRODUCTION

HOW the brain encodes, stores, and retrieves memories
is one of the core topics across different branches

of neuroscience, given its relevance to virtually all aspects
of human learning. In the present paper, we investigate the
task of studying vocabulary for new language acquisition -
a task that requires memorization of words that need to be
remembered later. A core question of interest becomes whether
it is possible to observe differences in neural activity with
respect to those items that will be later remembered correctly
versus those that will not. If these differences exist, the neural
signatures during the memorization process could be used in
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a Brain-Computer Interface (BCI) application to alter the
studying protocol in order to concentrate on those items that
are more likely to be forgotten [1] - an application with vast
potential in the realm of language learning. Indeed, such differ-
ences have been reported: following Sanquist et al.’s seminal
study that for the first time observed larger positive neural
activities from remembered items than forgotten [2] ones, this
difference has also been referred to as subsequent memory
effects (SME), or difference due to memory (DM). Since
then, neural signatures of SME have been reported in several
follow-up studies [3]–[13], although there seems to be a great
variability in the details of the signatures: for example,
electroencephalography (EEG) studies using pictures or sim-
ple words as stimuli with recognition or rating tasks have
reported SME as power increases in different frequency-
bands including, but not limited to, theta [11], [14],
alpha [15], or gamma [16], while other studies reported
decreased power in such bands, while also report-
ing increase/decreases in other bands as well [17]–[19].
Hansylmyr and Staudigl provides a more comprehensive
review on findings regarding specifics of memory effects [20].

A further complication in the literature arises from the fact
that whereas previous studies found SME in post-stimulus
signals (i.e., after the picture or word had been shown),
other studies also have found significant neural signatures
preceding stimulus onsets (e.g., [10], along with [4]–[6], [9].
Also see [21]).

A crucial limitation of existing studies on SME is that they
often involved measurements of neural signatures contrasting
times right before and right after participants were presented
with the learning items [4], [6], [9], [11], [16]. Hence, the time
between encoding and recall was very short, often mere
seconds or minutes after the first presentation. Furthermore,
the number of items tested was low in most studies with only
a few items presented during the testing phase.

In a typical language learning task, however, the number
of items to be studied is usually large and the time between
encoding and first test recall is typically in the order of
hours or even days. Therefore, in the present study we inves-
tigated whether it is possible to find neural signatures of SME
in such a more realistic study context.

Among the paradigms suitable for language studying,
we chose a paired associate learning task, in which par-
ticipants learn a list of word-pair associations consisting of
their native language and a target learning language pre-
sented in a flash-card like format. This type of task has
been shown to be efficient for vocabulary learning through
memorization [22]–[24].
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Specifically, our study tested memory prediction by decod-
ing the success of long-term memory formation (i.e., SME)
from EEG in the realistic context of prolonged foreign lan-
guage learning. For this, we gathered neural activity from
participants while they spent 5 days learning 900 German-
Korean vocabulary word associations without prior knowledge
of the German language. Participants were required to recall
each word by typing it both on the same day of learning
as well as the day after, a manner more akin to realistic
studying environments. We also designed the study so that
shortly after encountering a new word for the first time,
participants would have task blocks where they reviewed and
practiced said word several times. With neural activity data
gathered from both the presentation period and the ask (prac-
tice) period, we investigated single-trial subsequent memory
prediction by training artificial neural networks with test labels
set in two different periods of time after learning.1 We report
that subsequent memory formation can be predicted from
stimulus-locked signals collected during learning, as well as
feedback-locked signals during practice.

II. MATERIALS AND METHODS

A. Stimuli

The learning corpus consisted of 2000 German-Korean
word pairings that were extracted at random from a German-
Korean dictionary of which participants would learn a total
of 900 word pairings in order. Due to existing linguistic simi-
larities between German and English and the fact that we could
not control for English proficiency in participants, words pairs
identical in German and English (e.g. Bus (Ger) - Bus (Eng))
were not included in the stimuli set. Furthermore, participants
were encouraged during the experiment to skip word pairs
they recognized as familiar due to factors such as similar
cognates with English (e.g. Apfel (Ger) - Apple (Eng)). This
led to a slightly different list of words being learned for each
participant. For a more detailed analysis of linguistic properties
of our corpus, please see the supplementary materials.

B. Experiment Procedure

The experimental paradigm and trial definition is shown in
Figure 1. Training participants was performed by a two-fold
process involving encoding (presentation: from here on we
call it “show”) and query (review/practice: from here on we
call it “ask”). In each encoding segment of a training session,
participants encountered new vocabulary by reading a single
word-pair juxtaposing Korean and German counterparts that
were displayed on screen for 5 seconds. Participants were
allowed to skip a word pair and instead learn a different one
if they recognized the German spelling as familiar. Initially
10 word pairs were presented in succession, after which the ask
segment of the first 10 words began in random order. During
each ask segment, participants were shown only the German
portion of a word pair on screen and were asked to type the
correct Korean counterpart from memory. Once the participant

1In supplementary materials, we also investigate whether possible features
that may attribute to word difficulty such as corpus frequency and word length
have effects on participant memory performance.

Fig. 1. Visualization of experimental paradigm and individual trial
epochs. Subfigure 1.a shows overall design of a single experiment
session. Subfigure 1.b visualizes time point markers within a single ask
trial, showing the time points EEG epochs were centered on.

finished their response, feedback was shown. If they gave
an incorrect answer, the correct pair was displayed again for
5 seconds. The ask segment for a given word would repeat
until it had been correctly answered 3 times, at which point the
encoding segment of one new word began. This was followed
by resumption of ask segments that included the new word
in the pool while excluding the previously correctly-answered
word. All trials began with a 1250 millisecond blank interval
and ended with a 250 milliseconds of blank interval. In ask
trials, between the termination of response and the start of
feedback there was also a blank interval of 250 milliseconds.

