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Multisymptom Quantification
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Abstract— Parkinson’s disease (PD) is the second most
common neurodegenerative disease affecting millions
worldwide. Bespoke subject-specific treatment (medication
or deep brain stimulation (DBS)) is critical for management,
yet depends on precise assessment cardinal PD symptoms
- bradykinesia, rigidity and tremor. Clinician diagnosis is
the basis of treatment, yet it allows only a cross-sectional
assessment of symptoms which can vary on an hourly
basis and is liable to inter- and intra-rater subjectivity
across human examiners. Automated symptomatic assess-
ment has attracted significant interest to optimise treatment
regimens between clinician visits, however, no wearable
has the capacity to simultaneously assess all three cardinal
symptoms. Challenges in the measurement of rigidity, map-
ping muscle activity out-of-clinic and sensor fusion have
inhibited translation. In this study, we address all through
a novel wearable sensor system and machine learning
algorithms. The sensor system is composed of a force-
sensor, three inertial measurement units (IMUs) and four
custom mechanomyography (MMG) sensors. The system
was tested in its capacity to predict Unified Parkinson’s
Disease Rating Scale (UPDRS) scores based on quantita-
tive assessment of bradykinesia, rigidity and tremor in PD
patients. 23 PD patients were tested with the sensor system
in parallel with exams conducted by treating clinicians and
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10 healthy subjects were recruited as a comparison control
group. Results prove the system accurately predicts UPDRS
scores for all symptoms (85.4% match on average with
physician assessment) and discriminates between healthy
subjects and PD patients (96.6% on average). MMG features
can also be used for remote monitoring of severity and
fluctuations in PD symptoms out-of-clinic. This closed-loop
feedback system enables individually tailored and regularly
updated treatment, facilitating better outcomes for a very
large patient population.

Index Terms— Parkinson’s disease symptoms, wearable
sensor system, machine learning, MMG, telemedicine,
muscle stiffness.

I. INTRODUCTION

PARKINSON’S disease (PD) is the second most com-
mon neurodegenerative disorder [1], with 130,000+ UK

patients and 10 million+ worldwide [2]. PD results primarily
from the death of dopaminergic neurons in the substan-
tia nigra [3]. The disease manifests itself in three cardinal
symptoms, tremor, bradykinesia and rigidity [4] with several
other associated patient effects (dementia, impaired posture,
impaired speech, etc). Cardinal symptoms respond to treatment
with dopamine replacement therapy at early stages of the
disease. As it progresses, deep brain stimulation (DBS) of
the subthalamic nucleus (STN) has been used as an effective
treatment of PD patients with refractory fluctuations [5]–[9],
though treatment of manifestations such as tremor can com-
plicate other movement disorders such as dystonia [10],
underscoring the need to treat multiple manifestations
of Parkinsonism. Optimal placement of stimulation elec-
trodes and precise parameterisation of stimulation parameters
(e.g. frequency) can be challenging [8], [11], [12], and is
normally dependent on diagnosis of subject-specific motor
response through trial-and-error. Consequently, accurate moni-
toring and assessment of symptom severity are of great impor-
tance not only to treatment selection but also for adjustment of
regimens (e.g. levodopa and STN-DBS) that must be tailored
to each patient’s symptomatic response.

Clinical assessment of PD symptom severity is usually
based on rating scales, of which the Unified Parkinson’s Dis-
ease Rating Scale (UPDRS) [13] is the most popular. However,
the UPDRS scale is liable to inter- and intra-rater subjectivity
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across PD examiners depending on their experience [14].
Moreover, treatment regimens are limited to a “snapshot” of
symptom fluctuation during a clinical visit for patients with
Parkinson’s disease (PwPD), while the patient’s response can
vary tremendously throughout the day.

