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Abstract— Sleep stage classification constitutes an
important element of sleep disorder diagnosis. It relies
on the visual inspection of polysomnography records by
trained sleep technologists. Automated approaches have
been designed to alleviate this resource-intensive task.
However, such approaches are usually compared to a single
human scorer annotationdespite an inter-rateragreement of
about 85% only. The present study introduces two publicly-
available datasets, DOD-H including 25 healthy volunteers
and DOD-O including 55 patients suffering from obstructive
sleep apnea (OSA). Both datasets have been scored by
5 sleep technologists from different sleep centers. We devel-
oped a framework to compare automated approaches to a
consensus of multiple human scorers. Using this frame-
work, we benchmarked and compared the main literature
approaches to a new deep learning method, SimpleSleep-
Net, which reach state-of-the-art performances while being
more lightweight. We demonstrated that many methods
can reach human-level performance on both datasets.
SimpleSleepNet achieved an F1 of 89.9% vs 86.8% on aver-
age for human scorers on DOD-H, and an F1 of 88.3% vs
84.8% on DOD-O. Our study highlights that state-of-the-art
automated sleep staging outperforms human scorers per-
formance for healthy volunteers and patients suffering from
OSA. Considerations could be made to use automated
approaches in the clinical setting.

Index Terms— Automatedsleepstage classification,deep
learning, PSG, EEG, open datasets, inter-rater agreement.

I. INTRODUCTION

SLEEP has a crucial impact in human health. Sleep disor-
ders are a common public health issue. For instance, in the

US, studies have shown that millions of people are affected [1].
Polysomnography (PSG) is the gold standard for the diag-
nosis of highly prevalent sleep disorders such as obstructive
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sleep apnea (OSA). It consists of recording various bio-
physiological signals such as electroencephalogram (EEG),
electrooculogram (EOG), electromyogram (EMG), and can
include breathing and cardiac signals. Sleep stage classifi-
cation consists of the visual inspection and classification of
30-seconds epochs of PSG by sleep technologist. The output
of this process is the hypnogram, the diagram of sleep stages
throughout the night. It is a systematic and valuable prelimi-
nary step in performing a diagnosis. Sleep stages are labeled
by sleep technologist following the American Association of
Sleep Medicine (AASM) rules [2]. These rules set out 5 stages,
based on the various waveforms observed on each signal
of the PSG: wake, rapid eye movement (REM), non-REM
sleep stage 1 (N1), 2 (N2) and 3 (N3). It typically takes a
sleep technologist 30 minutes to an hour to perform sleep
staging on a whole record, i.e. about one thousand 30-second
epochs, making it time-consuming and expensive. Another
important aspect of sleep staging is the relatively low inter-
rater agreement. Indeed, by definition, the AASM rules act as
guidelines but do not fully characterize the natural variability
that a PSG signal can measure. Hence, a study conducted
on the AASM Inter-scorer Reliability dataset shows an aver-
age inter-rater agreement of 82.6% using sleep stages from
more than 2,500 experimented sleep scorers [3]. Agreement
varies between sleep stages with in decreasing order: 90.5%
for REM, 85.2% for N2, 84.1% for Wake and only 67.4%
for N3 and 63.0% on N1. Importantly, this agreement also
varies depending on patient, sleep disorders and across sleep
centers [3], [4].

Algorithmic approaches have been developed to automatize
the process. They are composed of two steps: feature extrac-
tion from raw signals and then classification into sleep stages.
Among the automated sleep staging methods, we distinguish
two main categories: the expert approaches and the deep
learning approaches. An expert approach relies on hand-
crafted feature extraction followed by a learnt classifier. On the
other hand, a deep learning approach learns both the features
and the classifier from example epochs.

Numerous studies have focused on expert approaches to
classify sleep stages. Spectral and temporal features are com-
puted on raw EEG signals [5], [6] or on multimodal PSG
signals [7]. A classifier, like a random forest or a multi-layer
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perceptron, is then trained on top of these features to estimate
the current sleep stage. Most recent approaches take into
account successive sleep epochs and feed their features to a
recurrent neural network (RNN) to model the time dynamics
of sleep [8].

Following the general trend in machine learning, deep
learning has also brought new feature extraction methods
for automated sleep staging. In [9] a convolutional neural
network (CNN) extracts relevant features from a single chan-
nel raw EEG signal. Reference [10] strongly improves the
previous approaches by dividing the CNN into two branches
to extract features at different scales. A RNN is added after
the CNN to model the dependency between contiguous sleep
epochs. Reference [11] proposed a lighter CNN which can
deal efficiently with multimodal data while having fewer
parameters than previous methods. References [12]–[17] have
all reported state-of-the-art performances on various sleep
staging datasets with CNN. These models (excluding [11])
have millions of parameters which increases computational
cost and the risk of overfitting while lowering data efficiency.
Most of these models are applied on a single signal from
the PSG which may limit the accuracy of the estimated sleep
stages.

References [18]–[20] introduce a different approach, the raw
PSG signals of a sleep epoch are transformed into a short term
Fourier transform and processed either by a 1D CNN or by a
RNN followed by an attention layer [21]. To model temporal
dependencies [18] feeds the succession of encoded sleep
epochs into a second RNN. State-of-the-art performance are
reached on the publicly available MASS dataset [22].

