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Abstract— Motion and muscle artifacts can undermine
signal quality in electroencephalography (EEG) recordings
during locomotion. We evaluated approaches for recover-
ing ground-truth artificial brain signals from noisy EEG
recordings. We built an electrical head phantom that broad-
cast four brain and four muscle sources. Head movements
were generated by a robotic motion platform. We recorded
128-channel dual layer EEG and 8-channel neck electromyo-
graphy (EMG) from the head phantom during motion.
We evaluated ground-truth electrocortical source signal
recovery from artifact contaminated data using Independent
Component Analysis (ICA) to determine: (1) the number of
isolated noise sensor recordings needed to capture and
remove motion artifacts, (2) the ability of Artifact Subspace
Reconstruction to remove motion and muscle artifacts at
contrasting artifact detection thresholds, (3) the number
of neck EMG sensor recordings needed to capture and
remove muscle artifacts, and (4) the ability of Canonical
Correlation Analysis to remove muscle artifacts. We also
evaluated source signal recovery by combining the best
practices identified in aims 1-4. By including isolated noise
and EMG recordings in the ICA decomposition, we more
effectively recovered ground-truth artificial brain signals.
A reduced subset of 32-noise and 6-EMG channels showed
equivalent performance compared to including the com-
plete arrays. Artifact Subspace Reconstruction improved
source separation, but this was contingent on muscle activ-
ity amplitude. Canonical Correlation Analysis also improved
source separation. Merging noise and EMG recordings into
the ICA decomposition, with Artifact Subspace Reconstruc-
tion and Canonical Correlation Analysis preprocessing,
improved source signal recovery. This study expands on
previous head phantom experiments by including neck mus-
cle source activity and evaluating artificial electrocortical
spectral power fluctuations synchronized with gait events.
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|. INTRODUCTION

LECTROENCEPHALOGRAPHY (EEQG) is increasingly

recognized as an effective tool for mobile brain imaging
because it is portable, lightweight and offers a high temporal
resolution [1]. A main limitation, however, is its sensitivity
to artifacts caused by motion and muscle activity. Motion
of the EEG electrodes during movement can cause voltage
fluctuations unrelated to brain activity [2], [3]. Electrodes
can also capture physiological signals such as eye blinks and
muscle activity of the head and neck. To improve the use of
EEG for mobile brain imaging, data collection and processing
techniques should carefully isolate electrocortical activity from
artifact sources.

Mobile EEG studies reveal electrocortical spectral power
fluctuations across the gait cycle [4]-[12]. There are
repeated observations of increased alpha (8-12 Hz) and beta
(12-30 Hz) spectral power in sensorimotor [8], [9], [12]
and motor [10], [11] areas during double support prior to
contralateral limb push off, followed by a decrease during
swing of the contralateral leg. These observations have been
possible thanks to advanced processing methods that help
isolate and remove artifacts. Blind source separation, such as
adaptive mixture independent component analysis (AMICA),
can separate brain activity from motion and confounding
physiological artifacts [13]. This approach has been used in
many mobile brain imaging experiments to successfully extract
electrocortical activity from noisy EEG data [3], [4], [14]-[19].
Other preprocessing methods can help eliminate motion and
muscle artifacts, such as Artifact Subspace Reconstruction
and Canonical Correlation Analysis. Artifact Subspace Recon-
struction uses a Principal Component Analysis based approach
and calibration statistics acquired from clean EEG data.
It interpolates high variance components that exceed a prede-
termined threshold relative to clean data and reconstructs the
channel data [20], [21]. It has been widely used to successfully
remove EEG artifacts [11], [12], [16], [20]-[23]. However,
care must be taken when selecting the artifact detection
threshold as an aggressive cutoff can remove brain activity
as well as artifacts [11]. Canonical Correlation Analysis has
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subsequently been used to decompose EEG channel data based
on autocorrelation. Components with unusually low autocor-
relation that capture high frequency electrical and muscle
artifacts can therefore be extracted to reconstruct clean scalp
EEG recordings [12], [16], [24]-[27].

Because the underlying electrocortical source activity is
largely unknown in human mobile EEG recordings, it is useful
to evaluate the performance of blind source separation and
other preprocessing methods in comparison to ground-truth
signals. By using an electrical head phantom device with
embedded antennae for broadcasting simulated brain activity,
it is possible to evaluate data collection and signal processing
approaches. Head phantom experiments have been used to
validate the ability of independent component analysis (ICA)
to isolate simple sinusoidal bursts [19] and more complex
neural signals [15] from motion-contaminated data. Recent
head phantom experiments have also evaluated the influ-
ence of mobile EEG hardware configurations and processing
techniques for reducing motion artifacts. Symeonidou and
colleagues [28] demonstrated the detrimental effect of cable
sway on signal-to-noise ratio, underscoring the need to min-
imize cable movements in a wired EEG setup. Nordin and
colleagues [29] subsequently developed dual layer EEG hard-
ware for isolating and removing motion artifacts from mobile
EEG recordings. This approach relies on conventional scalp
interfacing EEG electrodes along with mechanically coupled
and inverted noise-only electrodes that are electrically isolated
from the primary sensors [29]. Dual layer EEG hardware
and signal processing has been evaluated during motion using
electrical head phantom devices [17], [29] and has been used to
uncover human brain dynamics during obstacle navigation and
at different gait speeds [12], [17]. Ground-truth signal cleaning
comparisons can help establish best practices for mobile EEG
artifact removal.