The gist of this design was that at a given ask segment in any
point of the experiment, there would be a pool of 10 possible
word pairs that could be queried in randomized order. Nearing
the end of training sessions in which less than 10 words
to learn would remain, extra “distractor” words were added
to maintain a pool size of 10 possible word pairs. These
distractors were not tested for subsequent long-term memory,
and thus were not used for analysis. Note that participants
were not informed of the ask pool nor of the existence of
distractors.

In each training session, participants learned a total
of 60 word pairs, and one day of experiment consisted of
3 training sessions with breaks in between. Shortly after a
training session was finished, a short test session consisting
of word pairs learned on that day began. Each trial of the test
session had a format similar to the ask segment (participants
were given the German part of a word pair and had to
recall the Korean counterpart), except feedback was not given.
Results from test sessions containing word pairs learned on
the same day were later used as classification labels for
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same-day memory prediction (the day of learning). Starting
from the second day of the experiment, a separate test session
would precede the training sessions, testing participants with
180 word pairs learned on the previous day. Results from these
separate test sessions were used as classification labels for
next-day memory prediction (memory performance 24 hours
after learning). All participants participated in the experiment
for 6 consecutive days to ensure the time between learning
and subsequent testing would be in a similar time frame
of 24 hours. The experiment paradigm was written with the
Pyff framework [25] on Python 2.7.5.

C. Participants

16 university-aged Korean-native participants (all male, age
m = 24.6, s = 1.6) who had no prior experience with
the German language were recruited for the experiment.
All participants gave and signed informed consents before
proceeding with the experiment. Monetary compensation was
provided for participation. One participant did not finish the
experiment for personal reasons, and another participant’s data
was excluded from analysis due to an error in the recording
equipment, leaving a total of n = 14 participants’ data for
analysis. The experiment received IRB-approval with number
KUIRB-2019-0043-01.

D. EEG Recordings

ActiCAP electrodes and a BrainAmp Amplifier from
Brain Products GmbH were used for signal acquisition
at a sampling frequency of 1000Hz. 62 channels were
selected from the extended 10-5 system [26]: F1,5,z,2,6,9,10,
FC5,3,1,z,2,4,6, Fp2, FFT7,8, FT9,7,8,10 FC5,3,1,z,2,4,6,
FTT7,8, FCC5,6, T7,8, Cz,3,5,4,6, TTP7,8, TP7,9,8,10,
TPP7,8, CP5,3,1,z,2,4,6, P3,5,9,z,4,6,10, PO3,7,z,4,8,
O1,Oz,O2. An additional channel for measuring eye
movements was defined as EOGv1 and placed under the
right eye. Later on, 2 EOG channels were derived from
measured channels: EOGh from F9 and F10 for horizontal
eye movements, and EOGv from EOGv1 and Fp2 for
vertical eye movements. Channels were prepared to sub-20k�
impedance levels before the beginning of the experiment.

E. Data Preprocessing

Our preprocessing pipeline followed best-practices found
in [27] as well as in EEG community knowledge bases [28]
to minimize artifacts.

Primary pre-processing and epoching was done using the
Fieldtrip toolbox [29] and BBCI toolbox [30]. Acquired raw
EEG signals were filtered at a pass band between 1 and 40Hz
with a 4th-order Butterworth filter after being down-sampled
to 100Hz. Three different sets of epochs were created based
on time-lock criteria: stimulus-locked epochs from encoding-
segment trials (“show trials”), stimulus-locked epochs from
ask segment trials (“stimulus-locked ask trials”), and feedback-
locked epochs from ask segment trials (“feedback-locked ask
trials”). To ensure each ask trial epoch would only contain
signals relevant to the task, ask trials with total lengths from
stimulus-onset to feedback-onset of less than 1000ms or more

than 15000ms were excluded from the analysis. Furthermore,
trials with a response duration (duration of typing) less than
80ms were rejected, as such response times only occurred
when participants gave a blank answer. Stimulus-locked show
trials were created at [−1000 5000]ms relative to stimulus
onset, while stimulus-locked and feedback-locked ask trials
were created at [−200 1000]ms relative to each marker onset.

Before further artifact rejection, epochs exceeding a thresh-
old amplitude range of 1000μV were excluded from the
dataset. Each session’s epoched data were decomposed using
the runICA implementation [31] of Independent Component
Analysis (ICA) available in the Fieldtrip toolbox, visually
inspected for components containing excessive EOG, ECG,
and muscular movements which were then removed via ICA
reprojection. After component rejections, channels Fp2 and
EOGv1, and channels F9 and F10 were subtracted to cre-
ate channels containing vertical and horizontal EOG signals,
respectively. Finally, an additional amplitude range-based trial
rejection with a threshold of 150μV was applied. Of 900 show
trials per participant and approximately 3517 (SD = 361) ask
trials per participant collected, our conservative trial rejection
pipeline led to rejection rates of 10.3% (SD = 10.8%) for show
trials, and 16.4% (SD = 9.7%) for ask trials. EEG dataset is
available online.2 Additional scripts and code can be requested
from the authors.

F. Data Analysis - Time-Locked Averages

For time-locked average statistical analysis, topographical
maps of significant neural signatures dissociating remembered
from forgotten words were created using point-biserial corre-
lation coefficients [32] based on Fourier-transformed power
spectrum features. To account for Nyquist frequency and
the temporal length of epochs, frequency power values were
calculated from integer frequency values starting from 3Hz.
Z-scores were calculated from signed squares of point-biserial
correlation coefficients based on the signal values and the
memory recall label. p-values with zero correlation as the null
hypothesis were acquired by means of two-sided z-tests. In cal-
culation of grand-average statistics, inverse-variance weighting
under a fixed-effects hierarchical model based on the sufficient
statistics approach [33] was used. p-values were corrected for
multiple comparisons with Bonferroni-correction [34], divided
by the product of number of channels and the number of
frequency bins in each epoch.