Most automated approaches are trained and evaluated on
a single manual sleep scoring making it difficult to eval-
uate how they actually perform considering the low inter-
rater agreement. One notable exception, [17] deals with the
issue of inter-rater variability using annotations from 6 sleep
technologists on a subset of training records. However the
multiple sleep staging annotations are not currently publicly
available. Another challenge in the evaluation and compar-
ison of automated approaches is that no shared dataset has
made a consensus for benchmarking different approaches
when it has been shown that performance can greatly vary
across datasets [23]. In this study we introduce two publicly
available datasets; DOD-H (Dreem Open Dataset - Healthy)
and DOD-O (Dreem Open Dataset - Obstructive). DOD-H
is built from recordings from 25 healthy adult volunteers.
DOD-O is built from recordings from 55 patients suffering
from obstructive sleep apnea (OSA). Both datasets were
scored by 5 experienced sleep technologists across 3 dif-
ferent sleep centers. Using these datasets we propose a
methodology inspired from [17] and [24] to evaluate a sleep
stage algorithm against multiple sleep technologists, in order
to simulate a real-life setting. This evaluation framework
is available at http://github.com/Dreem-Organization/dreem-
learning-evaluation together with the scores from the various
sleep technologists and the PSG data for both DOD-O and
DOD-H. Using this framework we benchmark and compare
several approaches from the literature [9]–[11], [18], [25].
We also introduce and benchmark a new deep learning method,

TABLE I
DEMOGRAPHICS FOR DOD-H AND DOD-O. MORE INFORMATION CAN

BE FOUND HERE [24] FOR DOD-H AND [26] FOR DOD-O. ALL

VALUES ARE AVERAGE ACROSS ALL SUBJECTS

SimpleSleepNet, inspired by SeqSleepNet [18], DeepSleep-
Net [10] and [11]. First, we compare the performance of
human scorers and recent literature models (including Sim-
pleSleepNet) on DOD-H and DOD-O. Then, SimpleSleepNet
is used to study the impact on sleep staging performance of
the following factors: temporal context, dataset size, number
of input signals, size and complexity of the model. The bench-
mark code is publicly available at https://github.com/Dreem-
Organization/dreem-learning-open.

II. MATERIALS AND METHODS

A. Datasets

1) Dataset 1: Healthy Patients: Dataset 1 was collected at the
French Armed Forces Biomedical Research Institute’s (IRBA)
Fatigue and Vigilance Unit (Bretigny-Sur-Orge, France) from
25 volunteers. Volunteers were recruited without regard to
gender or ethnicity from the local community via flyers.
Volunteers were healthy sleepers without sleep complaints
between the ages of 18 and 65, their PSG results confirmed
the absence of a sleep disorder. More details and exclusion
criteria can be found in [24]. Demographics are summarized
in Table I. All participants received financial compensation
commensurate with the burden of study participation. The
study was approved by the Committees of Protection of
Persons (CPP), declared to the French National Agency for
Medicines and Health Products Safety, and carried out in
compliance with the French Data Protection Act and Interna-
tional Conference on Harmonization (ICH) standards and the
principles of the Declaration of Helsinki of 1964 as revised
in 2013. The data used for this study is composed of 12 EEG
derivations (C3/M2, F4/M1, F3/F4, F3/M2, F4/O2, F3/O1,
FP1/F3, FP1/M2, FP1/O1, FP2/F4, FP2/M1, FP2/O2), 1 EMG
signal, left and right EOG signals and 1 electrocardiogram
(ECG) sampled at 250 Hz recorded with a Siesta PSG
devices (Compumedics). Each record was scored indepen-
dently by 5 experienced sleep technologists from 3 different
sleep centers following the current AASM Scoring Manual
and Recommendations (Version 2.5, Released April 2, 2018).
This is based off original 2007 AASM Scoring Manual [2].
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All scorers are registered Polysomnography Technologists,
with over 5 years of clinical / scoring experience.

2) Dataset 2: Patients With OSA: The dataset 2 was col-
lected at the Stanford Sleep Medicine Center and consists
of PSG recordings from 55 patients (Clinical trial number
NCT03657329). Patients were included in the study based
on clinical suspicion for sleep-related breathing disorder.
Individuals with a diagnosed sleep disorder different from
OSA were excluded from this study. Exclusion criteria can
be found in [26]. Demographics are given in Table I. All trial
participants gave their informed written consent prior to par-
ticipation. They received compensation for their participation.
The data used for this study is composed of 8 EEG deriva-
tions (C3/M2, C4/M1, F3/F4, F3/M2, F4/O2, F3/O1, O1/M2,
O2/M1), 1 EMG derivation, left and right EOG signals and
1 electrocardiogram (ECG) sampled at 250 Hz recorded with
a Somno HD PSG devices (Somnomedics). Each record was
scored independently by 5 experienced sleep technologists
from 3 different sleep centers following the current AASM
Scoring Manual and Recommendations (Version 2.5, Released
April 2, 2018). This is based off original 2007 AASM Scoring
Manual [2]. All scorers are registered Polysomnography Tech-
nologists, with over 5 years of clinical / scoring experience.

B. Evaluation in the Context of Multi-Scoring

The process of evaluating the performance of a human
scorer, or an automated approach, against a consensus of
multiple human scorers is inspired from [17] and has been
presented in our previous work [24]. The goal is to use reduce
the known inter scorer variability for sleep stage classification
by using a majority vote from the sleep experts. In this section,
we highlight the main aspects and differences.