Previous benchmark testing with the head phantom evalu-
ated methods to reduce motion artifacts. During human loco-
motion, motion and muscle artifacts can each undermine EEG
signal quality due to overlapping timing and spectral content
with electrocortical activity. Neck muscles are important for
stabilization of the head during locomotion [30]. Adding neck
muscle sources to our electrical head phantom allows us to
objectively assess both motion and muscle artifact-cleaning
methods using rigorous benchmark tests [31]. Realistic brain
signals that contain gait-related spectral power fluctuations will
also allow us to evaluate the influence of our signal cleaning
methods on event-related spectral perturbations across the step
cycle; a common measure used to evaluate electrocortical
dynamics during locomotion.

Our objective was to determine best practices for dual layer
mobile EEG hardware configurations and signal processing
schemes. We extracted artificial brain signals from mobile
EEG recordings contaminated by simulated motion and mus-
cle artifacts using an electrical head phantom and robotic
motion platform. From these mobile EEG data, we evalu-
ated ground-truth electrocortical source recovery using ICA
to determine: (1) the number of isolated noise sensor
recordings needed to capture and remove motion artifacts,
(2) the ability of Artifact Subspace Reconstruction to remove

Fig. 1. We built a head phantom from ballistic gelatin (a), surrounding
a base with embedded sources (b). Four sources were located at the
posterior base of the head to generate muscle activity (b; white circles).
Another four were placed in the approximate locations of the frontal,
occipital and bilateral sensorimotor cortices (b; black circles).

motion artifacts at contrasting artifact detection thresholds,
(3) the number of neck EMG sensor recordings needed to
capture and remove muscle artifacts, and (4) the ability of
Canonical Correlation Analysis to remove muscle artifacts.
In motion-contaminated data, we hypothesized that including
isolated noise recordings from dual layer EEG sensors would
help separate motion artifacts from scalp EEG recordings.
However, we anticipated that a reduced subset of matched
noise pairs could be used to effectively capture and remove
the predominant motion-induced noise sources [12], [17].
We also hypothesized that Artifact Subspace Reconstruction
preprocessing would remove motion and possibly muscle
artifacts [11], [12], [16], [20], but that aggressive artifact
identification thresholds could eliminate components of the
artificial electrocortical signals. In muscle-contaminated EEG
data, we hypothesized that including additional EMG record-
ings in the ICA decomposition would help to isolate and
remove muscle artifacts [8], [12], [17]. Finally, we antici-
pated that Canonical Correlation Analysis would help capture
and remove high-frequency, muscle-induced artifacts [12],
[16], [27], [32], [33]. By combining these methods, we pre-
dicted that we could cleanly isolate the ground-truth artificial
electrocortical sources to assess spectral power fluctuations
across the gait cycle.

Il. METHODS
A. Experimental Setup

We constructed an electrical head phantom device (Fig. 1a)
using ballistics gelatin as described in [28] based on
a derivative of the model provided under the Open
Phantom Project hosted by the Army Research Laboratory
(see https://osf.io/qrka2/ [34], [35] for more details). Sodium
chloride was added to the gelatin mixture at a concentration
of 1% to approximate the ionic conductance of human skin
tissue [36]. Ballistics gelatin also resembles the mechanical
properties of living tissue [36]-[38]. The head contained an
embedded base with eight dipolar sources, each consisting of
exposed pairs of wire tips with approximately 2 mm separation
(Fig. 1b). Four of these sources were used to generate muscle
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activity and were located in the base of the head, in the
approximate locations of the left and right sternocleidomastoid
and trapezius muscles (Fig. 1b, white circles). The other four
sources were used to generate artificial electrocortical source
activity (Fig. 1b, black circles). We placed the sources in
the approximate location of the left and right sensorimotor
cortices, frontal cortex, and occipital cortex. We secured the
head to a six-degree of freedom robotic motion platform
(Symétrie, Nimes, France) that was used to reproduce human
head trajectories recorded during walking.

To generate realistic head motions and electrical neck
muscle activity during walking, we collected data from a
human subject. A healthy, young male subject (26 years,
170 cm, 62.6 kg) walked at four speeds (0.5, 1.0, 1.5,
and 2.0 m/s) on a force-instrumented treadmill (Bertec FIT,
Columbus, OH, USA). We recorded data from an inertial
measurement unit placed on the subject’s forehead (APDM,
Portland, OR, USA), band pass filtered (0.5 Hz high-pass, 4 Hz
low-pass), and calculated head trajectories that were repro-
duced by the robotic motion platform. We placed four bipolar
surface EMG electrodes (Biometrics Ltd, Ladysmith, VA,
USA) on the left and right sternocleidomastoid and trapezius
muscles to record neck muscle activity during walking. Muscle
activity data were band pass filtered (20 Hz high pass, 300 Hz
low pass) and normalized (£1) to the fastest walking speed
(2.0m/s). We used these signals as inputs for the corresponding
neck muscle sources in the head phantom. Supplementary
Fig. 1 illustrates the spectral power of the muscle inputs as
a function of frequency (a) and as a function of the left and
right limb heel strike and toe off gait events (c) for the 1.5 m/s
walking speed. The event-related spectral perturbation plots
demonstrate lateralized high frequency oscillations in spectral
power throughout the gait cycle.