G. Data Analysis - Classification

Classification was performed within individual participants
with three different algorithms: regularized Linear Discrimi-
nant Analysis (rLDA) with shrinkage, a convolutional neural
network with 3 convolutional layers (3lCNN), and a shallow
convolutional network with crops (from here on we refer
to this network as ShallowConvNet) adapted from [35]. The
ShallowConvNet employed a cropped trial design, in which
each trial epoch was subdivided into several sub-trials with
non-overlapping time crops before being fed through the
network and their prediction results were collated for final

2Available at https://osf.io/h634f/ and http://deepbci.korea.ac.kr by request.
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TABLE I
INDIVIDUAL PARTICIPANT AND GROUP AVERAGE

BEHAVIORAL PERFORMANCE SCORES

prediction of the trial. A filter of size 40 with kernel of
size 3 was used for the temporal convolution layer, and a
filter size of 40 with kernel size spanning the entire EEG
channel length for the spatial convolution layer. The pooling
layer had a kernel size of 2 with a stride of 2. Supercrop size
of the network was defined as 70 time points for ask trials,
and 350 time points for show trials. Output length of the final
convolution layer was set to 1. The 3-layer network had filter
sizes of 16, 32, 64 in that order. Each convolutional layer had a
kernel size of (5 time points x 3 EEG channels). As we focused
on brain signals in the present work, the EOG channels (EOGv,
EOGh) were not included as features for training.

Python’s scikit library [36] was used for LDA training and
classification, in which the shrinkage parameter was automati-
cally chosen according to Schäfer and Strimmer’s method [37]
based on Ledoit and Wolf’s lemma [38]. Pytorch [39] was used
for implementations of network classifications. To prevent
suboptimal model training from imbalanced training data in
classification [40], the dataset was balanced prior to training
by undersampling the more numerous class. To ensure gen-
eralizability of the trained models, 10% of the dataset were
withheld as a test set, and the remainder was split into 10 folds
for cross-validation (again balanced across remembered and
forgotten classes). Classifications used a total of 5 seconds
of post-stimulus epochs from stimulus-locked show trials
and 1 second of post-feedback epochs from feedback-locked
ask trials. Minimally processed time-series data from EEG
channels (EOG channels were excluded) were used at re-
sampled rates of 100Hz. Identity of the words were not
considered as factors neither when splitting for training/testing,
nor balancing for classes. As such, each ask trial from learning
of one word was considered as a separate sample.

III. RESULTS

A. Behavioral Analysis

On average, participants correctly recalled 78.7%(±13.0) of
the words when tested on the day of learning, while correctly
recalling 40.3%(±17.1) 24 hours after learning (see Table I).
The difference between performance on same-day and next-
day trials was highly significant (t (13) = 13.16, p < 1.0−8).

A total of 49,244 ask trials extracted from the ask seg-
ment were collected across 14 participants. For the present,

behavioral analysis, performance from all trials was analyzed
(including those ≈10% rejected in the EEG preprocessing).
Aside from same-day and next-day labels from subsequent
tests that we use to determine successful recall, ask trials
provide us with additional label information on whether a
given trial was correctly/incorrectly answered during the ask
segment. While we did not use correct/incorrect response
label information in classification, we use these to perform
response-time based behavioral analyses: for example, par-
ticipants began their response on (Time to response, TTR)
median of 1935 (±2742) milliseconds after stimulus onset,
and trials where the participant’s response to ask queries were
correct had significantly faster TTR (median = 1723 ± 1930)
than ones with incorrect responses (median = 3890 ±
4017 : t (13) = −11.22, p < 1.0−10). The duration of the
response (participants had to type in the word) in ask trials
was on average (median) 992 (±1312) milliseconds long.
Here, the length of response was longer in trials where the
response to the ask trial was correct than incorrect (correct:
median = 1040 ± 1039, incorrect: median = 528 ± 2034,
t (13) = 4.21, p < 1.0 × 1e−3). We attribute this due to the
fact that participants could type in a blank response if they
could not think of any possible answer.

Grouping behavioral response data from ask trials by their
subsequent recall labels, we found that TTR was significantly
faster on trials with words subsequently recalled on the day of
learning (same-day label, remembered median = 1794±2349,
forgotten median = 2529 ± 3564, t (13) = −4.19, p < .001),
as well as the day after learning (next-day label, remembered
median = 1597 ± 1762, forgotten median = 2224 ± 3093,
t (13) = −4.94, p < 1.0−4). The difference of response dura-
tion between subsequently recalled and forgotten information,
however, was not significant for both same-day (remembered:
median = 976 ± 1195, forgotten: median = 1040 ±
1614, t (13) = −1.61, p > 0.1) and next-day (remembered:
median = 928 ± 1012, forgotten: median = 1024 ± 1450,
t (13) = −1.57, p > 0.1).