1) Soft-Agreement: When taking a majority vote between
sleep experts, ties can occur. In case of ties, we choose to
use the label of the most reliable scorer. The most reliable
scorer will be the one that is the most in agreement with all
the other scorers on a record. To find this scorer, we defined
Soft-Agreement in [24] as follows. Notations: Let y j ∈ �4�T

be the sleep staging associated to scorer j taking values in
{0, 1, 2, 3, 4} standing respectively for Wake, N1, N2, N3 and
REM with size T epochs. Let N be the number of scorers.
Let ŷ j ∈ {0, 1}5×T be the one hot encoding of y j .

To evaluate a sleep staging of one record against multiple
sleep staging methods, we introduced in [24] a Soft-Agreement
metric defined as:

Soft-Agreement j = 1

T

T∑
t=0

ẑ j [y j ]

with:

ẑ j [t] =

N∑
i=1
i �= j

ŷi [t]

max
N∑

i=1
i �= j

ŷi [t]
∀t

This metric measures how close the sleep staging of interest
is from all the other scorers sleep staging. It values 1 if

the sleep staging of interest is always in agreement with the
majority vote (or one of the majority votes in case of ties).

2) Other Metrics: To merge multiple sleep stagings into a
single consensus sleep staging, we simply take the majority
vote on each 30-second epoch. When a tie occurs on a specific
epoch, we take the sleep stage scored on the sleep staging
with the highest Soft-Agreement on the record. This differs
from our previous work [24] where we used the scorer with
the highest soft-agreement over all the records of the dataset,
hence inducing a dependency to the dataset. We also compute
a weight between 0 and 1 for each epoch based on how many
scorers voted for the consensus sleep staging epoch. These
weights are used to balance the importance of each epoch in
the computation of each of the following metrics.

To measure agreement between two sleep stagings on a
specific record, we measure F1-score = 2 ∗ Pr∗Re

Pr+Re with
Pr = T P

T P+F P and Re = T P
T P+F N , and TP, FP, and FN

are the number of true positives, false positives, and false
negatives, respectively. The score is computed per-class, one
class against the others, and averaged taking the proportion of
each class into account. We also provide Accuracy, as the ratio
of correct answers and Cohen’s Kappa, κ = p j −pe

1−pe
where p j

is the relative observed agreement and pe is the hypothetical
probability of chance agreement.

C. SimpleSleepNet

SimpleSleepNet is a new automated sleep staging model
based on recent advances in the field. The initial stage in Sim-
pleSleepNet is inspired by [18]. Where it differs from the latter
is in its use of a channel-wise dropout. Moreover, it replaces
the filter bank with a linear layer, recombines the EEG
derivations using a linear layer (an approach inspired by [11]),
and omits the norm from the GRU. The second stage, which
models epoch dependencies, is inspired by [10] but differs
from it in that it uses positional embedding. SimpleSleepNet
uses fewer parameters than the other models by reducing the
size of the hidden layers. In this section, a comprehensive
description of each module of SimpleSleepNet is presented.
Figure 1 summarizes the overall architecture of the network.

1) Spectrogram: The short-term Fourier transform (STFT) is
computed on the preprocessed signals of each of the epochs.
Preprocessing is defined in section III-B. Each epoch is in
R

C,30· f s where C denotes the number of channels and f s the
signal frequency. During training, signals are randomly set to
zero before computing the STFT with a probability pkill to
reduce overfitting.

Similarly to [18], the STFT is computed over 256 points
of signal every one second with a Hanning window. The log-
power of the STFT is taken and clipped between −20 and 20.
Each epoch is thus represented by a time-frequency picture

S ∈ R
C,T ,N where C is the number of signals, T = 28 the

number of time-steps and N = 129 the number of frequency
bins. The clipped STFT is 0-mean 1-variance normalized
signal-wise independently of the timestep. Mean and variance
are computed over all the training records.

2) Signals and FrequenciesReduction: First the N frequency
bins are linearly reduced into n ≤ N filters, and the C input



1958 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 28, NO. 9, SEPTEMBER 2020

Fig. 1. SimpleSleepNet overview diagram: ht−1, h
′
t−1 represent the hidden state from the previous epoch of the sequence and ht+1, h

′
t+1 the

hidden state from the next epoch of the sequence. at is the embedding of the current epoch.

signals are linearly reduced into c ≤ C signals. Their weights
matrices are respectively in R

n,N and R
c,C and their bias in

R
n and R

c. The linear projections are applied respectively
along the frequencies and signals axis to project the initial
spectrogram from R

C,T ,N into R
c,T ,n The two projections

are applied independently. Dropout is then applied with a
probability p1.

