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Abstract— Although several guidelines for best practices
in EEG preprocessinghave been released, even studies that
strictly adhere to those guidelines contain considerable
variation in the ways that the recommended methods
are applied. An open question for researchers is how
sensitive the results of EEG analyses are to variations in
preprocessing methods and parameters. To address this
issue, we analyze the effect of preprocessing methods
on downstream EEG analysis using several simple signal
and event-related measures. Signal measures include
recording-level channel amplitudes, study-level channel
amplitude dispersion, and recording spectral character-
istics. Event-related methods include ERPs and ERSPs
and their correlations across methods for a diverse set of
stimulus events. Our analysis also assesses differences in
residual signals both in the time and spectral domains after
blink artifacts have been removed. Using fully automated
pipelines, we evaluate these measures across 17 EEG
studies for two ICA-based preprocessing approaches
(LARG, MARA) plus two variations of Artifact Subspace
Reconstruction (ASR). Although the general structure
of the results is similar across these preprocessing
methods, there are significant differences, particularly in
the low-frequency spectral features and in the residuals
left by blinks. These results argue for detailed reporting
of processing details as suggested by most guidelines,
but also for using a federation of automated processing
pipelines and comparison tools to quantify effects of
processing choices as part of the research reporting.

Index Terms— EEG, preprocessing, ERP, ERSP, MARA,
ASR.

I. INTRODUCTION

EEG (electroencephalography) is widely used to record
brain activity in clinical, research laboratory, and real-
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world settings. Although a number of guidelines for best
practices in processing EEG have appeared in recent years (see
for example, [1]–[3]), the guidelines are quite broad and give
researchers significant leeway in creating compliant processing
pipelines. A crucial question for evaluating the reliability and
comparability of results from different studies is how details
of the processing pipelines might influence the end results.

This paper begins to address the preprocessing variability
question by assessing differences in signal distributions across
studies for several different preprocessing methods. We also
examine differences in event-related potentials and event-
related spectral perturbations computed by both trial averaging
(ERPs and ERSPs, respectively) and temporal overlap regres-
sion (rERPs and rERSPs, respectively) [4]–[6]. The remainder
of the paper is organized as follows. Section II describes
briefly describes the data corpus, delineates the four pipelines
compared in this paper, and introduces the signal and event-
related feature metrics used for evaluation. Section III presents
comparisons organized by signal and event-related feature
characteristics, with special evaluation of the effect of blinks.
Section IV discusses some of the implications of the results,
and Section V gives some concluding remarks.

II. METHODS AND MATERIALS

The data corpus for this study consists of EEG recordings
from 17 studies performed at six experimental sites con-
taining approximately 7.8 million event-related epochs from
1,100 recordings as described in [7]. The studies fall into two
general categories: visual target detection and lane-keeping
tasks that include distractions and other variations. The raw
data and some levels of processed data are available through
the DataCatalog at https://cancta.net. Code for the preprocess-
ing pipelines and calculation of some of the metrics is available
at https://github.com/VisLab/EEG-Pipelines. The study events
were annotated using Hierarchical Event descriptors (HED
tags) prior to any processing [8].

A. Early-Stage Preprocessing

We applied the PREP pipeline [9] to remove line noise,
identify bad channels, and robust average reference the data.
If bad channels were interpolated, EEGLAB’s eeg_interp()
was used for spherical interpolation, and re-sampling was done
with EEGLAB’s pop_resample(). All filtering operations used
EEGLAB’s pop_eegfiltnew() with the default settings unless
otherwise specified. Datasets with more than 64 channels
were reduced to the 64 channels closest to the standard
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Fig. 1. Comparison of summary EEG signal distributions for different
preprocessing methods using the 26 common channels. Rows from
top to bottom correspond to preprocessing methods: average reference
with bad channel interpolation, LARG, MARA, ASR_10∗, and ASR_5∗.
The first column displays scalp maps of the row medians of the corpus
amplitude matrix, A, while the second column displays scalp maps of
the row medians of A after normalization by the recording-specific Huber
means. Values in square brackets are the medians of the row medians
of A. The third and fourth columns plot entries A(i, k) versus A(j, k) for all
channels i �= j before and after Huber normalization, respectively.

10-20 positions and assigned standard 10-20 labels [7]. Blink
events, identified as the positions of the maximum amplitude
of the blink, were then inserted into the EEG structure using
the automated BLINKER toolbox [10].