On average, when a participant subsequently remem-
bered (R) a word in given ask trial (t) on the next
day, the probability for the word in the following ask
trial (t + 1) to have the same label was found to be
Pnext−day(Rt+1|Rt ) = 0.39. In a similar fashion, we explored
conditional probabilities of subsequent trial’s label given a
preceding trial by keeping track of remembered (R) and
forgotten (F) class observations: Pnext−day(Ft+1|Rt ) = 0.60,
Pnext−day(Rt+1|Ft ) = 0.36, Pnext−day(Ft+1|Ft ) = 0.64. The
same analysis was done on subsequent recall using same-day
label: Psame−day(Rt+1|Rt ) = 0.78, Psame−day(Ft+1|Rt ) =
0.22, Psame−day(Rt+1|Ft ) = 0.74, Psame−day(Ft+1|Ft ) =
0.26. As preceding/subsequent ask trials of a given trial always
contained a different word pair, we expected the probability
of recall on that given trial to be significantly different
from its neighbor trials’ probability. From these probabilities,
we attempted to test whether recall performance from one
trial would influence recall performance of the subsequent
trial. If P(R(t + 1)|R(t)) and P(R(t)) were significantly
different, we would interpret this finding as subsequent recall
from neighboring trials to being correlated. In other words,
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Fig. 2. Within participant kernel density estimation plots of ask trial response time (milliseconds, time from stimulus onset to the start of participant
response) by label class. In all label-sets, statistical t-tests between two classes rejected the null hypothesis (same-day: t(13) = −4.19,p < 0.001,
next-day: 6t(13) = −4.94,p < 1.0 ∗ e−4, correct/incorrect: t(13) = −11.22,p < 1.0 ∗ e−10).

Fig. 3. Within participant kernel density estimation plots of ask trial response time length (milliseconds) by label class. The difference in duration
of response between classes were not significant in subsequent recall labels (same-day: t(13) = −1.61,p > 0.1, next-day: t(13) = −1.57, p > 0.1,
correct/incorrect: t(13) = 4.21,p < 0.001).

this would be a way to test for the notion whether “streaks”
were present in recall performance that are perceived in
real-life learning as pockets of time in which the learner
is more motivated to learn than usual or vice versa. For
example, a t-test performed between P(R(t + 1)|R(t)) and
P(R(t)), would test whether the probabilities R(t) [word
from a given ask trial would be subsequently remembered]
and R(t + 1)|R(t) [word from a ask trial would be sub-
sequently remembered, given that word from the preceding
trial T1 was remembered] are significantly different. Paired
t-tests of the conditional probabilities and their underlying
probability (probability of the preceding trial;) rejected the
null hypotheses for next-day labels (tR(t+1)|R(t)and R(t)(13) =
3.52, p < 1.0 × 1e−2; tR(t+1)|F(t)and F(t)(13) = −2.93,
p < 0.05; tF(t+1)|R(t)and R(t)(13) = 2.50, p < 0.05;
tF(t+1)|F(t)and F(t)(13) = 2.66, p < 0.05), and mostly
rejected for same-day labels (tR(t+1)|R(t)and R(t)(13) = 1.97,
p > 0.05; tR(t+1)|F(t)and F(t)(13) = 6.02, p < 1.0 ×
1e−4; tF(t+1)|R(t)and R(t)(13) = −7.65, p < 1.0 × 1e−5;
tF(t+1)|F(t)and F(t)(13) = 3.98, p < 0.01).

B. Time-Locked Averages

In spectral analysis of stimulus-locked show trials,
Bonferroni-corrected statistical tests for next-day labels
showed differences between remembered and forgotten items
(see Figure 4), but not under same-day label. Specifi-
cally, we found significantly lower power in subsequently-
remembered items primarily in theta band frequencies as well
as some of the alpha band frequencies.

Spectral analysis of the feedback-locked epochs revealed
similar results: significant differences between remembered
and forgotten conditions were found for next-day labels after
applying Bonferroni-corrections, but not for same-day labels.
Significance was primarily observed in theta band frequencies,
as well as some lower gamma frequencies (see Figure 5).
In stimulus-locked ask trial data, spectral analysis of the
remembered and forgotten conditions did not yield significant
effects in either labels.

C. Classification

Initially, classification was performed with post-stimulus
stimulus-locked show trials and post-feedback feedback-
locked ask trials, using memory performance 24 hours
from learning (next-day) as class labels in assessing whether
long-term memory classification was possible at above-chance
level. Results from these two classification tasks using three
different algorithms can be seen in Table II, along with
box-plots of participant-specific results from training with
ShallowConvNet, the best performing algorithm, in Figure 6.
On average, next-day single-trial memory performance could
be predicted using ShallowConvNet with .540(±076, SD)
accuracy in post-stimulus show trials, and .557(±038, SD)
in post-feedback ask trials.

To compare the above results with chance-level predic-
tion, we ran a simulation of calculating theoretical chance
level confidence limits given a data sample size based
on [41] using 25, 000 iterations. 10-fold average test accuracy
from 7 out of 14 participants’ show trial data were higher
than upper limits of simulated chance levels at α = .01, and
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Fig. 4. Scalp-plot of Bonferroni-corrected signed −log(p) values based on Fisher’s z scores for show trials using next-day labels for remembered vs.
forgotten information in stimulus-locked show trials. Sign of the signed −log(p) values in each data dimension was determined by the difference of
average power between remembered and forgotten conditions (negative denotes forgotten conditions had higher values), and p-values were based
on Fisher’s z scores calculated from point-biserial correlation values [32] of each participant.

Fig. 5. Scalp-plot of Bonferroni-corrected signed −log(p) values based on Fisher’s z scores of frequency data from feedback-locked ask trials
using next-day labels for remembered vs. forgotten information. Sign of the signed −log(p) values in each data dimension was determined by the
difference of average power between remembered and forgotten conditions (negative denotes forgotten conditions had higher values), and p-values
were based on Fisher’s z scores calculated from point-biserial correlation values [32] of each participant.

TABLE II
CLASSIFICATION RESULTS OF WITHIN-PARTICIPANT TRAINING. ACCURACY VALUES ARE FROM 10-FOLD AVERAGES FROM THE CORRESPONDING

TEST SET, WITH STANDARD DEVIATION SHOWN ON THE SECOND ROW. THE ROW LABELED “N (BAL.)”
SHOWS THE NUMBER OF TRIALS AFTER BALANCING FOR CLASSES ON EACH DATASET

TABLE III
COMPARISON BETWEEN SIMULATED CHANCE LEVELS EXTRACTED FROM METHOD [41], WITH ACTUAL CLASSIFIER PERFORMANCE.