3) GRU With Attention: The recombined signals are reshaped
into R

T ,c.n and fed to a bidirectional Gated Recurrent Unit
(GRU) [27] with m1 hidden units to build a representation
in R

T ,2.m1 . Dropout is applied after the GRU with the same
probability p1. Then, the output of the GRU is fed into an
attention layer. The attention layer is implemented as presented
in [21] with context size mct x . The attention layer reweights
and sums the GRU hidden states along the time axis to build
a vector representation of the current sleep epoch in R

2.m1

4) Positional Embeddings: Positional embeddings have
recently been used in Transformer architectures [28] to model
time dependency. Here, positional embedding is used to
include global context in the sequential modelling layer.
The positional embedding of an epoch is composed of
the scaled index epoch i epoch

t and of five cyclic indexes
i cycle
t,l where t is the number of sleep epochs since the

beginning of the night. Then i epoch
t = t

1200 and i cycle
t,l =

cos( t .π
l ) for l in [30, 60, 90, 120, 150]. The concatenation

[i epoch
t , i cycle

t,30 , . . . , i cycle
t,150 ] ∈ R

6 is then projected, using a linear
layer with weights and bias in R

6,6 and R
6, to build it . Then,

it is concatenated with the output of the attention layer to
compute the current epoch representation at ∈ R

2.m1+6

5) Sequence Encoder and Classifier: Given a temporal con-
text k and a central epoch t , the epochs at−k, . . . , at+k are
fed to a two layers bidirectional GRU with skip-connections
(SkipGRU) and m2 hidden units. The SkipGRU is similar to
the sequence encoder of DeepSleepNet [10] with additional
intermediary skip connections. Given its input size 2.m1 + 6,
the SkipGRU has a weights matrix Wskip ∈ R

m2,2.m1+6 and

a bias vector bskip ∈ R
m2 and follows:

ht = 1

2
[G RU(at , ht−1) + Wskipat + bskip]

The bidirectional SkipGRU is built by concatenating the
outputs of a forward and of a backward SkipGRU. Dropout
is applied on ht with a probability p2. We denote
ht−k, . . . , ht+k ∈ R

2·k2 its outputs.
This sequence is fed to a final softmax classification

layer which outputs the sleep stages probabilities π̂
(t)
−k, . . . ,

π̂
(t)
k ∈ R

5

6) Loss Function: Since SimpleSleepNet outputs several
sleep stages estimates instead of a single one, the loss has
to be modified accordingly (similarly to [18]). Let S =
[st−k, . . . , st+k] be the input sequence of the spectrograms
from 2k + 1 sleep epochs. For the epoch t, the loss is defined
as L(S, y) = − 1

2k+1

∑k
i=−k ŷt+i · log(π̂

(t)
t+i (S)).

D. Evaluation

At evaluation time, the multiple available predictions for an
epoch are aggregated following [18]: given an epoch t and
a temporal context k, the aggregated sleep stage probabilities
is the geometric mean π̃ (t) = exp

(
1

2k+1

∑i=k
i=−k log(π̂

(t+i)
t )

)

and the predicted sleep stage used for evaluation is ỹ(t) =
argmax j∈[[0,5]]π̃

(t)
j .

III. EXPERIMENTS

A. Baselines

To benchmark the current state-of-the-art in automated
sleep staging on both DOD-O and DOD-H, we selected
recent approaches from the literature reporting good per-
formances on publicly available datasets. These approaches
were reimplemented in Pytorch [29], for reproducibility
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the code is publicly available in the following repos-
itory: https://github.com/Dreem-Organization/dreem-learning-
open. The presented approach SimpleSleepNet is also included
in the benchmark.

1) Mixed Neural Network (Expert Approach) [8]: The Mixed
neural network (MNN) computes aggregated features (average,
median, maximum, minimum, standard deviation, entropy) on
the raw signal. The aggregation is performed on the complete
epoch and on sliding windows of 5 seconds with 3.5 seconds
of overlap. Similarly, time-frequency features are computed
using the Fourier transform over windows of 5 seconds with
3.5 seconds of overlap and on the complete epoch. The
amplitude of the Fourier transform is summed over frequency
bands of interest for sleep, general statistics are computed
for each epoch and for each band and are used as additional
features. The computed features are fed to a two-layer, fully-
connected neural network (FCNN) with dropout and then to
a bidirectional LSTM followed by a classification layer. The
features are computed on the F4-M1 derivation on DOD-H
dataset and on F4-O2 on DOD-O.

2) Tsinalis et al.,Tsinalis2016a: Tsinalis et al.,Tsinalis2016a
introduced the first CNN for sleep staging. The model takes
150 seconds of raw signals (which is equivalent to 5 sleep
epochs) centered on the current epoch. The signal is fed to two
successive convolution+ pooling layers with Relu activations.
The features are then flattened and fed to a two-layer FCNN
followed by the classification layer. The network estimates
the sleep stage of the central epoch. The parameters are those
provided in the original paper. However, for a fair comparison
with the other models, the net is trained on all the PSG signals
instead of the single channel without any other architectural
change.

3) Chambon et al. [11]: Chambon et al. [11] built a convolu-
tional model to handle multivariate and multi-modal signals.
The model uses 270 seconds (9 sleep epochs) of signals as
its input. It classifies the central epoch. First a convolution
of size 1 is applied, the convolution does not take into
account the time and is only applied over the signals. This
convolution models the dependencies between the different
signals to learn virtual signals which are good representations
of the original signals. Then a succession of two Convolution
and Pooling layer blocks is applied on each virtual signal
independently. Processing each signal independently reduces
the overall complexity and increases the inference and training
speed. The output of the CNN is flattened before being fed to
a final classification layer. The parameters are the one used in
the original paper, the net is trained on all the PSG signals.

4) DeepSleepNet [10]: DeepSleepNet improves [9] with
a hierarchical model, first, each epoch is encoded, then the
succession of the epochs is processed by a recurrent network
to model temporal dependencies. Instead of having only one
convolutional layer, each sleep epoch is encoded by two dis-
tinct convolutional networks with different filters and pooling
sizes. The first network has smaller filter sizes and is focused
on temporal information while the second network has a larger
filter size and focuses on frequency information. The output
of both networks are concatenated to build the representation
of the epoch. To deal with the stage transition, a succession

of 2 bidirectional LSTM with a skip-connection processes the
sequence of encoded sleep epochs. The model is trained on
all the signals.