Wearable sensors have been widely studied with demon-
strated positive impact in providing objectively accurate infor-
mation of PwPD movements throughout a longitudinal view
of symptom fluctuations out-of-clinic [7], [15]–[17]. Inertial
sensors such as accelerometers and gyroscopes, for exam-
ple, have been packaged as wearable devices to successfully
measure bradykinesia [7], [18]–[20] and tremor (including
kinetic, postural, and rest tremors) [21]–[24]. Features of
angular velocity were proven to show a strong correlation to
bradykinesia scores which is rated based on the decrementa-
tion level in the amplitude of repetitive movements, e.g., hand
pronation/supination, finger tapping, and hand motions [7].
Accelerometers are the most frequently utilised sensor to
measure tremor. Besides, angular velocities measured using
gyroscopes attached on the forearms and/or fingers have also
been proven as an effective means to quantify tremor [7], [25].
Their success reflects the capacity of the sensing modality
to map all significant characteristics of tremor (amplitude,
frequency) for severity assessment. Our previous work has
expanded on this to create a system using accelerometers in
a cell phone as an immediately available sensing tool [26].
In addition, a smaller body of work (e.g. [27]–[29]) has
explored motion tracking for PwPD with vision. Camera data
capture systems have the advantage of noncontact and parallel
clinician visual assessment. However, they also require a
controlled environment and suffer from occlusion (blocking)
of the camera source. Beyond bradykinesia and tremor, rigidity
remains a critical diagnostic feature in PD. Indeed, the capacity
to modulate muscle stiffness is widely acknowledged as a
vital measure of the integrity of the motor system [30].
Its degradation is a major manifestation of PD, however,
motion sensing (inertial, vision) lacks the capacity to assess
changes in rigidity. As such, investigations have prioritised
viscoelastic properties (VEPs) and impedance of the limbs
for PD assessment. Force and/or stiffness data has quantified
rigidity on the elbow and wrist, which can be correlated to
UPDRS scores [4], [31], [32]. Electromyography (EMG) mea-
surements capturing physiological metrics of muscle activity
have also shown promise at quantifying rigidity in PwPD [33].
It should be noted that diagnosis and treatment for PD, how-
ever, is usually based on observation of all cardinal symptoms.
As such, investigators have argued [32] for the utility of an
all-in-one sensor system, i.e., a system that measures all three
of the cardinal motor symptoms. However, no such system has
been demonstrated on PwPD. Commercially available sensor
systems for PD diagnosis only measure one or two of the
cardinal symptoms [34].

Quantification methods of PD symptoms can broadly be
classified into two approaches. The first involves correla-
tion of external sensor data to PD symptoms by creating a
model based on the physical and physiological mechanisms
of PD symptoms. This is then used as a basis for correlation

Fig. 1. Parkinson’s diagnostic device (PDD).

to the UPDRS scores [35], [36]. The second approach
is to extract sensor features and implement a regression/
classification model to minimise the prediction errors to the
UPDRS scores [37]–[40]. Since there exists no single model
that has been explicitly defined to correlate UPDRS scores
across all motor symptoms, machine learning algorithms are
typically used as tools of analysis [41], [42].

In this paper, we present a new wearable Parkinson’s
diagnostic device (PDD) (Fig.1). New features of the system
include the capacity: 1) to quantify all three primary PD
motor symptoms (rigidity, tremor, and bradykinesia), 2) to
fit smoothly into existing examination procedures for trivial
introduction into practice, and 3) to be straightforward to
use with no training in any environ (in or out-of-clinic). The
first issue, capture of all symptoms, is addressed through
the development of hardware for a multi-modal sensing suite
capturing stiffness, muscle activity, and motion in a simple
package that is trivial to wear and use. The sensor suite
consists of four mechanomyography (MMG) sensors, three
inertial measurement units (IMUs) and a force-sensor based
handle. Although MMG is less mature than well-established
EMG systems, it offers potential benefits versus EMG such
as ease of application, higher signal-to-noise ratio, multiple
(infinite) uses for a single sensor, immunity to changes in
skin impedance, and elimination of the need of shaving and
conductive gel all of which address simplicity and ease of
use [43]. An inertial sensor fusion algorithm was implemented
to combine movement and MMG data in one hardware pack-
age akin to wearables used for human-robot interface [44].
The PDD is easy to don and doff and requires no on-site
calibration. Based on the measured signals using the PDD,
features for each PD symptom were further extracted, and
a machine-learning algorithm was developed to classify and
predict the severity of three motor symptoms in PwPD accord-
ing to the UPDRS scores rated by clinicians. The wearable
PDD system was evaluated with 23 Parkinson’s patients and
10 healthy subjects (control group). The results prove that the
PDD can accurately estimate the PwPD’s UPDRS scores for
all PD motor symptoms with an average accuracy of 85.4%
in a single exam akin to current clinical practice. The PDD
further distinguishes the PwPD from healthy subjects with
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Fig. 2. A demonstration of the assessment procedure for each PD motor
symptom.

an average accuracy of 96.6% across all symptoms. Clinical
testing results demonstrate that incorporation of MMG signals
can effectively improve symptom classification accuracy. Fur-
thermore, comparison studies have shown promising results
for detecting the UPDRS scores using only the IMU and
MMG sensors, demonstrating MMG capacity to independently
monitor rigidity which enables simple use in the home. To the
best of our knowledge, this is the first wearable system to
holistically measure the three cardinal symptoms of PD in one
exam and the first successful implementation of MMG for PD
system quantification.

II. METHODS

A. Measurement System

In this study, we developed a novel PDD which consists
of two wearable armbands and a force-sensor based handle
(see Fig.1). The two armbands were worn at the patient’s upper
arm and forearm respectively, and the total weight of each
armband is 100 g. The handle can be attached to the patient’s
hand or wrist using a strap, according to the diagnostic process
(see Section II-B and Fig. 2). The handle was produced using
a 3D printer and weights 200 g.