EACH SIMULATION WAS RUN FOR 25, 000 ITERATIONS WITH AN ALPHA OF 0.01. THE VALUES WERE

COMPARED WITH 10-FOLD AVERAGE TEST ACCURACY FROM EACH PARTICIPANT

12 out 14 participants’ results were higher in ask trial data.
Individual simulated chance level limits are shown in Table III.
As a whole, a t-test between simulated chance and partici-
pant average accuracy yielded above chance performance for
feedback-locked ask trials (t (13) = 2.30, p < 0.05), but not
for stimulus-locked show trials (t (13) = −0.792, p > 0.05).

With the best performing network, namely ShallowCon-
vNet, we proceeded to attempt classification on the pre-
stimulus (feedback) portion of the epochs as well, along with
using labels from memory test performance done shortly after

learning (same-day label) instead of the day after (cf.previous
studies that reported above chance level prediction on pre-
stimulus epochs in shorter-term memory tasks [9], [42]). The
results from these runs can be seen in Table IV. Classification
results from stimulus-locked ask trials were not included as the
classifier did not perform above chance level. With feedback-
locked ask trials there were no significant differences in clas-
sifier performance between training in post-feedback and in
pre-feedback data (t (13) = 1.942, p > 0.05) nor in next-day
and same-day labels (t (13) = −0.684, p > 0.1). The same
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Fig. 6. Within-participant classification results from predicting subsequent recall on stimulus-locked post-stimulus show trials (left) and feedback-
locked post-feedback ask trials (right) using next-day labels. Each set of box plots show 10-fold cross-validation accuracy results from each participant.
Numbers on the X axis denote each participant’s class-wise balanced sample size used in classification. The red line denotes the 50% accuracy
mark, although it is not necessarily the exact chance level (see Table III). Each dot in the scatter plot represents one data point from a given fold in
the cross validation. Dots have borders when data points lie beyond whiskers of the associated box plot. Whiskers are defined as upper (Q3) and
lower (Q1) quartiles +1.5 ∗ IQR(Q3 − Q1) of data; any data point that lies outside of this region is labeled as an outlier and therefore had a border.

TABLE IV
CLASSIFICATION RESULTS OF WITHIN-PARTICIPANT TRAINING ON DIFFERENT TRIAL EPOCHS AND DIFFERENT LABELS. ACCURACY

VALUES ARE FROM 10-FOLD AVERAGES FROM TEST SET, WITH STANDARD DEVIATION SHOWN ON THE SECOND ROW

was found in stimulus-locked show trials, both between post-
stimulus and pre-stimulus (t (13) = 1.119, p > 0.1), and
between next-day and same-day labels (t (13) = −0.107,
p > 0.1).

D. Classification With Fraction of Chronologically
Ordered Full Dataset

Though investigating the feasibility of on-line training of
memory prediction is not within the immediate scope of this
article, we found it prudent to try at least a simulated version
of this by training with limited portions of chronologically
ordered data. Here we report initial results as an exploration in
this direction. For this, we trained multiple ShallowConvNet
instances with incrementally increasing portions of the full
training data sorted in chronological order, so that the larger
training data would contain the latest trials. For each partici-
pant we reserved the last 10% of trials from each experimental
session as test data. Ten instances of ShallowConvNet were
created, each trained with varying portions of the remaining
data from 10% to 100% in increments of 10%. From these
values, a linear regression of predicting possible accuracy
value based on arbitrary portions of the full dataset which
may be given as training data was created to see the trend of
accuracy values against portion of data used. Based on this
regression, we tried to estimate what would be the minimum

portion of data to achieve 95% of the regressed accuracy
value from using 100% of data, an arbitrarily set value that
was deemed adequately comparable to full performance (with
chance level of 50% set to be the assumed value when using
0% of data). The corresponding results in Figure 7 show that
increasing the number of trials goes along with a general trend
of higher prediction performance, although accuracy value
comparable to 95% of full dataset performance is not reached
on the regression line until above 90% of the dataset is used
(black dashed line) in training.

E. Group Level Training With Hold-Out Test Sets

Our classification results up to this point are from training
data on a within-participant level. In order to assess whether
subsequent long-term memory prediction is generalizable to
a larger population, we also trained the network using next-
day recall performance as label on a group-level dataset
validated with leave-one-participant-out cross validation. The
dataset was balanced for classes on an individual participant
level before combining, in order to guarantee class balance
on validation sets. Average test accuracy on group training
of feedback-locked ask trials was .520 (±.026, SD), and
.503 (±.020, SD) on stimulus-locked show trials as can be
seen in Table V. While the classification accuracy was lower
than within-participant training on average, in feedback-locked
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TABLE V
CLASSIFICATION RESULTS FROM TRAINING WITH GROUP PARTICIPANT DATA. ACCURACY VALUES ARE FROM TEST SETS IN A

LEAVE-ONE-PARTICIPANT OUT CROSS VALIDATION SCHEME. THE ROW LABELED “TEST SET N” SHOWS

THE NUMBER OF TRIALS AFTER BALANCING FOR CLASSES ON EACH DATASET. GROUP

AVERAGE TEST ACCURACY IS FOLLOWED BY STANDARD DEVIATION

Fig. 7. Result of classification with varying proportions of input data.
Plots show mean accuracy levels averaged across participants, as well
their 95% confidence interval of the mean, based on what portion of
the full dataset was used in training. Colored dashed lines show linear
regression of predicting accuracy value given an arbitrary percentage
of full data used. Said linear regression was trained on results of 10%
increment portions of the full dataset and the resultant accuracy values
training the simulated on-line BCI. Black dashed lines represent portion
of dataset necessary to reach 95% of the performance of the 100%
portion in the regression line, while considering chance level (50%) as
the arbitrary 0% portion of the full dataset level.

ask trials it was still significantly higher than simulated chance
(t (13) = 2.871, p < 0.05) - but not for stimulus-locked show
trials (t (13) = 0.573, p > 0.1).