5) SeqSleepNet [18]: SeqSleepNet takes the spectrogram
of the signal as the input, the number of Fourier bins is
reduced with a learned frequency filter-bank which projects
the original bins on a smaller frequency space. The reduced
STFT is then fed to a bidirectional LSTM with recurrent
batch-normalization [30] followed by an attention layer. The
attention layer reduces the temporal dimension and encodes
the 30-second sleep epoch into a single vector. The encoded
representations of consecutive sleep epochs are then fed to
a bidirectional GRU, the output of the GRU is used by the
classification layer to output the final sleep stage estimate.

6) SimpleSleepNet: The Fourier bins are projected on
n = 30 filters and the original number of channels is kept
(c = C). The dropouts probabilities pkill , p1, p2 are set to
0.5. m1 = m2 = 25 hidden units are used in both the epoch
encoder and the sequence encoder. The attention context size
mct x is also set to 25.

B. Benchmark Setup

Soft-Agreement was computed for all scorers on all records.
Following II-B.2 we used these values to build a con-
sensus hypnogram for every record. The human scorers
are individually evaluated against the consensus hypnograms
built from the four others. The automated approaches are
trained and evaluated with the consensus hypnograms built
from the four overall best scorers in terms of overall best
Soft-Agreement. On DOD-H the 5 human scorers had an over-
all Soft-Agreement of respectively 0.87, 0.91, 0.92, 0.84 and
0.92 so scorers 1, 2, 3 and 5 are selected. On DOD-O,
the 5 human scorers had an overall Soft-Agreement of 0.88,
0.87, 0.88, 0.88 and 0.91 respectively, so scorers 1, 2, 4 and 5
are selected. In practice, ties occurred on average for 7.3% of
the epochs in DOD-H and 9.9% of the epochs in DOD-O.

The same preprocessing is used for all the models, a band-
pass filter is applied between [0.4, 18]H z to remove residual
PSG noise, then, the signals are linearly resampled at f s =
100 H z to reduce the training computational cost. Each signal
is then clipped and divided by 500 to remove extreme values.
Predictions on each epoch are computed using a temporal
context of past and future epochs (see section II-D). To ensure
having points for the very first and last epochs of the record,
a zero-padding with at least the same length as the temporal
context is added at the start and end of each record.

The models are trained using back propagation with the
Adam optimizer and a learning rate of 0.001, momentum
parameters β1 = 0.9 and β2 = 0.999 and a batch size of 32.
All the models are trained for a maximum of 100 epochs
with early stopping. The training was stopped when validation
accuracy stopped improving for more than 15 epochs. The
model with the best validation accuracy is used to evaluate
the model on the test set. The temporal context is set to
21 for SimpleSleepNet, DeepSleepNet, SeqSleepNet and the
Mixed Neural Network.For [11] and [9], a temporal con-
text of 21 yielded lower performances, hence contexts from
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Fig. 2. Confusion matrix for SimpleSleepNet versus consensus hypnograms built from the top four best scorers (top) and the overall confusion
matrix for human scorers versus the consensus hypnograms built from the four other scorers (bottom) for DOD-H (left) and DOD-O (right). Values
are normalized by row with and the number of epochs is given in parentheses.

TABLE II
NUMBER OF PARAMETERS AND TRAIN TIME PER EPOCH ON A TITAN X

ON THE DOD-H DATASET. 18 RECORDS ARE USED FOR TRAINING

AND 6 FOR VALIDATION. THE ORDER OF MAGNITUDE AND

THE RANKING IS THE SAME ON DOD-O

the original publications were used, respectively 9 and 5.
Furthermore for each model from the literature, several set
of hyper-parameters were evaluated on DOD-O and DOD-H,
the best run is reported for these models.

On DOD-H the models were evaluated in a leave-one-out
way: 18 records are used for training, 6 are kept for validation
and 1 is kept to test the model. On DOD-O the models were
evaluated in a 10-folds validation way: 37 records are used for
training, 12 are used for validation and 6 records to evaluate
the model.

The number of parameters of each model and training time
for one epoch on a Titan-X on DOD-O are given for reference
Table II.

C. Benchmark on DODO and DODH
The overall, best and worst performances of the five scorers

are reported in Table III for both datasets, all the metrics
are computed subject-wise and not epoch-wise to be more
representative of a clinical setting. On DOD-H, the average
scorer F1 is 86.8 ± 7.6%. The average scorer accuracy is
above the one reported in [4]. F1 is higher for REM (90.8 ±
10.3%), followed by N2 (88.9 ± 7.6%), Wake (84.3 ± 13.6%)
and lower for N3 (78.5 ± 23.9%) which also shows the highest
variability. N1 has the lowest F1 (50.3 ± 14.7%).

On DOD-O, the performances of the scorers are slightly
lower than on DOD-H with an overall scorer F1 of
84.8 ± 8.6%. F1 is higher for Wake epochs (90.8 ± 8.2%).
For all the other stages it is slightly lower with 85.6 ± 23.3%
for REM, 85.6 ± 10.7% for N2 and 44.6 ± 16.8% for N1.
N3 is notably lower with an F1 of 56.9 ± 33.1%. Standard
deviation (SD) sensibly increases for all the stages compared
to DOD-H. Figure 2 shows the scorers confusion matrices on
both dataset, most of the errors involve N1 being mistaken for
WAKE or N2 and N3 being mistaken for N2.