To generate complex neuronal activity at a range of phys-
iological frequencies, we used an established neural mass
model to simulate human EEG recordings [15], [39], [40].
By combining neural mass models [15], [40], we created
four separate complex waveforms with different spectral
profiles (Supplementary Fig. 1b). The frontal and occipital
artificial electrocortical signals had power spectral density
peaks at approximately 7 and 9 Hz, respectively. To add
further complexity, the occipital signal also included filtered
white noise to create a delta peak at approximately 2.5 Hz.
For the sensorimotor signals, we aimed to reproduce spec-
tral power fluctuations synchronized to gait events in alpha
(8-12 Hz) and beta (12-30 Hz) bands [4], [12]. For this
reason, we combined two signals generated from the neural
mass models to create two frequency peaks in each sensori-
motor signal. The left sensorimotor cortex signal contained a
prominent peak at approximately 12 Hz and a second broader
increase in the 20 to 30 Hz range. The right sensorimotor
cortex signal contained one prominent peak at approximately
11 Hz and a second moderate increase in the 14 to 16 Hz
range. We then produced fluctuations in these sensorimotor
signals (Supplementary Fig. 1d) that matched previous human
studies showing increased alpha and beta spectral power in
sensorimotor cortex during double support prior to push off
of the contralateral limb, which decreased during contralateral

limb swing [4], [12]. Between left heel strike and right toe
off, we increased the alpha and beta activity of the left sen-
sorimotor signal. During the right limb swing, we decreased
the alpha and beta activity of the left sensorimotor signal.
We performed the same modifications in the right sensorimotor
cortex signal in relation to the left limb gait cycle. Artificial
brain signal fluctuation amplitudes were normalized (£1) to
allow straightforward scaling when broadcasting the signals
through the electrical head phantom. Supplementary Fig. 1
illustrates the spectral power of the artificial electrocortical
signals as a function of frequency (b) and as a function of
the gait events (d) for the 1.5 m/s walking speed. Importantly,
the event-related spectral perturbation plots demonstrate the
increases and decreases in spectral power tied to the gait
events for the sensorimotor sources, while no gait-related
events occur in the frontal and occipital sources, providing
positive- and negative-ground truth signals for later evaluation.

Input muscle and brain signals were broadcast through the
head phantom using LabVIEW 2018 (National Instruments,
Austin, TX, USA) and a National Instruments compact DAQ
and output modules (NI cDAQ-9178 and NI-9269, respec-
tively, National Instruments, Austin, TX, USA). Symétrie
Motion software (Symétrie, Nimes, France) produced the
head motion trajectories that we extracted from human data.
We configured a trigger to initiate all input signals simultane-
ously and indicate the start of the trial in the EEG recording
software to ensure all signals were synced and tied to the gait
events.

B. Protocol

In a single testing session, we collected 32 experimental
trials of 5 minutes each: four muscle amplitude conditions
performed with and without motion of the motion platform
at each gait speed (0.5, 1.0, 1.5, and 2.0 m/s). Brain signal
amplitudes were independently set to yield approximately
+20 uV at the scalp by measuring the amplitude at the
electrode location closest to the source. Muscle amplitudes
were similarly set based on measurements at the neck elec-
trodes. We selected four muscle amplitudes: +0, 100, 300,
and 500 xV based on neck EMG recordings during human
walking and running [17]. The £0 ¢V amplitude provided a
baseline. The £500 x#V amplitude was included to provide
exaggerated muscle contamination.

C. Electroencephalography Processing

We collected EEG data using a BioSemi Active Two record-
ing system (BSM, BioSemi, Amsterdam, The Netherlands)
and a standard 128-channel cap (Electro-Cap International,
Inc., Eaton, OH, USA). We inserted conductive gel into each
well followed by pin-type Ag/AgCl electrodes. We used an
adapted dual layer electrode array [17], [29] with matched
noise electrode pairs for all 128 scalp EEG electrodes. The
noise electrodes consisted of flat type electrodes mechani-
cally coupled but electrically isolated from the scalp elec-
trodes. We stretched a custom conductive fabric cap (Eeonyx,
Pinole, CA) over these electrodes and inserted conductive gel
between the electrodes and fabric to form an external artificial
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“skin” circuit. Similarly to human experiments, we also placed
an additional eight flat-type electrodes over the neck area
of the phantom to capture EMG sources separately from
EEG. The EMG electrodes used the same reference, ground,
and collection box as the primary EEG sensors, while the
noise sensors were separately referenced, but synchronously
recorded [12], [17]. We arranged the wires to form a single
bundle at the back of the head and used hook and loop straps
to bundle the ribbon cables leading to the recording systems.
Scalp and noise electrode offsets were independently visually
inspected to be approximately £20 mV or below. All signals
were recorded at 512 Hz.

Data processing was performed using custom MATLAB
2016b (MathWorks, Inc., Natick, MA, USA) scripts and the
EEGLAB toolbox [41]. All data were initially high pass
filtered at 1 Hz. Prior to subsequent analyses, we concatenated
walking speed condition data separately for each muscle
amplitude condition and applied a robust average reference.
Unusually noisy channels that remained were then removed
using statistical channel rejection criteria (>5 standard
deviations from the mean probability distribution and
>5 standard deviations from the mean kurtosis). We applied
the same procedures separately to neck EMG and isolated
noise channel data.

In order to meet the following primary 4 aims, we applied
contrasting data preprocessing approaches before performing
an AMICA [42]:

(1) Dual layer EEG noise sensor recordings for motion
artifact removal: To determine the number of isolated noise
sensor recordings needed to capture and remove motion arti-
facts, we selected different subsets of the isolated noise sensors
that were evenly distributed across the scalp. Only contrasting
walking speed conditions were considered in this analysis,
without neck muscle activity. After preprocessing, we selected
isolated noise electrode subsets, including: 0, 32, 64, 96,
and 122 noise sensors (the 122 channels that were left after
channel rejection). To evaluate the influence of the additional
sensor data on the ICA decomposition, we performed AMICA
on the complete scalp EEG dataset (after channel rejection),
and the subset of isolated noise recordings, by stacking scalp
EEG and isolated noise channel data in separate rows of the
data matrix [12], [17].