Each of the wearable armbands is composed of two MMG
sensors and an IMU (STMicroelectronics, Switzerland), which
contains a 3D accelerometer, a 3D gyroscope, a 3D magne-
tometer, and a small battery. The full scales of the accelerom-
eter, gyroscope and magnetometer are ±2 g, ±500 degree/s
and ±2 Gauss, respectively. The MMG sensor was designed in
Biomechatronics Lab, Imperial College London and is made
of a micro-electro-mechanical microphone (Knowles, UK)
housed in a 3D printed casing (see Fig.1) [43]. The handle
was equipped with a compact 3D force sensor (Optoforce, UK)
and an IMU (see Fig.1). The measured forces are up to ±20 N
in X and Y axes, 200 N in Z compression and 100 N in Z
tension, which are sufficient to satisfy requirements for the
rigidity assessment of the wrist and elbow joints. Prior studies
have used a force sensor to measure rigidity but they were
only able to record in one direction (the direction normal
to movement) [31], [32]. By having two other directions to
record any resistive force from, it is possible to construct a
more holistic model of rigidity during UPDRS assessments as
described in Section II-B.

TABLE I
PATIENTS’ INFORMATION

Each MMG sensor was connected to one of eight 10-bit
analogue-to-digital converters of the IMU which was further
connected to a host PC via Bluetooth. The MMG and IMU
sensors can continuously record for up to 4 hours. The force
sensor was connected to the PC by a USB port. The data
measured from all sensors were synchronized and saved using
a developed interface (in C#) at 100 Hz.

During the PD assessment, four MMG sensors were placed
on the biceps brachii, triceps brachii, flexor carpi ulnaris and
extensor carpi radialis longus, respectively. The arm and hand
kinematics, such as the linear accelerations as well as the
elbow and wrist joint angular velocities, can be efficiently
measured using the IMU sensors. The force-sensor based
handle was designed to measure the resistive force during the
rigidity assessment alone, and was detached for bradykinesia
and tremor assessments. The PDD system required no on-site
calibration and did not require any preparation of the surface
of the patient’s skin. Moreover, it can be taken to any location
for testing thanks to its portability.

B. Subjects and Procedures

23 patients with Parkinson’s disease (see Table I) and
10 healthy subjects (Age: 27.6 ± 3 years old; Sex: 8 males
and 2 females) participated in this study. Among of the patient
cohort, the patient number in each symptom assessment is as
follows: elbow rigidity: 19, wrist rigidity: 17, bradykinesia: 15,
kinetic tremor: 16, and postural/rest tremors: 17. All healthy
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subjects participated in all symptom assessments as the control
group. Patients’ data collection occurred across two different
hospital sites: Charing Cross Hospital, London, UK and John
Radcliffe Hospital, Oxford, UK in the two following settings:
1) after a routine clinical check-up (RCC); 2) during a DBS
programming session (i.e., with DBS). 15 of the PwPD have
received DBS, and the assessment was performed during DBS
programming session. The stage and progression of the disease
was not a limiting factor for this study. All subjects were
given a patient information sheet regarding the assessment and
gave written informed consent to all experimental procedures.
This study received ethical approval from the Health Research
Authority of the National Health Service (NHS), UK.

For all patients, only the most severely affected arm was
tested during this study. The rigidity occurs at the elbow and
wrist joints of the arm and therefore this assessment was split
into two separate tests (see Fig. 2). Likewise for tremor, there
are three types that can occur in PD, kinetic, postural and rest
tremors. Each of the assessments was repeated three times with
a break in-between to ensure that the patient did not fatigue
quickly. Note that the same three-time assessments were
repeated for a PD patient during DBS programming session
when significant DBS settings were changed (i.e., electrode
contact changes and large changes in stimulation intensity).
All PD patients’ symptoms were clinically rated using the
five-level UPDRS scores (i.e., 0, 1, 2, 3, 4). The detailed
assessment conducted for each symptom was as follows
(see Fig. 2):

1) Elbow Rigidity: with the subjects in a relaxed state
and with their arm out, the examiner attempted to move the
subject’s forearm up and down in a cogwheel motion around
their elbow trying to achieve a full range of motion. 2) Wrist
Rigidity: with the subjects in a relaxed state and their arm
out, the examiner attempted to move the subject’s hand up
and down in a cogwheel motion around their wrist trying to
achieve a full range of motion. 3) Bradykinesia: the subjects
were asked to first hold out the arm in front of them and
then to pronate and supinate their hands as much as possible.
Pronation-supination movements are considered to be equally
important as finger tapping and hand grasp [13] and one of the
most useful features [45] in assigning severity of bradykinesia.
To a compact design of the sensor system set-up, pronation-
supination movements are selected in this study. 4) Kinetic
Tremor: the subjects were asked to use the index finger from
the examined arm to touch their noses, and then to move that
finger towards the examiner’s own index finger which was
approximately an arm’s length distance. 5) Postural Tremor:
the subjects held their arm out in front of them for 10 seconds.
6) Rest Tremor: the subjects stayed seated and relaxed placing
their hands on their laps with their palms facing towards the
ceiling.