IV. DISCUSSION

In this study, we investigated the possibility of decoding
long-term memory formation in a foreign language learning
context based on neural data trained on several different
classifiers. Based on data collected from participants who
underwent prolonged learning of vocabulary of an unfamil-
iar language, we observed above-chance classification results
predicting subsequent memory formation a day from learning.
A frequency analysis on time-locked data yielded significant
differences between neural data in items tested 24 hours from
learning mainly in the theta band, with decreased magnitude
on remembered words. Behaviorally we observed that a)
memory performance was always worse when tested on a later
date, b) participants tended to respond significantly slower
in ask trial questions on subsequently-forgotten items, and c)
participant recall performance did not correlate with possible

factors that may define difficulty of a word such as word
length and corpus frequency (see supplementary materials).
More specific points for discussion follow.

A. Model Selection and Performance

To thoroughly test EEG signals classification for memory
prediction, we decided to choose one established linear model
as baseline (LDA), one general convolutional neural network
architecture as a representative of nonlinear classification
methods, and a more specific network architecture that has
been proposed and is intended for EEG dataset classification
to see if further performance improvements could be observed.
While many different feature extraction methods are available
in EEG, for the time being we decided to use minimally
preprocessed time-series data only, as the primarily goal of
this article was to first see if classification was possible
in a practical prolonged memory task. Furthermore, neural
networks based classification using minimally processed EEG
data without feature extraction has been deemed possible with
little performance difference in BCI paradigms [43].

While linear discriminant analysis methods have been
known to perform well when trained with established BCI
tasks such as motor imagery (MI) and P-300 event related
potentials (ERPs), the model performed rather poorly in our
dataset. Furthermore, it was outperformed by the Shallow-
ConvNet model (Feedback-locked ask trials, t (13) = 2.70,
p < 0.05). This is in contrast to the study where this
architecture was introduced which reported comparable per-
formance between regularized LDA and networks trained on
MI data [35]. It is unclear why classification could not be reli-
ably made with LDA from our data. One possible explanation
may arise from the complexity and general difference in nature
of the task, but it may also be due to lack of feature extraction
preceding LDA. In Schirrmeister’s work of comparing convo-
lutional networks and LDA performance, for example, linear
discriminants were not trained on raw time series, but rather
on features extracted through processes including temporal
band-pass filtering and spatial filtering through Filter-Bank
Common Spatial Patterns (FBCSP). Considering that design
choices of ShallowConvNet itself were reportedly inspired
by FBCSP, it is possible that LDA performance may improve
upon such feature selection methods. As our intent was to
compare model performances from classifying a task in which
feature extraction is not widely applied yet, we decided to
forgo explicit feature extraction methods and use unified input
data format across all models.
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Furthermore, our results indicate that performance from
3-layer CNNs was marginally lower than ShallowConvNet in
ask trials (t (13) = −2.17, 0.01 < p < 0.05), and not signifi-
cantly so in show trials (t (13) = −1.04, p > 0.1). While the
better performing network did have more classification results
likely to be higher than chance, it is difficult to create conclu-
sions on why performance was higher. Fundamentally, both
architectures are forms of convolutional neural networks. The
3lCNN is a bare-minimum implementation of a convolutional
network that contains 3 convolutional layers and its design
considerations are derived from image processing tasks rather
than being optimized for data formats such as EEG. In con-
trast, ShallowConvNet’s layers have specific design choices
that emulate a known EEG feature extraction method [35]:
the first convolutional layer specifically convolves the time
dimension, and the second layer functions acts as a spatial
filter, with the kernel encompassing the entire EEG channel
size. On top of such parameter choices, it employs a cropped
design in which each trial epoch is augmented into smaller
crops (although at the end stage crops of each trial merge into
one decision). One can assume that these design considerations
function as optimizations that improve performance over a
basic convolutional network, as seen in our result. CNNs
in general can be considered as a feature extractor of their
own, and the idea has previously been explored in transferring
representations to other classifiers [44]. Perhaps this explains
why performance comparable to models trained on extracted
features can be observed through training CNNs on raw EEG
data, as seen in Fahimi et al. [43] In our study, we have
used minimally processed data for training across all models;
the higher parameter complexity of network models and the
resulting depth of feature discovery may be the reason for their
superior performance compared to LDA. We believe further
investigation by training with previously known features of
EEG that are yet to be applied on memory tasks are needed,
such as phase-locking values [45] and Hurst exponents [46].

B. On Time-Locked Averaged Results and Classification

In our study, while we observed significant differences
between remembered and forgotten items using power spec-
trum for next-day recall, we were unable to report signifi-
cant differences between the two conditions using averaged
time series (Event related potentials, ERPs. ERP results were
not included in this article because of this reason) despite
pre-existing literature reporting otherwise [47]. Furthermore,
our statistical analysis on power spectrum data did not find
significant differences when using same-day label. In many
different studies investigating subsequent recall (where stimuli
were not necessarily lists of foreign vocabulary but rather
native words or even pictures), subsequent memory effects
were reported in test sessions performed soon after the end
of training session [4], [6], [7], [9], [11], [16], [48]: a time
window comparable to our same-day test labels.

We believe there are several possible explanations for
the discrepancy with previous findings. First, the stimuli
employed in our study were presented in a paired-association
form, rather than in a list of words in a single language.