The performances of the automated approaches are also
given in Table III. SimpleSleepNet shows the best perfor-
mance on both datasets for the considered metrics when
compared to both humans and other approaches. On DOD-H,
SimpleSleepNet is better than the best scorer and shows a
lower SD with an F1 of 89.9 ± 4.1%. On DOD-O, it also
performs better but with a slightly higher SD than the best
scorer with an F1 of 88.3 ± 9.0%. With the exception
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TABLE III
PERFORMANCE METRICS OF EACH OF THE BASELINE MODELS. AVERAGE, BEST AND WORST HUMAN SCORERS PERFORMANCE

ARE ALSO GIVEN. THE BEST (RESP. WORSE) SCORER IS THE SCORER WITH THE HIGHEST (LOWEST) F1

of [11] and [9], every model performs better with a much
lower variability on DOD-H than on DOD-O. Most models
have F1 scores which are on par with the scorers’ average
and above the worst scorer.

D. SimpleSleepNet Ablation Study

To assess the importance of each of the modules of the
architecture of SimpleSleepNet, ablated models were trained
on both datasets. While technically not being an ablation of the
model itself, the influence of the preprocessing step is assessed
in No filtering where the filtering is removed. In No channel
dropout the channel dropout is removed (pkill = 0). Then,
we evaluate the effects of the blocks of the epoch encoder.
In No frequency reductions the linear frequency reduction is
removed, in Filter bank it is replaced by a filter-bank [18],
in No channel recombination the linear channel recombination
is removed and in No attention the attention layer is replaced
by an average-pooling layer. The architecture of the sequence
encoder is analyzed by removing the positional embedding
in No positional embedding, by using a single layer in the
GRU encoder in Single GRU layer, and by removing the skip-
connection in No skip connection.

The results are shown in Table IV. Removing the frequen-
cies reduction layer or the channel dropout are the most
impacting ablations on both datasets. Other ablations do not
significantly impact the performance on DOD-H. However,
on DOD-O, the filtering and the filter bank greatly impact
the performance. Other ablations also demonstrate the slight
improvement provided by each layer on DOD-O. Overall,
the full model presents the best ranking on both datasets.

E. Influence of the Experimental Setup

1) Model Size: To assess the influence of the model
size on performances, two variants of SimpleSleepNet are
evaluated SimpleSleepNet-Small and SimpleSleepNet-Large.
SimpleSleepNet-Small (resp. SimpleSleepNet-Large) has
hidden units of size m1 = m2 = 12 (resp. m1 = m2 = 50)

TABLE IV
PERFORMANCE METRICS OF ABLATED VARIATIONS OF

SIMPLESLEEPNET. FOR EACH MODEL, A SPECIFIC MODULE

FROM SIMPLESLEEPNET IS EITHER REMOVED OR

REPLACED BY A SIMPLER ALTERNATIVE

in both GRU and the attention layer context size is set to
mct x = 12 (resp. mct x = 50). SimpleSleepNet-Small
has approximately three times less parameters and
SimpleSleepNet-Large three times more parameters than
SimpleSleepNet as show in Table II.

Increasing the model size increases SimpleSleepNet perfor-
mances both on DOD-O and DOD-H as shown in Table V.
On DOD-H F1 increases by 0.5% for the large model and
is reduced by 0.6% for the small model. On DOD-O, F1 is
increased by 0.7% with the large model and reduced by 1.1%
when using the small model. On both datasets, using larger
models reduces variance significantly.

2) Performances on a Single EEG Derivation: We assess the
performance of SimpleSleepNet on a the F4-O2 derivation on
both datasets in Table VI. Performances are significantly lower
compared with a model trained on the full montage, the single
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TABLE V
PERFORMANCE METRICS OF SIMPLESLEEPNET VARIANTS WITH

SMALLER (SIMPLESLEEPNET-SMALL) AND LARGER

(SIMPLESLEEPNET-LARGE) LAYER SIZE THAN

THE ORIGINAL MODELS

TABLE VI
PERFORMANCE METRICS ARE COMPARED WHEN SIMPLESLEEPNET

IS TRAINED ON THE F4-02 DERIVATION ONLY VS WHEN IT IS
TRAINED ON ALL PSG CHANNELS. THE SCORERS (AVG.)

FROM TABLE III IS GIVEN FOR REFERENCE

Fig. 3. Evolution of the F1 w.r.t the training set size on DOD-O (right)
and DOD-H (left) dataset.

channel model F1 score is 3.9% points lower on DOD-O and
3.3% points lower on DOD-H. The model F1-score with single
channel is still on par with the scorers average.

3) Size of the Training Set: Labelling records is a costly and
long process, hence having data efficient models is crucial.
To assess the data efficiency of SimpleSleepNet, the model
was trained with training set of increasing size k (1 to 19 for
the DOD-H dataset, and 1 to 40 for the DOD-O dataset). For
a given training repetition, the split is built in the following
way for DOD-H (resp. DOD-O), first 3 (resp. 5) records
are randomly sampled for the validation set and 3 (resp. 5)
records are sampled for the test set. Out of the 19 (resp. 45)
remaining records, the training set of size k is built with the
first k records. This experiment is repeated 20 times. The
mean F1 and the 95% confidence interval on the test set
are computed over the 20 experiments are presented Figure 3.
Human level performances are reached on both datasets with
less than 20 records, DOD-O has a steeper learning than
DOD-H. On DOD-H the F1 reaches a plateau where incre-
mental gains are low with 12 records, while 25 records are
required to reach a plateau on DOD-O. The average scorer

Fig. 4. Evolution of the F1 w.r.t the temporal context on DOD-H (right)
and DOD-O (left) dataset.