C. Data Processing and Features Extraction

Leading up to the feature extraction, the measured signals
such as accelerations and MMG signals were processed as
follows: the measured accelerations were filtered using a 4th
order Butterworth lowpass filter with cutoff frequencies at

Fig. 3. Examples of the MMG signals measured from triceps brachii
during elbow rigidity assessments (MMGraw: raw MMG signal, MMGP1:
MMG signal processed after high-pass filter, MMGP2: MMG signal
processed after low-pass filter, θE: measured elbow joint angle, TE

z :
measured torque along the force sensor’s z axis). (a) Results measured
with a PwPD (UPDRS score = 3), (b) Results measured with a healthy
subject.

TABLE II
FEATURES’ DESCRIPTION

25 Hz for all symptoms; the MMG signals were processed
by the following steps: filtered using a 4th order Butterworth
bandpass filter between 10 Hz and 100 Hz [43], rectified,
filtered using a 4th order Butterworth lowpass filter with
cutoff frequency of 5 Hz (see Fig.3). Note that the 4th order
Butterworth filter was used in all following filtering processes.
Table II describes all features used for rigidity, bradykinesia
and tremor assessments, and Table III shows the features for
each PD symptom assessment. The definitions and extractions
of the features for assessing each symptom are detailed as
follows:

1) Rigidity Features: As the handle was used during the
rigidity assessment, force-based features were extracted for
quantifying the rigidity symptom (see Table II and III). With
the force handle, the applied 2D torques (Ty and Tz , see Fig.1)
on the subject’s joint were first calculated. Tz plays the main
role to move the subject’s hand or forearm (see Fig. 3), and
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TABLE III
FEATURES FOR EACH PD SYMPTOM

Ty was also used to give a general image of the relative torque
around y axis between the handle and the subject’s arm. The
torque Ty and Tz around the wrist and elbow were estimated as

Ti = Fi Li , i ∈ {y, z} (1)

where Fi shows the measured forces along y and z axes, and
Li denotes the related arm lengths of each force around the
wrist and elbow.

In addition, resistance is a fundamental factor for clinicians
when assessing rigidity, in particular, impedance and VEPs
of the human joints have been revealed to be indicative of
rigidity in PwPD [31], [35], [36], in which the joint impedance
and VEPs were estimated using a regression method based
on the measured torque, joint angular displacement (θ ) and
velocity (θ̇). In this study, these three elements were directly
used as features to a machine learning algorithm instead of
estimating the joint impedance and VEPs. The relative wrist
and elbow joint angles were estimated as follows:

θ = 2 arccos((qm q−1
n )[0]) (2)

where q denotes the quaternion of the IMU sensor, which
was estimated using a gradient descent based fusion algorithm
based on the measured 3D accelerations and 3D rate-of-
turns [46]. m and n represent the two IMUs attached on the
handle/forearm and the forearm/upper arm, respectively. The
angular velocity θ̇ was directly extracted from the gyroscope
sensor of the IMU since only one segment of the patient’s arm
such as hand or forearm was moved during the wrist or elbow
rigidity assessment.

For each assessment of the rigidity, the force-based features
consist of the mean and standard deviation of the calculated
torque, the standard deviation of the joint angle and angular
velocities. As rigidity is defined as involuntary, long-latency
reflex muscle contractions, the mean and standard deviations
of MMG readings from each rigidity assessment were used
as features as well (see Table II and III). In Fig.3, it can be
seen that significant MMG signals can be measured when the
patients have high elbow rigidity (i.e., UPDRS = 3), while

there exist no significant MMG signals with healthy subjects
during elbow rigidity assessment.

2) Bradykinesia Features: Normally, the determining factors
for bradykinesia severity include the speeds of pronation/
supination movements, amplitudes of rotations, frequencies
of hesitations and signs of decrementing amplitudes, etc [4].
During the pronation/supination movements, the measured
rotation rates using the IMUs on the forearm and upper
arm in three orthogonal axes were assumed to best represent
bradykinesia severity. Similarly, the measured rotation rates
were filtered using a Butterworth lowpass filter with cutoff
frequency at 3 Hz to avoid the influence caused by a con-
comitant tremor. The standard deviation of the rotation rate
was used to show the root mean square of pronation/supination
motion speeds (the mean value is zero). The main frequency
of the rotation rates of the arm was also calculated using
the fast Fourier transformation (FFT) as a feature to indi-
cate the motion frequency. Moreover, the mean and standard
deviation of the MMG recordings were identified as integral
features for bradykinesia because the related muscles con-
trolled the hand/forearm pronation and supination motions
(see Table II and III).