B. Preprocessing Pipelines Used in This Study

This work compares four processing pipelines, denoted as
LARG, MARA, ASR_5∗ and ASR_10∗, respectively. LARG
[7] and MARA [11] are closely-related ICA-based pipelines,
while the ASR_x∗ pipelines are based on the Artifact Subspace
Reconstruction algorithm [12], an automated EEG artifact
removal algorithm that can be applied in real-time. The full
ASR pipeline and is now part of the recommended preprocess-
ing pipeline for EEGLAB [13], [14]. (See Suppl. Fig. 1 for a
summary diagram of the pipelines.)

1) The LARG Pipeline: LARG [7] is an automated pipeline
that emphasizes the removal of eye artifacts. After inter-
polating the bad channels identified by PREP, LARG uses
the default settings of EEGLAB pop_eegfiltnew() to high-
pass filter the data at 1 Hz with a zero-phase FIR filter

and a Hamming window. After down-sampling to 128 Hz,
LARG computes independent components (ICs) using Info-
max applied to cleaned sections of the data as described
in [15]. Some studies were processed using the CUDAICA
GPU implementation of Infomax [16]. LARG removes from
the signal ICs identified by EyeCatch [17] as eye artifacts,
and applies temporal overlap regression to remove the residual
time-domain blinks in intervals of [−1, 1].

2) The MARA Pipeline: MARA (Multiple Artifact Rejection
Algorithm) automates the selection of artifactual independent
components ICs by applying multiple statistical tests [18]. Our
MARA pipeline uses a pipeline identical to LARG except
that instead of applying EyeCatch and regressing out blinks,
the MARA pipeline removes artifactual ICs based on the
MARA criteria.

3) The ASR∗ Pipeline (ASR_5∗ and ASR_10∗): The ASR
(Artifact Subspace Reconstruction) algorithm [12] uses
principal-component-like subspace decomposition to eliminate
large transients. ASR can be applied in an online setting
for real-time artifact removal. We applied ASR using the
clean_asr() function from the clean_rawdata EEGLAB plu-
gin. Note that the recommended ASR artifact removal pipeline
and the default approach implemented in clean_rawdata
includes bad channel removal and bad window removal, which
can significantly improve artifact removal as well as its own
filtering. However, here we performed comparisons with only
underlying subspace removal implemented in the clean_asr()
function, without the benefits of these additional offline artifact
removal steps. We therefore denote this approach as ASR∗.
We use the non-interpolated average referenced signal pro-
duced by PREP, remove the channel means, and high-pass
filter using the default settings for pop_eegfiltnew() with a
cutoff of 1.5 Hz. The higher cutoff (compared to a 1 Hz
cutoff for LARG and MARA) was needed to achieve suitable
stop-band suppression below 0.5 Hz for some recordings that
had significant drift, thereby ensuring the data had a mean
of approximately zero within short windows (an essential
stationarity pre-condition for ASR to function properly).

ASR has a configurable burst cutoff parameter for deter-
mining how aggressively it removes transient high-variance
artifacts, with smaller values corresponding to more aggressive
removal of artifacts. We used burst cutoff parameters: 5 (highly
aggressive) and 10 (modestly aggressive, typical setting),
denoting the pipelines as ASR_5∗ and ASR_10∗, respectively.
ASR calibration was performed separately for each recording
using the default settings, which identify a signal subspace
from clean segments of the entire recording after removal of
segments of data containing high-power artifacts in more than
7.5% of channels.

C. Computation of Robust Channel Signal Statistics

Bigdely-Shamlo et al. [7] introduced several robust sum-
mary metrics for signal channel distributions which we use
here, including the recording channel amplitude vector and
the study channel dispersion vector. These metrics capture the
signal scale across channels in a recording, and the dispersion
of that scale across a study, respectively. Due to the robust
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estimators being used, these measures are partially biased
towards brain signals rather than artifacts, and can thus be
used to track impacts on those brain signals before and after
a given pre-processing method is applied.

Prior to calculation of the summary features, the EEG signal
is filtered using a [1, 20] Hz bandpass FIR filter and the
following 10-20 standard set of 26 channels is selected: FP1,
FP2, F3, Fz, F4, F7, F8, FC3, FCz, FC4, FT7, FT8, C3, Cz,
C4, TP7, TP8, CP3, CPz, CP4, P3, Pz, P4, O1, Oz, and O2.
All recordings in the corpus contain these 26 channels, which
are used for the channel summary metrics unless otherwise
stated.