TABLE VII
PERFORMANCE METRICS OF SIMPLESLEEPNET WHEN TRAINED ON

DOD-O (RESP. DOD-H) AND EVALUATED ON THE OTHER DATASET

DOD-H (RESP. DOD-O). THE MODELS ARE TRAINED AND

VALIDATED ON 20 RANDOM SPLITS OF THE SOURCE

DATASET AND EVALUATED AGAINST

THE TARGET DATASET

performance is reached with 7 records (resp. 15). In addition to
the increased F1, the standard deviation of the test F1 strongly
decreases with the number of training records.

4) Temporal Context: We study the impact of the temporal
context on the performance by training SimpleSleepNet on
DOD-H and DOD-O with varying sizes of temporal context.
The size of the temporal context is incrementally increased
from 1 (no temporal context apart from the current epoch) to
21 (ten epochs before and after the current epoch). Results are
presented Figure 4. Even with a single epoch, performances
are decent on both dataset with a F1 of 85.5 ± 6.5% on
DOD-H and 83.0 ± 11.6% on DOD-O. The F1 sensibly
increases when the temporal context is increased from 1 to 7,
then it plateaus.

F. Direct Transfer Learning

In a real-life, clinical setting, one may wish to train a staging
model of a source dataset and to use it on another unla-
belled dataset. To assess the transferability of SimpleSleepNet,
we train and validate it on DOD-H (resp. DOD-O) and test
it on DOD-O (resp. DOD-H). The experiment is repeated
20 times, for each repetition, 70% of the records from the
source dataset are randomly selected for training and the
remaining 30% for validation. All the records of the target
dataset are used to test the model performance.

The results of the experiment are shown in Table VII.
When SimpleSleepNet is trained on DOD-O and evaluated on
DOD-H, the F1 drops from 89.9% to 84.8% compared to a
model trained from scratch on DOD-H. The standard deviation
of the performance metrics almost doubles. The performance
drop is bigger when the model is trained on DOD-H and
evaluated on DOD-O, the F1 drops from 88.3% to 62.6%.
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TABLE VIII
MACRO-F1 OF THE BASELINE MODELS ON MASS AND SLEEP EDF. FOR CONSISTENCY WITH THE LITERATURE WE REPORT THE EPOCH-WISE

MACRO F1. MOREOVER, SINCE THE COMPUTATION ARE DONE EPOCH-WISE, WE CANNOT REPORT SUBJECT VARIABILITY AS IN

THE OTHER TABLES. (*) ARE REPORTED ON THE COMPLETE MASS DATASET. (1) IS TRAINED ON F4-EOG
AND (2) ON FPZ-CZ TO LIMIT THE NUMBER OF PARAMETERS

G. Benchmark on External Dataset

1) MASS SS3 [22]: The MASS SS3 cohort is composed
of 62 nights from healthy subjects, done with a full PSG
montage (20 scalp EEG,2 EOG, 3 EMG and 1 ECG) and
manually scored by a sleep expert according to the AASM
standard. The models were trained on the C4-O1, F4-EOG
Left, F8-Cz, on the average of the two EOGs and on the
average of EMG-Chin1 and EMG-Chin2 which are available
for all records and frequently used by the models evaluated
on MASS. We used the same preprocessing and training
parameters as in the previous section III-B. The models are
evaluated in a 31-folds validation way (as in [10]).

2) Sleep EDF [31]: The Sleep EDF database contains
197 nights from 106 subjects, amongst these nights, 153 are
from 82 subjects without any sleep-related medications
(SC study) and 44 are from subjects with trouble falling
asleep (ST study). 22 of the 44 nights are done after a
Temazepam intake. We consider two splits, S-EDF-20 with
the subjects 0 to 19 from the SC study and S-EDF-Extended
will all the subjects from the database. Similarly to [10], [32],
we only considered the epochs in-between 30 minutes before
the first non-wake epoch epoch and 30 minutes after the
last non-wake epoch. The models are trained and evaluated
using a 20-folds CV on S-EDF-20 and 10-folds CV on
S-EDF-Extended. Records from a subject are in the same fold.
The models are trained on the FPZ-Cz, Pz-Oz and the EOG
derivation without further processing.

3) Results: The results are presented Table VIII. Our imple-
mentation of the literature models reaches equal or improved
performance when compared to the original publications. This
improvement can be explained by three different reasons.
First, we used more derivations than in the original papers.
[9], [25], [10] used a single derivation and [18] three-
derivations. Secondly, the prediction from a single epoch is the
average of the prediction over the temporal context (as in [18],
see II-D). Finally, our preprocessing is more aggressive than
in the original paper. These differences concern only input
and output data, not the models themselves. This ensure that
all the models are compared in the same conditions of input,
preprocessing and prediction. SimpleSleepNet achieve the best
performance on Sleep EDF. On MASS, DeepSleepNet shows
the best Macro-F1 score closely followed by SimpleSeepNet.