3) Tremor Features: Tremor severity is characterised by the
amplitude of tremor. The higher the amplitude of tremor,
the higher the UPDRS score associated with it. The IMU
sensor comprises a gyroscope and an accelerometer (linear
acceleration) both of which have been used to evaluate tremor
[32], [47]. The raw data from the two IMUs’ gyroscopes
and accelerometers were filtered with a Butterworth bandpass
filter (2 - 12 Hz) to remove artefacts caused by the patients’
voluntary movements (e.g., kinetic tremor assessment motions)
and the gravity in the measured accelerations. The means and
standard deviations of processed rates-of-turn and accelera-
tions were used as feature inputs for tremor classification.
As EMG signals have also been shown as an effective means in
assessing tremor previously [48], [49], the MMG data, i.e., the
mean and standard deviation of the processed MMG signals,
was also included as the features (see Table II and III).

D. Classification Method

A main objective of this study is to quantify the severity of
PD symptoms, which is represented by the UPDRS scores
rated by the clinicians, based on the extracted features as
shown in Table III (i.e., UPDRS classification). To this end,
a voting classification model was developed by combining
three base classifiers: a 1-nearest neighbour (1-NN) classifier,
a multi-layer perceptron (MLP) neural networks classifier,
and an AdaBoost classifier. The three base classifiers were
selected based on a pre-selection process in which 13 common
classification methods [50] were tested including K nearest
neighbours (KNN, K = 1,3,5), Linear SVM, Quadratic SVM,
Cubic SVM, RBF SVM, Simple Tree, Medium Tree, Complex
Tree, Random Tree, MPL neural networks and AdaBoost
Classifier. The pre-selection process followed the same model
training and validation steps of the proposed voting classifi-
cation model (see Section II-D.1) by taking into account the
evaluation accuracy and variance of each classifier. The results
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TABLE IV
ACCURACIES OF THE VOTING CLASSIFIER AND THE TOP-FIVE-RANKED CLASSICAL CLASSIFIERS

are detailed in the Section III. The three classifiers with top
three accuracies (averaged across all symptoms) were selected
and integrated using the voting classification algorithm [50].
Since the 1-NN classifier regularly ranked the highest amongst
the 13 classical classifiers, so it was selected as the base
classifier. Due to its high variance nature, when faced with
a much larger training set, 1-NN’s over-fitting nature and the
model complexity may prove detrimental. However, the vot-
ing classifier has a lower risk of over-fitting because of its
numerous base classifiers. Using the voting classifier, each of
the base classifiers generated a predictive probability output
and a final UPDRS score was selected using the soft voting
algorithm in which the largest sum of predictive probabilities
from each classifier for each UPDRS class was used. Hence,
the proposed voting classification method can ensure better
robustness and higher accuracy across the assessments of
all symptoms compared to using each single classifier even
though they have shown relatively high accuracy for certain
symptom assessments (see Table IV).

It should be noted that the UPDRS scores rated by the
clinicians are still subject to inter- and intra-rater subjec-
tivity. To further reduce the subjectivity and evaluate the
effectiveness of the proposed voting classification method,
an experiment was conducted to distinguish the PwPD
(i.e., UPDRS > 0) from healthy subjects (control group)
(i.e., PwPD-HS classification). Note that the UPDRS scores of
PwPD can be rated as zero when appropriated DBS settings
are given.

1) Model Training and Validation: During the training phase
of the UPDRS classification, each classification model was
trained using the total dataset for each symptom to opti-
mise the hyper-parameters, e.g., its complexity or speed of
learning, to ensure high performance (see Section II-D.2)
of each classification model. Each patient was asked to
perform the motions three times for each symptom assessment
and 8 patients participated in the experiments multiple times
during their DBS treatments. The total number of UPDRS
labels for each symptom are as follows: elbow rigidity: 98;
wrist rigidity: 96; bradykinesia: 114; kinetic tremor: 110;
postural tremor: 115; rest tremor: 156. Note that the cases with
UPDRS = 4 have been removed for each symptom assessment
due to the insufficient number (<4) for classification. The
hyper-parameters of the three base classifiers were selected
as follows: for the KNN (K = 1), the brute-force search was
selected to compute the nearest neighbours; for the AdaBoost
classifier, the decision tree (maximum depth = 4) was used as
the base classifier, the number of estimators and the learning

rate were set as 1000 and 1.5, respectively; for the MPL neural
network classifier, one hider layer with size = 100 was used,
and the maximum number of iterations and the α parameters
were set as 2000 and 0.1, respectively. The weights of three
base classifiers, 1-NN, AdaBoost, and MLP neural networks,
were set as 1, 4 and 2, respectively. The performance of the
voting classifier depends mainly on the AdaBoost and then
the MLP neural networks, finally the 1-NN. In the evaluation
phase, the final score of each classifier was calculated by
averaging over each of the results of a 5-fold cross-validation
procedure [50].