(2) Artifact Subspace Reconstruction for motion and muscle
artifact removal: To assess the ability of Artifact Subspace
Reconstruction to remove motion and muscle artifacts at con-
trasting artifact detection thresholds, we ran the preprocessed
EEG channel data using Artifact Subspace Reconstruction at
four contrasting standard deviation cutoffs from the baseline
data, ranging from strict to lenient: 3 standard deviations [10],
[22], [23], 10 standard deviations [21], 20 standard devia-
tions [11], [16], and 50 standard deviations [21]. We used
a baseline trial that consisted of our cleanest condition
(no motion, 0 xV muscle amplitude, brain signals from the
0.5 m/s walking). When necessary, we excluded channels to
ensure similarity between the trial and baseline data. Artifact
Subspace Reconstruction preprocessing was completed for
each gait speed and muscle amplitude condition individually
(£0, 100, 300, and 500 xV), but AMICA was performed on

the concatenated gait speed conditions for each muscle ampli-
tude condition separately. For comparison, we also performed
AMICA on EEG channel data without Artifact Subspace
Reconstruction preprocessing. Only scalp EEG channel data
were included in the ICA decomposition for this aim.

(3) Neck EMG sensor recordings for muscle artifact
removal: To determine the number of neck EMG recording
sensors needed to capture and remove muscle artifacts alone,
we selected different subsets of the EMG sensors from the
left and right side of the neck. To exclude the influence
of motion artifacts, which normally cannot be accomplished
during human mobile EEG recordings, our analysis focused
on data from conditions where the motion platform remained
stationary and muscle input amplitudes were set to =100 u'V.
Although the head phantom remained motionless, artificial
brain signals from each gait speed condition were broadcast
through the head. Subsets of 0, 2, 4, 6, and 8 EMG electrodes
were included in the ICA decomposition after preprocessing.
We then performed AMICA on the complete scalp EEG
dataset (after channel rejection), along with the subset of neck
EMG recordings, stacked in separate rows of the data matrix.

(4) Canonical Correlation Analysis for muscle artifact
removal: We preprocessed EEG channel data using a Canon-
ical Correlation Analysis based approach to assess its abil-
ity to remove contrasting levels of muscle artifacts. Again,
the motion platform remained stationary to allow independent
assessment of muscle artifact contamination without motion.
In each case, data from each gait speed condition were
broadcast through the head phantom. We evaluated three
separate muscle amplitude conditions: +100, 300 and 500 V.
Following methods adapted from Nordin et al. [12], we used
Canonical Correlation Analysis on channel data with a 1-frame
lag autocorrelation. Canonical components were separated into
low and high frequency content based on autocorrelation,
and components with unusually low autocorrelation (high
frequency electrical and muscle artifacts) were removed prior
to reconstructing the channel data. For comparison, we also
performed AMICA on EEG channel data without muscle
contamination or Canonical Correlation Analysis processing.
Only scalp EEG channel data were included in the ICA
decomposition for this aim.

D. Source Signal Recovery Evaluation

By comparing the recovered independent components to
our ground-truth input signals, we were able to select the
component that best matched the artificial electrocortical
source. Specifically, we examined the similarities between
the time-frequency features of the input signals and the
independent components. To find the best-fit component for
each condition, we calculated the root mean square of the
difference between the temporally aligned time frequency data
for each independent component and the ground-truth artificial
brain signal in every gait cycle. We define this as root mean
square error. Lower values represent greater similarity to the
ground-truth input signal, which suggests better artifact and
electrocortical source separation. We specifically evaluated
root mean square error in the 8 to 30 Hz frequency range
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because our artificial sensorimotor source signals fluctuated in
this frequency band.

To provide an unbiased comparison among sources and
conditions, we normalized root mean square error to the root
mean square of its respective ground-truth spectral power fluc-
tuation pattern for each gait cycle within a condition. We then
averaged the normalized root mean square error across gait
speeds to identify the best-fit component with the lowest
root mean square error compared to the ground-truth signal.
We refer to this measure as relative error because it represents
the difference between our recovered best-fit component signal
and the ground-truth spectral power fluctuations, scaled to the
amplitude of the ground-truth spectral power fluctuations. This
can be interpreted akin to a noise-to-signal ratio. Relative error
values greater than 1 indicate that the error exceeds the spectral
power fluctuations of the ground-truth signal. Relative error
values equal to 1 indicate the spectral power fluctuations of
the error and ground-truth signal are equivalent. Relative error
values less than 1 indicate the error is less than the spectral
power fluctuations of the ground-truth signal. Zero relative
error indicates a perfect match between the best-fit component
and the ground-truth spectral power fluctuations.

We evaluated differences among conditions in aims 1-4
using the normalized root mean square error values of the
best-fit components. We used the relative error values to
calculate 99% confidence intervals from the standard devia-
tion among trials in each condition. Relative error condition
comparisons were completed using the aggregated values from
the four electrocortical sources.

Although we recorded high density mobile EEG from an
expanded dual layer EEG electrode array that was comprised
of 128-scalp EEG channels, 128-isolated noise channels, and
8-neck EMG channels (264-total channels), our head phantom
contained eight total sources (4 brain, 4 muscle). For this
reason, we anticipated the possibility of over separating these
sources during ICA. We therefore applied Principal Compo-
nent Analysis data reduction during AMICA. To guide this
decision, we performed AMICA on the cleanest condition
(no motion, £0 'V muscle amplitude, 0.5 m/s brain signal
input) without Principal Component Analysis reduction, and
with Principal Component Analysis reduction set to 15, 30, 60,
and the number of combined scalp EEG and EMG channels
remaining after preprocessing. For each Principal Component
Analysis reduction cutoff, we calculated the trial-averaged
root mean square error to find the best-matched sources com-
pared to the ground-truth. This testing identified that Principal
Component Analysis reduction to 15 components returned the
lowest average root mean square error values, therefore we
applied this criterion to each subsequent analysis.