Previous EEG studies of memory formation, especially those
specifically involving memorization of words, largely had
stimuli in the participants’ native language, whereas our study
had both the participant’s native language as well as an unfa-
miliar language. We believe the presence of a bilingual associ-
ation pair is relevant: previous psychological findings indicate
memorization of verbal-semantic native language association
pairs to be more robust to disruptions in short-term mem-
ory than memorizing words without association pairs [49].
It should be noted that long-term SMEs were not observed
in stimulus-locked ask trials, where only the German word
was presented on the screen: in both the feedback portions
of ask trials and stimulus-locked show trials where long-term
SMEs were found, such association pairs were displayed (in
feedback-locked ask trials, the pairs were shown in incorrectly
answered trials). Hence, it may be possible that the effects
we observed may be correlated with the presence of bilingual
association pairs. To test whether displays of association pairs
are reflected as features in EEG signal for classification of
memory formed, an additional classification was performed:
the model was trained and validated with feedback-locked
ask trials where correctly-answered responses were made, and
then tested on incorrectly-answered trials. As association pairs
were displayed in ask trials only if incorrect responses were
made (i.e. none in training set), test performance should be
worse in this experiment if the displayed association pairs
provided an important feature. Test prediction results from
this run can be observed in Figure 8. A paired t-test between
the previously shown ShallowConvNet test performance from
feedback-locked ask trials as seen in Table III and this run
did not find significant differences: t (13) = 0.936, p > 0.1).
Given these results, we believe displays of association pairs
may not be of primary importance for predicting memory
formation. Second, our experiment task involved participants
having to accurately recall learned information up to 24 hours
after learning, a time-frame much longer than many of the
previous studies. We know that memory tends to decay after
formation (cf. the decreased next-day performance) so that
signal differences between items preserved in memory and
items decayed may be more stark if the time of testing
is further away from learning. Though our EEG signals in
question were collected at the time of learning, if subsequent
memory formation is predictable from these signals, it should
also be possible that the significant difference along passage
of time would be also conveyed in them. Lastly, it is also
possible that class imbalance in trials contributed to the
lack of significant findings for same-day labels. While only
10.7 words (std: 9.7) on average out of 900 words participants
learned were correctly recalled on the following day despite
failed recalls on the day of learning, the imbalance between
trials is much larger under same-day labels (Remembered :
forgotten splits for next-day was 4:6, while 8:2 for same-
day label). Because of such imbalance, we believe it may be
less likely for statistical tests in same-day prediction to find
significant results. Especially in large-dimensional dataset such
as EEG, sufficient number of trials are required for both con-
ditions to increase signal-to-noise ratio in comparing binary
conditions.
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Fig. 8. Within-participant next-day label classification of feedback-locked ask trials, train/validation set from correctly responded trials, test set from
incorrectly responded trials. Sub-figure 8a : each set of box plots show 10-fold results from each participant. Red line denotes the 50% accuracy
mark, although it is not necessarily the exact chance level. Whiskers are defined as upper (Q3) and lower (Q1) quartiles +1.5 ∗ IQR(Q3 − Q1) of
data; any data point that lies outside of this region is labeled as outliers and therefore have a border. Figure 8b : each column represents results
from each participant (ordered by participant number), and each row denotes the classifier model used (LDA, 3lCNN, ShallowConvNet). Each cell
shows average test accuracy across 10 folds. Cells shaded in blue denote average accuracy exceeding confidence interval tail end of simulated
chance levels, while gray denotes not exceeding the tail end of confidence interval.

So far our results indicate little difference in subsequent
memory predictability between pre-stimulus (feedback) data
trained classifiers and post-stimulus (feedback) data trained
classifiers. This is rather puzzling especially in stimulus-locked
show trials, where the learning material is not shown to
participants until stimulus onset. This result is in line, however,
with other studies that observed above-chance classifications
using pre-stimulus information: Noh et al. [9], for example,
observed an increase in prediction accuracy over post-onset
epoch classification by combining pre-stimulus data and post-
stimulus data. fMRI studies such as Watanabe et al. [42] also
found above-chance subsequent memory prediction, although
leakage of post-stimulus information into pre-stimulus data
was suggested as a possible explanation. Given the temporal
resolution of EEG this should be less likely to happen,
although filtering may cause some dilution of information

- consistent with this, we did observe leakage when using
Chebyshev type II filters instead of the Butterworth filters
employed in the present analysis. Another possible explanation
for pre-stimulus prediction is that the underlying, general
mental state of the learner is relevant for prediction as well,
suggesting that some of the pre-stimulus signal may encode
attentiveness and alertness.

Our analysis also showed above-chance classification
despite only weak results in the spectral analysis (and no
statistically-significant findings for ERPs). This, however,
is consistent with observations that univariate statistical meth-
ods do not always reveal findings consistent with other
methods [50], [51]. It has been suggested, for example, that
predictions about underlying brain states made from measured
data tend to follow an information-based philosophy with a
focus on multivariate decoding methods, while “traditional”
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Fig. 9. Within-participant classification results from predicting subsequent recall on the combined dataset of post-feedback ask trials and stimulus-
locked show trials using next-day labels. Each column represents results from each participant (ordered by participant number), and each row
denotes the classifier model used (LDA, 3lCNN, ShallowConvNet). Each cell shows average test accuracy across 10 folds. Cells shaded in
blue denote average accuracy exceeding confidence interval tail end of simulated chance levels, while grey denotes not exceeding the tail end
of confidence interval. To fix input size, show trials were “augmented” into 5 non-overlapping 1-second epochs after balancing for classes and
splitting. T-test between ask trial only dataset performance and combined dataset performance showed little significant difference in test accuracy
performance (t(13) = 0.804, p > 0.1).

studies of brain function lean towards a more activation-
based philosophy in which univariate statistical frameworks
testing linear relationships between data and variables are
the norm [51]. Here, predictive methods can reflect nonlin-
ear or non-monotonic effects as well as linear relationships: the
classifier may be based on differences in the data distribution,
which may not necessarily reflect difference in the mean of
neural activity, but possibly variability in measurements. Such
information, which may be considered as noise in activation-
based philosophy can be considered relevant information in an
information-based framework [52].