In terms of the PwPD-HS classification, the total number of
labels for each group are as follows (HS:PwPD (UPDRS>0)):
30:71 (elbow rigidity), 30:62 (wrist rigidity), 30:91 (bradyki-
nesia), 30:60 (kinetic tremor), 30:76 (postural tremor), and
30:92 (rest tremor). The hyper-parameters of the classification
model were set as the same used for the UPDRS classification.
In addition, the 5-fold cross-validation procedure was also
selected for evaluation.

2) Model Performance: To evaluate the performance,
the accuracy score was used and calculated as follows:

Accuracy = NT

Nall
× 100% (3)

where NT denotes the number of correctly detected labels
(i.e., UPDRS scores for UPDRS classification or PD states
for PwPD-HS classification), Nall shows the total number of
the labels used for evaluation.

III. RESULTS

A. Accuracy of UPDRS Classification

As mentioned in Section II-D, the voting classification
method was designed based on three base classifiers which
were selected from 13 applicable classifiers. During such
process, the accuracy of each classifier for was obtained
utilising all features for each symptom, i.e., with no feature
dimensionality reduction. Table IV shows the top-five-ranked
classifiers among all classifiers for each PD symptom based
on the average accuracy scores across all symptoms. For
each symptom, the accuracy score of each classifier was
calculated using the 5-fold cross-validation procedure. Among
the 13 classical machine learning algorithms, the top-five-
ranked ones are as follows: 1-NN, AdaBoost, Neural network,
3-NN, and RBF SVM. The voting classification algorithm was
designed based on the three-highest ranked ones and show the
best average accuracy (85.4%) across all symptoms. Moreover,
the best performance in estimating the UPDRS scores for each



HUO et al.: HETEROGENEOUS SENSING SUITE FOR MULTISYMPTOM QUANTIFICATION OF PARKINSON’S DISEASE 1403

TABLE V
THE FIVE MOST RELEVANT FEATURES FOR EACH SYMPTOM

Fig. 4. Classification accuracies using the voting classifier under three
conditions: all features, without MMG-based features and without force-
based features (rigidity)/only MMG-based features (bradykenesia and
tremor).

symptom were all obtained by the voting classifier or one of its
three base classifiers. The voting classifier shows the highest
accuracy for estimating the UPDRS scores for wrist rigidity
(accuracy = 88.4%), kinetic tremor (accuracy = 91.8%), and
postural tremor (accuracy = 80.2%), and the second-highest
accuracy for remaining symptoms such as elbow rigidity
(89.6% vs 92.7%, voting classifier vs 1-NN), bradykinesia
(85.1% vs 85.8%, voting classifier vs 1-NN), and rest tremor
(80.1% vs 84.3%, voting classifier vs AdaBoost).

B. Contributions of the MMG Signals

To investigate the use of the MMG signals in improving
the accuracy, the correlation coefficient between each feature
and the UPDRS scores was calculated using the ANOVA
analysis. The five most relevant features for each symptom
and their correlation coefficients are shown in Table V. It can
be observed that the MMG based features contribute at least
one of the five most relevant features for all symptoms except
for the elbow rigidity, for which the stdMMGU

2 is the sixth
most relevant features. The MMG based features show high
correlations to the UPERS scores for postural and rest tremors.

A further comparison study was conducted to evaluate
whether the rigidity UPDRS scores can be estimated using
only MMG and IMU-based features so that the force handle
can be removed in the clinical assessment. Fig.4(a) shows
the classification accuracies for wrist/elbow rigidities using
the voting classifier under three conditions: all features,

without MMG-based features, without force-based features.
It can be observed that the classification accuracy is sig-
nificantly reduced by removing force-based or MMG-based
features compared to that using all features. The removal of
the force-based and MMG-based features respectively reduces
the accuracy by 10.1% and 7.9 % for elbow rigidity and by
13.5% and 5.9% for wrist rigidity. In other words, by compar-
ing the reduction of accuracies caused by separately removing
the force-based and MMG-based features, it can be noted that
MMG-based features show the similar effort as the force-based
ones (79.5% vs 81.7%) for the elbow rigidity assessments, but
less effect for wrist rigidity assessment (74.9% vs 82.5%).