As a final step, we performed AMICA on the simulated
EEG data after applying the best-practice artifact removal
approaches from aims 1-4 during head motions at each walk-
ing speed. This was done separately for each muscle amplitude
condition to assess the combined performance of motion and
muscle artifact removal methods for isolating the ground-truth
artificial electrocortical sources. In each case, Artifact Sub-
space Reconstruction preprocessing was applied to the scalp
EEG channels, followed by Canonical Correlation Analysis.
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Fig. 2. Average relative error of the four best-fit components at
each walking speed during motion, but without muscle activity. Relative
error >1 indicates the error exceeds the ground-truth spectral power
fluctuations, 1 indicates equivalent error and ground-truth signal spectral
power fluctuations, <1 indicates the error is less than the ground-truth
spectral power fluctuations, O indicates no error between component
and ground-truth. ICA input included scalp EEG channel recordings and
different subsets of isolated noise channel recordings (0, 32, 64, 96, and
all 122 remaining) as separate rows of the data matrix. Including noise
electrodes improved source separation but including a larger subset
of electrodes did not further reduce relative error values. Error bars
represent 99% confidence intervals.

The preprocessed EEG channels were used as the ICA input,
with isolated noise and neck EMG channels stacked below as
separate rows of the data matrix.

E. Statistical Analyses

We averaged the inter-trial variability from the relative error
values in each gait cycle to define 99% confidence intervals
surrounding the condition mean (adjusted to the number of
possible comparisons in each sub-analysis). The confidence
interval of the relative error averaged among the four best-fit
components in each condition were therefore calculated using
equation (1):

zscore x SD
V()
Here, z score was set to 2.576, SD represents the averaged
standard deviation among gait cycles for the four best-fit
components, and n is the number of gait cycles in the condi-
tion. Non-overlapping confidence intervals suggest statistically
significant source signal recovery differences in contrasting
hardware configurations and signal processing schemes.

(1)

Confidence Interval =

I1l. RESULTS

A. Aim 1: Dual Layer EEG Noise Sensor Recordings
for Motion Artifact Removal

By including isolated noise sensor recordings in the ICA
decomposition of high-density mobile EEG data during
motion, we saw improved source separation based on com-
parisons to ground-truth artificial electrocortical spectral power
fluctuations (Fig. 2). In each gait speed condition, including
any subset of isolated noise channel recordings (32, 64, 96,
or 122 channels) reduced the relative error values compared
to not including noise channel data the ICA decomposition.
Including a larger subset of the electrodes, however, did not
further improve source signal recovery compared to using
32 noise channels during ICA. As few as 32 evenly distributed
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Fig. 3. Average relative error of the four best-fit components at each
walking speed during head motion, and with muscle activity amplitudes
set to £0, 100, 300, and 500 wV. Relative error >1 indicates the
error exceeds the ground-truth spectral power fluctuations, 1 indicates
equivalent error and ground-truth signal spectral power fluctuations,
<1 indicates the error is less than the ground-truth spectral power
fluctuations, 0 indicates no error between component and ground-truth.
ICA input only included EEG scalp channel recordings without or with
Artifact Subspace Reconstruction preprocessing at thresholds of 50, 20,
10, or 3 standard deviations (SD) from baseline. Muscle activity amplitude
affected the effectiveness of Artifact Subspace Reconstruction (ASR).
Error bars represent 99% confidence intervals.

isolated noise channels across the scalp were able to effectively
capture and remove motion artifacts from high-density mobile
EEG data during simulated human walking.

B. Aim 2: Artifact Subspace Reconstruction for
Motion and Muscle Artifact Removal

In absence of muscle activity, Artifact Subspace Reconstruc-
tion applied with a 3 standard deviation threshold relative to
baseline improved source signal recovery using ICA. This was
evidenced by reduced relative error values compared to per-
forming Artifact Subspace Reconstruction at higher standard
deviation cutoffs, or without Artifact Subspace Reconstruction
(Fig. 3, top left). When the EEG signals were contaminated
by muscle activity, however, Artifact Subspace Reconstruc-
tion performance varied. In general, a strict Artifact Sub-
space Reconstruction threshold (3 standard deviations from
baseline) led to increased relative error values compared to
more lenient standard deviation thresholds, or to preprocessing
without Artifact Subspace Reconstruction (Fig. 3). Artifact
Subspace Reconstruction preprocessing therefore provided a
possible advantage for motion artifact removal but showed
inconsistencies during muscle artifact removal.

C. Aim 3: Neck EMG Sensor Recordings for
Muscle Artifact Removal

By including neck EMG channel recordings in the
high-density mobile EEG ICA decomposition, we saw
improved source separation. This was indicated by reduced
relative error values for the recovered sources compared to
ground-truth artificial electrocortical spectral power fluctua-
tions (Fig. 4). We detected progressive improvements in source
signal recovery with additional neck EMG recordings included
in ICA. Six or 8 neck EMG channels more effectively captured
and removed muscle artifacts compared to reduced channel
subsets, or to including no EMG recordings in ICA.

Fig. 4. Average relative error of the four best-fit components at each
walking speed, without head motion, and with 100 wV neck muscle
activity amplitudes. Relative error >1 indicates the error exceeds the
ground-truth spectral power fluctuations, 1 indicates equivalent error and
ground-truth signal spectral power fluctuations, <1 indicates the error is
less than the ground-truth spectral power fluctuations, O indicates no
error between component and ground-truth. ICA input included scalp
EEG channel recordings and different subsets of bilateral neck EMG
recordings (0, 2, 4, 5, and 8 channels) as separate rows of the data
matrix. Including 6 or 8 EMG electrodes provided the lowest relative error
values. Error bars represent 99% confidence intervals.

D. Aim 4: Canonical Correlation Analysis for
Muscle Artifact Removal

Performing Canonical Correlation Analysis and removing
artifact components from muscle-activity contaminated EEG
data improved source signal recovery (Fig. 5). This was
demonstrated by reduced relative error compared to ICA
source separation without Canonical Correlation Analysis pre-
processing in the condition without muscle artifact contami-
nation. Artificial brain source recovery improved in £100 and
500 uV muscle activity amplitude conditions compared to
artifact free and £300 'V conditions.