The recording channel amplitude vector is a 26 × 1 pos-
itive vector of the robust standard deviations (defined as
1.4826 × the median absolute deviation from the sample
median) of the filtered channel signals from these 26 common
channels. The study amplitude matrix is a 26 × S matrix of
the recording channel amplitude vectors stacked across the S
recordings in the study. The corpus amplitude matrix A is a
26×C matrix formed by stacking the study amplitude matrices
across all of the studies in the corpus. Here C is the total
number of recordings in the corpus. The dispersion vector for
a study or corpus amplitude matrix is a 26 × 1 positive vector
calculated as the robust standard deviation of each row of the
respective amplitude matrix divided by the median of that row.
(See [7] for a more detailed description of these metrics.)

Bigdely-Shamlo et al. [7] also showed that dividing the
recording channel data by a recording-specific constant prior
to computing the study or corpus dispersion vector greatly
reduces the dispersion values. Several methods of computing
the recording-specific constant were shown to be effective
in reducing study-wide channel dispersion. Here we use the
Huber mean of the recording channel amplitude vector as the
recording-specific constant. The normalized study amplitude
matrix and the normalized corpus amplitude matrix in this
paper are formed by dividing each column of the respective
amplitude matrix by its column Huber mean.

To visualize, we take the median of the rows of the corpus
amplitude matrix and plot the resulting 26 × 1 vector using
EEGLAB’s topoplot(). To explore channel signal dependencies
on recording-specific scaling, we plotted entry A(i, k) versus
A(j, k) (with i �= j). A ball-shaped plot indicates that little of
the recording variability can be addressed by this recording-
specific normalization, while a linear shape suggests that such
normalization will improve comparability.

To quantify to what extent dividing each recording by a
recording-specific constant reduces channel dispersion across
a corpus, we calculated the percentage of dispersion reduction
for each study, channel, and method separately using the for-
mula 100∗(dispersion before – dispersion after)/(dispersion
before). We then averaged these percentages for each pre-
processing method to obtain an overall dispersion reduction
percentage [7].

D. Computation of Channel Spectral Characteristics

To see how different preprocessing approaches might distort
the signal spectral characteristics, we calculated both summary
and local measures as follows. Each recording was scaled by a

recording-specific constant (the Huber mean of the recording
amplitude vector). We computed the time-varying spectral
decomposition of each of the 26 common channels by applying
the MATLAB continuous wavelet transform cwt() using the
complex Morlet wavelet family cmor1-1.5 and 50 frequencies
logarithmically sampled in the range 2 to 30 Hz. We then
normalized the amplitude at each frequency for each spectro-
gram by subtracting the median over time and dividing by the
median absolute deviation from the median (MAD). We refer
to this operation as robust z-scoring.

For each preprocessing method, we created a spectral
fingerprint of each recording by vectorizing the normalized
spectrograms. We then computed correlations of the
corresponding fingerprint vectors associated with pairs of
preprocessing methods to summarize how much preprocessing
affects spectral results. In addition, we averaged each spectro-
gram within standard frequency bands (delta: [2, 4] Hz, theta:
[4, 7] Hz, alpha: [7, 12] Hz, beta: [12, 30] Hz) to form
separate fingerprints for each band and computed band
correlations for pairs of preprocessing methods.

For each preprocessing method, we also created a recording
spectral sample by choosing at random 100 non-overlapping
segments of 4 seconds duration from each recording and
calculating the power spectral density (PSD) of each sample
segment. We used the Matlab pmtm() multi-taper spectral
density function with tapers having a half-bandwidth of 4
using 512 points and 256 frequency bins in [1, 50] Hz. PSD
samples were normalized by dividing by total spectral power,
similar to those used by Cruz-Garza et al. [19]. We then
computed the Pearson correlation (across frequency) between
PSD samples for different pairs of preprocessing methods.
This metric quantifies the relationship for each recording
by 26 × 100 = 2,600 correlations rather than via a single
correlation value.

We also computed the mean spectra for each spectral sample
in each of five specified frequency bands (the delta, theta,
alpha, and beta bands listed above, as well as a gamma band
of [30, 50] Hz) for each channel in each recording. We then
calculated Pearson correlations between corresponding band
spectral samples for pairs of preprocessing methods.