While we’ve made speculations on possible reasons for pre-
stimulus (feedback) showing predictability, for a better under-
standing a deeper examination of the trained network should
also be considered. Recent developments in the field aiming
for explainable artificial intelligence (XAI) [53], [54] has
made progress in looking into trained networks through meth-
ods such as Layer-wise Relevance Propagation (LRP) [55].
Though the aforementioned method has so far been tested
primarily with image classification tasks, we see value in
applying this in EEG data as well and believe it is another
avenue of future research.

C. Classification on a Combined Dataset

Another question to consider is whether classifier perfor-
mance could be strengthened by combining data from ask
trials and show trials. While signals from the two sets of
trials were acquired from different tasks, the learning materials
were fundamentally the same. If common predictive features
exist, then it would be reasonable to assume training with
a combined dataset from the two tasks may see improved
classifier performance compared to training with either one
of the dataset. To investigate this possibility, we trained new
instances of previous within-participant classifier models on
combined data, although with certain modifications: because
ask trials and show trials were of different time length
while our models required static input size, 5-second long
show trials were broken up into 5 non-overlapping 1-second
epochs. To ensure epochs stemming from the same show
trial were not assigned to both training and validation/test
sets within folds, this “mini-epoching” of show trials were

only done after the dataset was first balanced for classes
and split for train/validation/test sets. Furthermore, in order
to prevent either ask or show trials from being dispropor-
tionately assigned to any one of the sets, train/validation/test
set splitting as well as balancing for classes were first done
individually for each trial set before merging. With the rest of
the pipeline setup remaining unchanged, our results are shown
in Figure 9. A paired t-test of test accuracy results from the
combined dataset and the ask trial only dataset did not show
significant improvement (t (13) = 0.804, p > 0.1). While
the ShallowConvNet classifier did train for most participants,
improvements to the accuracy were minimal despite the greatly
augmented sample size. In order to establish whether the
learned features are actually shared between the two tasks,
a separate run testing for transfer learning by training on one
task and testing for the other is needed which is another avenue
for future analysis.

D. Application

From a practical BCI standpoint, while the process of
memorizing vocabulary is encoded in brain signals potentially
much more complex than say, motor imagery, our training
results with accuracy levels in the mid-50% range leaves room
for improvement. The findings so far indicate that with around
half of the full dataset, a comparable level of accuracy can be
achieved. We have yet to try more specialized machine learn-
ing algorithm in BCI to address issues with dataset size, such
as zero-training paradigms [56]–[58]. So far these have been
largely validated on well established BCI tasks such as motor-
imagery and oddball paradigms rather than more complex,
cognitive tasks such as memory formation. While comparable
prediction performance could not be reliably achieved with
portions of the full dataset in our attempt at simulated on-line
learning, we do not believe this eliminates the possibility of
applying memory prediction in an on-line context. We have
presented initial proof that across-participants classification is
possible, albeit with rather limited performance. Considering
the above finding, it may be worth investigating whether
applying cross-subject transfer learning in simulated on-line
BCI of memory prediction could yield better performance,
as opposed to the training-from-scratch approach that was used



2388 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 28, NO. 11, NOVEMBER 2020

in the present study. Furthermore, EEG signal features are
known to vary across time and even sessions [59]. As our
attempt at simulated on-line BCI did not account for session-
to-session variability of EEG across the dataset, it may also be
worth looking into session-to-session transfer as well, although
limiting the scope to a session would considerably lower our
sample size.

In these contexts, it would be interesting to investigate
whether network classifier performance is transferable to other
participants or even other tasks, including different mem-
ory tasks involving other languages and stimulus modalities.
Recently Fahimi et al. have explored inter-subject transfer-
learning on neural networks trained with EEG data gathered
during Stroop task experiments [43], and Thomas et al. have
shown that across-task deep transfer learning is possible for
fMRI data [60]. Given the difficulty in collecting neural data of
scale in tasks such as human learning, pre-training classifiers
on different tasks may help also in our context.

Taking the relatively low decoding rates of the current
approach into account, a viable extension would be multi-
modal neuroimaging. Given the low costs, high portability and
ease of use, near-infrared spectroscopy (NIRS) would be an
obvious addition to the existing setup [61]. Earlier research in
BCI has shown that EEG+NIRS measurements do not only
significantly increase decoding accuracy of motor imagery, but
also that NIRS complements EEG in terms of information
content [62], [63]. An obvious concern for including NIRS
comes from the long time delay of the hemodynamic response.
Thus making the neural decoding within a setup, where
association pairs are shown in rapid succession, difficult.
However, recently studies have emerged that were able to
detect early changes in NIRS patterns and successfully apply
these in decoding decisions [64]. Additionally, when focussing
on the task at hand, namely predicting the long-term memory
formation in single trials one could also explore whether non-
neural sources of information, such as eye-tracking, heart-rate,
galvanic skin conductance, among others could be beneficial.

V. CONCLUSION

This study has explored the feasibility of predicting long-
term memory in a foreign language learning context. Results
indicate that there is a significant difference in power spectrum
of signals from learning subsequently-remembered and for-
gotten information, acquired from when the learning material
was initially observed as well as during the ask-segment.
Subsequent recall could be predicted at above-chance levels
using neural network-based classifiers, but not reliably with
linear methods. Initial results showed that participant-tuned
online-learning was possible even with a subset of the data
and that across-participant generalization in our sample size
was achievable as well.
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