E. Combined Motion and Muscle
Artifact Removal Methods

Based on the results from aims 1-4, we processed the
high-density mobile EEG during head motions at each walking
speed. This was done separately for each neck muscle activity
amplitude condition (+100, 300, 500 #V). In the combined
analyses, we included 32-isolated noise channel recordings
(Aim 1) and 8-neck EMG channel recordings (Aim 3) in the
ICA decomposition, along with the preprocessed scalp EEG
channel data, as separate rows of the input matrix. Because we
did not find a conclusive best Artifact Subspace Reconstruction
threshold (Aim 2), we applied a 20 standard deviation cutoff
from baseline because it has been used and recommended
in previous studies [11], [16]. Following Artifact Subspace
Reconstruction preprocessing, we performed Canonical Cor-
relation Analysis (Aim 4) to remove residual muscle artifacts
from the scalp EEG channels.

Table I shows the relative error values for the averaged
electrocortical sources, at each muscle activity amplitude
(£100, 300, and 500 xV) and walking speed condition
(0.5, 1.0. 1.5, and 2.0 m/s). Relative error values were rel-
atively consistent across walking speeds but increased in the
4300 and 500 #«V muscle amplitude conditions relative to the
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Fig. 5. Average relative error of the four best-fit components at each
walking speed, without head motions. Relative error >1 indicates the
error exceeds the ground-truth spectral power fluctuations, 1 indicates
equivalent error and ground-truth signal spectral power fluctuations,
<1 indicates the error is less than the ground-truth spectral power
fluctuations, 0 indicates no error between component and ground-truth.
The condition without neck muscle activity (0 ©V) was not processed
with Canonical Correlation Analysis (CCA), while +100, 300, and
500 wV muscle amplitude conditions were processed with Canonical
Correlation Analysis. Only EEG scalp channel recordings were included
in the ICA decomposition with or without Canonical Correlation Analysis
preprocessing. Canonical Correlation Analysis improved source sepa-
ration in muscle-contaminated data compared to the £0 pV condition
processed without Canonical Correlation Analysis. It was less effective
in the 300 nV muscle amplitude condition compared to the +100 and
500 wV conditions. Error bars represent 99% confidence intervals.

TABLE |
AVERAGE RELATIVE ERROR OF THE FOUR BEST-FIT COMPONENTS
AFTER COMBINING BEST PRACTICE SIGNAL
PROCESSING APPROACHES

Relative error

0.5 m/s 1.0 m/s 1.5 m/s 2.0 m/s
+100 pV 0.76 0.76 0.77 0.78
+300 pV 0.91 0.91 0.91 0.92
+500 pV 0.91 0.92 0.92 0.93

Average relative error of the four best-fit components during head motions
at each walking speed, and with £100, 300, and 500 uV neck muscle activity
amplitudes. Relative error >1 indicates the error exceeds the ground-truth
spectral power fluctuations, 1 indicates equivalent error and ground-truth signal
spectral power fluctuations, <1 indicates the error is less than the ground-truth
spectral power fluctuations, 0 indicates no error between component and
ground-truth. EEG-channel preprocessing included Artifact Subspace
Reconstruction (20 standard deviation cutoff) and Canonical Correlation
Analysis artifact component removal, with 32-isolated noise channels and 8-
neck EMG channels stored as separate rows in the ICA input matrix. ICA
source separation was similar across walking speeds but worsened at higher
muscle activity amplitudes.

4100 u'V condition, indicating worse artificial electrocortical
source recovery. Fig. 6a shows separate event-related spectral
perturbation plots from the four electrocortical sources during
head motions walking at 1.5 m/s and with £100 xV neck
muscle activity amplitudes. From left to right, we show
spectral power fluctuations from scalp EEG channel recordings
in closest proximity to the source antennae (10-channel mean),
ground-truth artificial electrocortical source activity, and best-
fit components recovered by ICA. Fig. 6b shows exemplar
noise channel recordings and Fig. 6¢c shows the ground-truth
neck muscle activity.

IV. DISCUSSION

Using a conductive head phantom and robotic motion
platform, we were able to evaluate the best practices for
removing motion and muscle artifacts from human mobile
dual layer EEG and neck EMG recordings. Broadcasting
ground-truth artificial brain signals that were designed to
simulate human electrocortical activity during walking, in con-
junction with reproduced gait-related head motions and human
neck muscle activity, allowed us to evaluate high-density
128-channel dual layer mobile EEG and 8-channel neck EMG
recordings from the head phantom. This benchmark testing
setup allowed us to determine: (1) the number of isolated
noise sensor recordings needed to capture and remove motion
artifacts, (2) the ability of Artifact Subspace Reconstruction
to remove motion and muscle artifacts at contrasting artifact
detection thresholds, (3) the number of neck EMG sensor
recordings needed to capture and remove muscle artifacts, and
(4) the ability of Canonical Correlation Analysis to remove
muscle artifacts. As a result, we were then able to test the
combined ability of these methods to recover ground-truth
electrocortical spectral power fluctuations across the gait
cycle.