A similar study was carried out to compare the perfor-
mances of the voting classifier separately using all sensor
features excluding MMG-based features and only MMG-based
features for bradykinesia and tremor assessments. Fig. 4(b)
shows the classification accuracies under three conditions: all
features, without MMG-based features and only MMG-based
features. Compared to using all features, the removal of
MMG-based features does not affect the classification accu-
racy for kinetic tremor (all features vs without MMG: 91.8%
vs 91.8%) and rest tremor (all features vs without MMG:
80.1% vs 80.8%) assessments, but lowers the classification
accuracy for bradykinesia (all features vs without MMG:
85.1% vs 77.6%) and postural tremor (all features vs without
MMG: 80.2% vs 75.5%) assessments. Although the MMG-
based features show high correlations with the UPDRS scores
for rest tremor assessments (see Table V), the removal of
MMG-based features does not significantly affect the clas-
sification accuracy (see Table 4(b)). This is because the
remaining features have also high correlation coefficients with
the UPDRS scores. In addition, it can be seen that using
only the MMG-based features shows the similar accuracy
for bradykinesia and tremor assessments as the IMU-based
features (bradykinesia: 76.3% vs 77.6%, kinetic tremor: 86.3%
vs 91.8%, postural tremor: 81.0% vs 75.5%; rest tremor:
77.2% vs 80.8%).

C. Confusion Matrix of UPDRS Classification

Fig. 5 shows the confusion matrices of the estimated
UPDRS scores of six symptoms when using the voting clas-
sifier. The classification confusion mainly occurs between
the neighbouring UPDRS scores for bradykinesia and kinetic
tremor assessments. For the assessments of elbow rigidity,
wrist rigidity and postural tremor, these exist limited clas-
sification confusions (≤3) between two UPDRS scores with
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TABLE VI
ACCURACIES OF THE HS-PWPD (UPDRS>0) AND PWPD (UPDRS=0)-PWPD (UPDRS>0) CLASSIFICATIONS

Fig. 5. Confusion matrices for all symptoms with using the voting
classifier.

the difference is 2, and no classification confusion between
two UPDR scores with higher differences. In the classification
results for rest tremor, relatively significant confusion occurs
between two UPDRS scores with the difference is 2 (10 times)
and higher (6 times).

D. Accuracy of PwPD-HS Classification
In the aforementioned experiments, the 5-level UPDRS

scores rated by clinicians were used as the gold standard
for classification. In this experiment, all features with PwPD
(UPDRS > 0, i.e., PwPD[1,2,3]) were defined as one group and
a new healthy subject cohort was included as the control group.
The proposed features and voting classification method were
further evaluated to distinguish the PD patients from healthy
subjects. Table VI shows that high classification accuracies
(96.6% on average across all symptoms) can be achieved
for all symptom assessment. Moreover, the symptoms of the
PwPD can be removed or largely reduced to an insignificant
level with appropriate DBS, and correspondingly, the UPDRS
scores were rated as 0 by clinicians. Besides, some PwPD
show only one or two symptoms. The data collected with

PwPD under these two cases (i.e., UPDRS = 0) were also clas-
sified as one group (PwPD[0]). Similarly, the voting classifica-
tion method was used to distinguish such group (i.e., PwPD[0])
patients from the PwPD[1,2,3] group. Average classification
accuracy of 89% across all symptoms can also be obtained,
however, 7.6% less than that between the control group and
the PwPD[1,2,3] group.

IV. DISCUSSION

We have designed, fabricated, programmed, and clinically
tested a wearable sensor system, a Parkinson’s diagnostic
device, capable of measuring all three cardinal motor symp-
toms of Parkinson’s Disease. We have further introduced a new
sensing modality, MMG, as well as a new wearable MMG sen-
sor that extracts important features of all PD symptoms. Based
on the extracted features, a voting classification algorithm
was developed to quantify the PD symptoms according to
the UPDRS scores rated by clinicians. The developed system
was able to classify the UPDRS scores of three cardinal
PD motor symptoms with an average accuracy of 85.4%.
Moreover, an average classification accuracy of 96.6% can
be achieved when using the developed system to distinguish
the PD patients from healthy subjects. The results also reveal
that the use of the MMG-based features effectively improves
the general accuracy by 7.1 ± 1.1% for rigidity and bradyki-
nesia assessments. Of particular note, we found that the
designed wearable armband consists of an IMU sensor and two
MMG sensors has the potential to quantify rigidity symptom
by replacing the force sensor, although a difference was
observed in the results when used for assessing elbow rigidity
(accuracy = 79.5%) and wrist rigidity (accuracy = 74.9%).
Furthermore, the MMG-based features show a similar effect
(i.e., accuracy) for UPDRS classification as the IMU-based
features for tremor assessments (81.5±4.6% vs 82.7±8.3%).