E. Computation of Event-Related Features

We computed the event-related features on intervals
of [−2, 2] seconds time-locked around individual events sep-
arately for each preprocessing method. As described in [20],
we used two different computation methods: ordinary trial
averaging (ERPs and ERSPs) and temporal overlap regression
(rERPs and rERSPs). We computed (r)ERPs for each (record-
ing, study-specific event code, channel) and (r)ERSPs for
each (recording, study-specific event code, channel, frequency)
combination. The (r)ERSPs were computed based on the time-
varying amplitude spectrogram computed by applying the
MATLAB continuous wavelet transform function, cwt(), to the
continuous signal at 50 frequencies logarithmically sampled
between 2 and 40 Hz. We scaled the resulting amplitudes by
subtracting the median and then dividing by 1.4826 times the
median, with median computed separately at each frequency
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over all time points for each recording. We used the outlier
detection scheme described in [20] to more robustly compute
these features.

Our corpus events were tagged using Hierarchical Event
Descriptors (HED tags) to enable cross-study comparison.
Because many events in our corpus mark non-neurological
phenomena such as experimental control, we only considered
event codes tagged with Event/Category/Experimental stimu-
lus and not also tagged with Attribute/Offset for the summary
measures. Event-related features corresponding to a particular
study-specific event code were only computed for recordings
containing at least 10 occurrences of the event code. Event
codes that frequently coincided with other event codes were
detected and duplicates eliminated. We only considered com-
binations for which there were at least 5 recordings containing
enough events with that event code.

For each of the 26 common channels, we computed the
pairwise Pearson correlations, between pairs of preprocessing
methods, of the corresponding event-related (r)ERP features
(recording, study-specific event code, channel). For (r)ERSP
features, we vectorized the spectrograms before computing
pairwise correlations. We displayed the resulting distributions
of these correlations using boxplots and also performed statis-
tical tests to determine which pairs of preprocessing methods
produced more similar event-related features.

F. Evaluating the Effect of Blinks

We used the blink amplitude ratio to characterize the
effect of blink removal for different preprocessing methods.
Blink (r)ERPs were computed by time-locking to the
maxFrame event inserted by BLINKER at the blink amplitude
maxima in the EEG signal. We only consider the 26 common
channels specified in the previous section. For each (recording,
channel), we baselined the blink (r)ERP by subtracting the
mean of the (r)ERP in the time intervals [−2, −1.5] and
[1.5, 2] from the entire (r)ERP. We then computed the blink
amplitude ratio by dividing the mean absolute value of the
baselined blink (r)ERP in the time interval [−0.5, 0.5] by the
mean absolute value of the baselined blink signal in the union
of the intervals [−2, −1.5] and [1.5, 2]. Ratios close to 1
indicate that the blink signal has been removed during pre-
processing without impacting the underlying activity. Ratios
much greater than 1 indicate that the blink amplitude has not
been fully subtracted from the signal, while ratios close to
zero indicate that both the blink and underlying activity have
been removed.

III. RESULTS

A. Effects of Preprocessing on EEG Channel Statistics

Fig. 1 compares EEG signal properties using the corpus
robust channel amplitude matrix, A. The top row shows results
for data that has been average referenced with bad channels
interpolated. The remaining rows correspond to data that
has been processed by the LARG, MARA, ASR_10∗ and
ASR_5∗, respectively. All signals have been filtered in the
range [1, 20] Hz prior to calculation of A.

The first column of Fig. 1 shows the row medians of the
corpus channel amplitude matrix, A, for various processing
methods displayed as scalp maps. The scalp maps show a
lateral symmetry with a lobe-like structure. Before artifact
removal (top row), the signal distributions are dominated by
frontal channels due to blinks and other eye artifacts, with
additional stronger amplitudes in the occipital regions.

After artifacts have been removed (rows 2 through 5),
regardless of processing approach, channel amplitude becomes
more equalized across the scalp, with the distinct bilat-
eral lobes becoming more prominent. ASR_10∗ resembles
the average referenced signal the most closely followed by
ASR_5∗, LARG, and MARA. Both LARG and MARA use
ICA-based methods, with MARA removing ICs more aggres-
sively. MARA and LARG show a local maximum near chan-
nels Fz and FCz not visible in the ASR variants. We note
again, however, that LARG and MARA pipelines applied bad
channel removal and interpolation while the ASR∗ pipelines
did not.

The scalp maps after normalization (second column of
Fig. 1) have a similar appearance to those prior to normaliza-
tion, but with a much lower amplitude because normalizing
by a constant results in a relative reweighting of the points
contributing to the median, keeping the points in a roughly
similar relationship.