In agreement with our hypotheses, (1) including isolated
noise recordings from dual layer EEG sensors in the ICA
decomposition with high-density scalp EEG data improved
artificial electrocortical source signal recovery during motion
(Fig. 2). As few as 32-isolated noise channels were able
to capture and help remove the dominant motion-induced
noise sources. Artifact Subspace Reconstruction preprocessing
(2) improved source signal recovery during motion, when
applied at a relatively strict standard deviation cutoff (3 stan-
dard deviations), but was less effective at removing mus-
cle artifacts from scalp EEG data (Fig. 3). Muscle artifact
removal, however, was improved by including up to 6- or
8-channel neck EMG recordings (3) in the ICA decomposition
with scalp EEG data (Fig. 4). Canonical Correlation Analysis
preprocessing for muscle artifact removal (4) showed improve-
ments in artificial brain source separation from high-density
mobile EEG-channel data (Fig. 5). Combining preprocessing
methods from aims 2 and 4, and additional sensor data
from aims 1 and 3, allowed us to isolate the artificial
brain sources relatively cleanly, based on comparisons to the
ground-truth electrocortical spectral power fluctuations across
the gait cycle (Fig. 6). However, increased levels of neck
muscle activity contamination compromised source signal
recovery (Table I).

There was a clear benefit of using isolated noise channels
to capture motion artifacts from high-density mobile EEG
recordings. Simply by including these channels in the ICA
decomposition, we were able to see improved source signal
recovery compared to processing scalp EEG channels alone
(Fig. 2). The benefits of the dual layer electrode array have
been demonstrated both in benchmark head phantom exper-
iments [17], [29] and human locomotion studies [12], [17].
Initial channel-based signal quality measures were quantified
in Nordin et al. [29] using an 8-channel dual layer setup
that showed limited motion artifact contamination compared to
traditional single-layer scalp EEG recordings during vigorous
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Fig. 6. a) Event-related spectral perturbation plots for the four brain sources during head motions walking at 1.5 m/s, with 100 .V neck muscle activity
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signals, (Right column) best-fit recovered component from ICA. Combining best practice signal processing allowed ICA to recover components closely
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allowed for a better recovery of the frontal and occipital sources, which display artifact related spectral power fluctuations at the channel level that
are absent from the ground-truth signals. b) Exemplar noise channel event-related spectral perturbation plots from the left, center, and right sides of
the head. Spectral power fluctuation patterns were similar across the scalp but amplitudes differed among channels. Line noise is visible at 60 Hz
in all noise channel recordings. c) Ground-truth muscle activity input signals that show lateralized activity tied to the gait events. R: right, L: left, HS:

heel strike, TO: toe off.

head movements. The benefits of including isolated noise
recordings from dual layer EEG hardware in the ICA decom-
position along with scalp EEG recordings were subsequently
demonstrated in Nordin ef al. [17] using a 40-channel dual
layer EEG setup. This hardware configuration allowed six
temporally randomized and overlapping sinusoidal bursts to
be cleanly recovered from an electrical head phantom during
simulated human walking, only after including both the scalp
EEG and isolated noise recordings in the ICA decomposi-
tion. Human locomotion experiments have since used dual
layer EEG configurations that included 128 scalp EEG and
40 isolated noise electrodes. This setup expanded possibilities
for signal processing schemes and led to the recovery of
human electrocortical activity during obstacle navigation and
the effects of gait speed on human brain dynamics [17].
Here, we assembled a complete 128-channel dual layer array
to determine the number of isolated noise sensor recordings
needed to capture and remove motion artifacts. Our results
indicate that source recovery capabilities did not improve
beyond 32 isolated noise channels (Fig. 2). It is, however,
important to acknowledge that our head phantom contained
only four artificial brain sources and an additional four neck
muscle sources. The number of recording channels in relation
to the number of neural sources could therefore have led to
over separation of our neural signals. To compensate for this,
we implemented Principal Component Analysis reduction to
15 components prior to ICA, but acknowledge the possibility

that the limited number of neural sources in our head phantom
may have favored the use of fewer sensors. Future experiments
should examine a more complex dataset including more neural
sources and contrasting levels of motion artifact, while also
using smaller subsets of noise channels. Nevertheless, our
results corroborate the use of limited isolated noise sensor
subsets compared to the number of scalp EEG sensors for
improving electrocortical source recovery during dynamic
mobile EEG recordings [12], [17].

Artifact Subspace Reconstruction is commonly used
to clean motion artifact-contaminated mobile EEG
data [11], [12], [16], [20], [22], [23]. Because contrasting
artifact detection thresholds have been used in human
experiments, there is some uncertainty regarding the
appropriate cutoff to use during artifact removal. An aggressive
3 standard deviation cutoff has been used in recent
investigations [10], [22], [23], which has the potential to
remove electrocortical activity along with artifacts [11]. For
this reason, other researchers have chosen a more lenient
20 standard deviation threshold [11], [16], arguing that
movement-related brain activity should not exceed 20 standard
deviations from resting brain activity [11]. Chang et al. [21]
recently evaluated the performance of Artifact Subspace
Reconstruction for EEG artifact removal at contrasting
standard deviation thresholds. The authors suggest that a 5-7
standard deviation cutoff could be overly aggressive, while a
broad range from 10-100 standard deviations from baseline
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limits the likelihood of removing electrocortical source
activity along with transient, high amplitude artifacts [21].
Here, our use of an electrical head phantom for benchmark
testing allowed us to carefully evaluate different Artifact
Subspace Reconstruction thresholds with knowledge of the
ground-truth neural activity. By applying Artifact Subspace
Reconstruction at contrasting thresholds we found that
source signal recovery was highly dependent on muscle
artifact contamination amplitude. Without muscle activity
contamination, a 3 standard deviation threshold returned
the best matched electrocortical source activity relative to
the ground-truth signal. When neck muscle contamination
was present, however, aggressive cutoffs appeared to be
detrimental to source recovery from ICA (Fig. 3). Because
muscle activity is largely unavoidable during human mobile
EEG collections, our results suggest an Artifact Subspace
Reconstruction cutoff of 3 or even 10 standard deviations
may be overly aggressive, in agreement with Chang and
colleagues [21]. We must acknowledge, however, that our
head phantom lacks a skull, skin, and hair layers that can
allow neck muscle activity to be more broadly propagated
throughout the homogenous head, but may limit artifacts
induced by independent electrode motions on the scalp and
hair. Additional motion artifact suppression due to dual layer
EEG cable bundling and an overlaid secondary cap [12], [17],
[29], along with filtered and robotically reproduced head
trajectories could therefore have limited the potential benefits
of Artifact Subspace Reconstruction preprocessing. This could
explain the apparent advantage of a low standard deviation
cutoff in EEG recordings without muscle artifacts, but the
apparent disadvantage in conditions with muscle artifacts.
Compared to human mobile EEG recordings, the limited
number of neural sources contributing to the recorded scalp
potentials could also limit the efficacy of this PCA-based
artifact removal approach, because a large proportion of the
signal is captured in a small number of components.