UPDRS is the current gold-standard in measuring symptom
severity in PD in this study. Hence, the classification results are
comparable to clinician rating, in particular, for elbow/wrist
rigidity and kinetic tremor which yield an average accuracy
of 89.9 ± 1.7%. The prediction accuracies of UPDRS scores
for postural and rest tremors (80.2% and 80.1%, respectively)
are comparable to current studies (e.g., kinetic tremor: 77.4%,
postural tremor: 79.3%, rest tremor: 78.6%, [5-fold cross-
evaluation accuracy] [51]). In [51], a regression method was
used based on the arm linear accelerations and rates of turn
measured using IMU sensors. Finally, the developed system
is able to distinguish the PD patients from healthy sub-
jects with high accuracy (96.6%) across all symptom assess-
ments. In general, the results imply that the sensor system
meets or exceeds current standards in PD symptoms assess-
ment. The results also show promise to adapt to improved
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(e.g., higher resolution, multi-dimensional) rating scales pro-
posed for more precise disease assessment. Past studies have
targeted only one or two main PD symptoms [39], [40]. This
is the first investigation introducing a sensor system with
the capacity to measure all three cardinal symptoms on a
significantly sized PD cohort. Moreover, although existing
studies have shown EMG can be used for the assessment of
Parkinsonian rigidity [52], this study performed the first trial
to use MMG signals to classify the 5-level UPDRS scores.

We propose an expanded study in terms of patient and
clinician numbers in future work for subsequent system trans-
lation. In the current patient cohort, numbers of cases with
UPDRS score = 2 and/or 3 were low for all PD symptoms
except for the rest tremor (see Fig.5), and no patients had the
rare condition of a UPDRS score = 4 for all symptoms. The
system also holds a strong future potential to address inter-
and intra-rater subjectivity across PD examiners, however the
number of testing physicians needs to be expanded to explore
this capability. To reduce the subjectivity in this investigation,
a control group was included. Results comparing the control
subjects to PwPD demonstrates very high classification accu-
racy (96.6%, on average across all symptoms). It is noteworthy
that some PwPD’s PD symptoms were rated as zero (most of
them under DBS) and PwPD[0] group can still be accurately
distinguished from the PwPD[1,2,3] group very reliably (89%),
which approaches the very high accuracy (96.6%) distinction
between control and PD patients.

The new sensing modality also opens many rich areas
for future study. For instance, a normalization of the MMG
signals across patients can improve the diagnosis by asking the
patient to perform several prescribed motions before clinical
assessment. A larger dataset can be built to reduce the errors
in the UPDRS scores rated by clinicians and improve the
accuracy of the model. Note that this study also focused on the
most-affected side of the patients’ arms. Bilateral experiments
and feature ranking strategies [45], [53], in particular out-of-
clinic, could lend critical insights to disease progression and
treatment efficacy. Results demonstrating MMG can measure
rigidity enable significant system size reduction which can
further enable long ambulatory assessments for home use and
extraction of information related to activities of daily living.
Moreover, with a smaller version, the system can also be
easily placed on other body segments, for example, placing an
IMU on the hand can extract more features for bradykinesia
and tremor assessment since these symptoms are more distal.
Furthermore, the IMU-MMG based system can also be further
developed for lower limbs to monitor some important features
of PD, e.g., gait and postural instability, which cannot be
measured using the current system.

V. CONCLUSION

This investigation has introduced the first wearable system
capable of measuring all three cardinal motor symptoms
of Parkinson’s disease as correlated with clinician standard
UPDRS scores. The developed sensor system consists of
a force-sensor handle, three IMUs and four novel MMG
sensors. The system is compact and can be easily used during
clinical or home-based assessments. System use does not

require any expertise and can be done without any clini-
cal training. The results have shown that high classification
accuracies across all symptoms can be achieved using the
developed system. We have further shown that the use of
MMG-based features can effectively improve the accuracies
for assessing the rigidity, bradykinesia, and kinetic tremor.
Moreover, the comparison study has revealed that MMG-based
features show the potential to quantify rigidity comparably to
force measurement. In future work, the sensor system will be
adjusted to be used at home to monitor symptoms away from
the hospitalenabling regular “on-the-fly” treatment adjustments
and full telemedicine. This holds very significant potential
to extend the efficacy of pharmaceutical and DBS treatments
whose dosage and stimulation level are prescribed only based
on limited “snapshots” of clinician time. Furthermore, this can
provide a closed-loop feedback system to allow for individu-
alised treatment for motor fluctuations in PwPD, particularly
those who have had DBS where the stimulation output can be
adjusted according to symptoms variation. This investigation
has triggered clinical work aimed at translation. The sensing
system has been successfully patented [54] and a new venture,
Serg Technologies, has been formed to commercialize the
system for widespread patient use.
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