IV. DISCUSSION

DOD-H and DOD-O multiple scoring highlight the pre-
viously described and relatively high inter-rater variability
regarding sleep staging. This confirms the need for automated
sleep staging approaches to train and compare with a consen-
sus of human scorers instead of a single human scorer for a
more realistic evaluation of performance. The Soft-Agreement
and the methodology presented allow to handle multiple
scorers and especially situations when a tie between scorers
occurs. Another solution could be using yet more scorers to
reduce ties occurrence and improve the fairness of the built
consensus.

Due to an increased sleep fragmentation, manual sleep
staging is more difficult on patients with OSA than healthy
subjects. This is also true for most automated approaches.
Indeed, the accuracy is lower and presents higher variance
on DOD-O than on DOD-H. There are also more ties on
DOD-O than DOD-H. This is in agreement with [17] where
models accuracy drops by 9% on narcoleptic subjects vs
healthy subjects and with [33] where the scorers reliability
was much higher on healthy subjects than on those with
OSA. Besides, the training requires more recordings to reach
human performance on DOD-O than on DOD-H. All those
elements suggest that the inter-subjects variability is higher
within DOD-O than within DOD-H. Yet, interestingly, transfer
learning from DOD-O to DOD-H is much more effective than
the other way around. This implies that data acquired from
patients suffering from OSA contains information related to
healthy sleep as well as information specific to OSA. This also
shows that although SimpleSleepNet reaches a better F1 on
DOD-H than on DOD-O, the model trained on DOD-O is
much better in its generalization capacity than the one trained
on DOD-H. These analyses could be extended to datasets with
other sleep-related issues to see how much they impact the
performance of human and automated sleep staging. This also
suggests that a dataset containing high inter-subject variability,
for instance with a mix of both abnormal and normal sleep,
would probably lead to better models in terms of their ability
to generalize. This is also highlighted in [17].

The transfer learning experiment also highlights a practical
limitation regarding the usability of such automatic method
outside of the scope of the same population of patients or/and
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device than the one on which it has been trained on. This
is also discussed in [23]. In practice, this limits the use
of such automatic sleep staging method in a clinical setup.
Training models on a cohort of several patients with a mix
of both abnormal and normal sleep recorded on different PSG
devices and scored by different scorers would greatly improve
the generalization of sleep staging models. However, the use
of different devices implies dealing with possibly different
modalities and missing signals, which is a problem that has
to our knowledge not been tackled yet.

SimpleSleepNet, DeepSleepNet and SeqSleepNet outper-
form the average human scorer on both DOD-O and DOD-H.
Most other automated approaches perform with an accuracy
close to human scorers. The confusion matrix also shows sim-
ilar pattern of mistakes between humans and SimpleSleepNet.
Given a few annotated records, automated sleep staging could
reach similar performances to human scorers in a clini-
cal setting if the data are acquired with a consistent PSG
montage and patient typology. This is often the case in a
typical sleep clinic setting. That being said, an interesting
direction of research would be to create a model able to
adapt to various PSG montage without fine-tuning or weight
modifications.

On external datasets, SimpleSleepNet, DeepSleepNet, and
SeqSleepNet also show the best performances. However, these
datasets were scored by a single expert. Inter-rater variability
prevents us from drawing strong conclusions regarding the
absolute performance of the various models on these datasets.
Specifically, the models could be overfitting on human expert
scoring.

We observe that most benchmarked methods using data-
driven feature extraction perform better than the expert feature
extraction approach. This is especially true on DOD-O and
SleepEDF-Extended which present a higher level of variability,
suggesting a better ability for such deep learning models to
capture relevant information in complex data like abnormal
sleep.

SimpleSleepNet outperforms the best human scorer and all
other sleep staging models on DOD-O and DOD-H. It is also
among the best-ranked models on external datasets. It uses
significantly fewer parameters than other approaches. The
presented ablation study shows that the various building blocks
of SimpleSleepNet allow reaching the best performance on
DOD-O. SimpleSleepNet reaches close-to-human performance
with only a few (∼10) recordings, suggesting that sleep
stage classification is a relatively simple problem in terms of
data quantity needed to reach satisfactory performance. The
temporal context and number of signals also seem to play a
minor role in improving performance.

The results provided in this study are available with both
data and code for reproducibility. It should be noted that the
benchmarked automated approaches were all reimplemented.
The performances of our implementation were validated on
the MASS SS3 and SleepEDF datasets with performance
similar or above the original implementations. Furthermore,
to ensure the fairness of the benchmark, every method was
tuned to provide good results on the datasets of this study.
All reported results are from a single run, rerunning the

experiments might result in slightly different results due to
randomness and variability.

V. CONCLUSION

In this work, we introduced two open multi-scored sleep
staging datasets with 25 from healthy subjects and 55 nights
patients suffering from OSA. We proposed a methodology for
evaluation against multiple human scorers. We showed the
relevance of a multi-scored sleep dataset to assess how auto-
mated sleep staging performs in a clinical setting. We demon-
strated that recent automated sleep staging performances are
often on-par with the average human scorer, and that the
best automated sleep staging are better than the best human
scorer. We also introduced a new efficient sleep staging
model, SimpleSleepNet, which outperforms previous state-of-
the-art models and human scorers on both datasets and on
two frequently benchmarked datasets. Better understanding
and quantification of the performance of such automated
approaches could be a step toward a broader use of these
approaches in sleep clinics.
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