Muscle artifact removal benefitted from the inclusion of
neck EMG recordings capturing sources of muscle conta-
mination in the scalp EEG sensors. Similar to our use of
isolated noise recordings for extracting motion artifacts from
EEG channel data, direct muscle activity measures assisted in
the separation of ground-truth electrocortical source activity
during ICA. This approach has previously been used in human
data collections [12], [17], [31] and our results confirm its
usefulness. Further, applying Canonical Correlation Analysis
to scalp EEG recordings helped remove muscle artifacts by
separating high and low frequency components of the EEG
signals based on autocorrelation (Fig. 5). Multiple researchers
have now demonstrated the ability of Canonical Correla-
tion Analysis to isolate high-frequency muscle contamina-
tion [12], [16], [27], [32], [33]. Safieddine et al. [32] compared
muscle artifact removal methods in computer simulations
and found that Canonical Correlation Analysis performed
better when muscle artifact contamination was less severe.
Our results partially align with these findings, because the
advantage of Canonical Correlation Analysis was greater in
the +100-xV-muscle amplitude condition compared to the
+300-u V-muscle amplitude condition, however performance

was similar between 100 and 500-uxV-muscle amplitude
conditions (Fig. 5). Encouragingly, we observe clear improve-
ments in the +£100-xV-muscle amplitude condition, which
reflects muscle activity amplitudes measured during human
walking [12]. As a result, Canonical Correlation Analysis
provides a valuable tool for muscle artifact removal in human
mobile EEG studies.

Combining best practice signal processing approaches from
aims 1-4, we were able to recover ground-truth artificial
electrocortical signals during head motions at a range of
walking speeds, and with contrasting levels of muscle activity
contamination. High density mobile EEG preprocessed with
Artifact Subspace Reconstruction and Canonical Correlation
Analysis, in addition to the inclusion of 32 isolated noise and
8 neck EMG channels in the ICA decomposition, recovered
source components that closely resembled ground-truth input
signals (Fig. 6a). ICA recovery of the right sensorimotor
electrocortical source was nearly identical to the ground-truth
spectral power fluctuations. Left sensorimotor spectral power
fluctuations also showed close similarity to the ground-truth
signal in beta band (12-30 Hz). Some signal loss, however,
was evident in the left sensorimotor source within delta,
theta, and alpha bands (<12 Hz, Fig. 6a). Frontal and occip-
ital best-fit components closely resemble their ground-truth
source activity, which did not contain gait-related activity.
At the EEG channel level, however, we observed artifact
contamination in the frontal and occipital areas. Across gait
speeds, ICA source separation showed consistent motion and
muscle artifact removal performance that worsened at muscle
amplitudes exceeding those typically measured in human
walking (£300 and 500 wV, Table I). Although electrocor-
tical source recovery suffered at increased levels of muscle
activity contamination, the combined artifact removal methods
revealed the lowest relative error value in the +100-x V-muscle
activity amplitude condition, compared to any of the individual
analyses in aims 1-4. This suggests that our combined arti-
fact removal methods can outperform the individual methods
in isolation, which is informative for human mobile EEG
processing pipelines [12]. Nevertheless, there are limitations
in our ability to directly transfer these findings to human
EEG analyses. Our use of Principal Component Analysis
reduction to 15 components is well below that of typical
human EEG processing and could compromise the subsequent
ICA decomposition [43]. We applied these criteria due to
the limited number of sources in our head phantom and our
need to compare each component to the ground-truth signal
after time-frequency analysis. Further, despite adding neck
muscle activity and more realistic artificial brain signals to
our head phantom, along with spectral power fluctuations
that matched gait events, our setup still lacks the complexity
of the human brain and additional sources of physiological
contamination. We need to continue to develop increasingly
complex head phantom devices with physiologically realistic
input signals including facial muscles, eyes movements, and
heartbeat to improve mobile brain imaging validation methods.
Future work should also increase the number of cortical
sources to find an optimal configuration for a more realistic
phantom.
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V. CONCLUSION

Our approach of broadcasting ground-truth artificial brain
signals through an electrical head phantom that reproduced
head trajectories from human walking helped validate mobile
EEG motion and muscle artifact removal methods. Dual layer
EEG allowed us to confirm that source signal recovery can
be improved by including as few as 32-isolated noise channel
recordings in the ICA decomposition with high-density EEG.
Additionally, Artifact Subspace Reconstruction was useful for
cleaning motion artifact contaminated EEG. Muscle artifacts,
however, were more effectively removed by including EMG
sensor recordings in the ICA decomposition and through
Canonical Correlation Analysis preprocessing of EEG channel
data. In combination, Artifact Subspace Reconstruction pre-
processing, Canonical Correlation Analysis preprocessing, and
the inclusion of isolated noise and EMG recordings in ICA are
effective tools for cleaning motion and muscle artifacts from
high-density mobile EEG data. These findings contribute to
our understanding of best practices for mobile EEG hardware
configurations and signal processing.
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