To investigate whether there is a linear relationship between
robust channel amplitudes across recordings (third column
of Fig. 1), we plot A(i , k) versus A( j , k) with channel
i �= channel j for all recordings k. The plots of column 3 show
a distinct linear trend irrespective of processing method, indi-
cating the presence of an underlying co-varying relationship.
However, the average referenced only data (top row) have
many more points on the outer arms, corresponding to the
presence of large amplitude blinks and other eye artifacts. The
plots corresponding to the other preprocessing methods have
much smaller distributions along the axes.

After dividing the channel data by the recording-specific
Huber mean normalization factor (an overall robust measure
of the recording’s channel amplitude), the A(i , k) versus
A( j , k) plots become much less elongated (fourth column of
Fig. 1). The top graph of column 4 still has arms, reflecting the
continued amplitude dominance of the frontal channels after
normalization, as do the ASR variants. The linear channel i vs
j dependence is greatly reduced as indicated by the median
adjusted R2 values, which are around 0.5 before normalization
and nearly 0 afterwards. To quantify the statistical significance
of these patterns, we fit a linear regression model to A(i , k)
and A( j , k) for each (i , j) channel pair with i �= j . Table I
shows the results of this analysis.

Before normalization, almost 100% of these 650 linear
fits have nonzero slope (p < 0.01, FDR corrected). The
fraction of significant non-zero slopes is reduced to between
0.65 and 0.76 depending on the preprocessing method after
normalization. Normalization not only reduces the number
of non-zero slopes, but also sharply reduces the quality of
the linear fit. This linear relationship, which explains about
half of the variability in channel pair amplitudes, almost fully
disappears after Huber mean normalization.
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TABLE I
CHANNEL i VS CHANNEL j

∗

Fig. 2. Channel dispersions by study before and after normalization
by a recording-specific constant for four preprocessing methods: LARG
(black), MARA (blue), ASR_10∗ (green), and ASR_5∗(red).

Fig. 2 shows that channel dispersion (top graph) is substan-
tially reduced after dividing each recording by its recording-
specific Huber mean (bottom graph). The overall average
percentage dispersion reduction resulting from dividing each
recording by a recording-specific constant ranged from 38%
to 45% across studies with no obvious dependence on pre-
processing method. The percent reduction was greater than
zero with significance p < 0.001 (t-test, FDR corrected),
indicating normalization reduces cross-recording variability.

B. Effects of Preprocessing on Spectral Characteristics

Fig. 3 summarizes the correlation between corresponding
spectral features for various pairs of preprocessing methods
based on correlations of corresponding spectral fingerprints.

As expected, the spectral samples of ASR_10∗ and ASR_5∗
are very highly correlated, and LARG and MARA have
reasonably high spectral correlations. Even with these closely
related pairs of methods, there are many outliers (appearing as
a dark continuous bar due to the density of cross markers) with
lower correlations. These low correlations most likely reflect
differences in handling of artifacts between pipelines.

Fig. 3. Evaluations of differences in signal spectral characteristics
between pairs of preprocessing methods using spectral fingerprints.

Disagreement between the ICA-based methods (LARG and
MARA) and the ASR-based methods (ASR_10∗ and ASR_5∗)
in the delta frequency band ([2, 4] Hz for this analysis) is likely
due to the differences in baselining and high-pass filtering that
occurred at the beginning of the respective pipelines. However,
ASR_10∗ and ASR_5∗ used the same input signals and even in
this case, the correlations in the delta bands were much lower
than in other bands. This suggests that not only should care
be taken in specifying all baseline and preliminary filtering
operations, but that small algorithmic differences in removal
of large-amplitude low frequency artifacts such as blinks
may affect downstream analysis in lower frequency bands.
A comparison of spectral characteristics using the spectral
sampling technique produces similar results. (See Fig S.2 in
the supplementary material.)

C. Relationships of Event-Related Features Across
Methods

Many EEG studies focus on event-related potentials (ERPs)
in order to quantify the difference in evoked response due to
an experimental factor, and it is important to ascertain whether
any of these differences are due to variations in preprocessing
methods. We looked at ERPs and ERSPs associated with
different types of stimulus events for the 26 common channels
across all 17 studies and calculated the correlations between
corresponding features for different pairs of preprocessing
methods as shown in Fig. 4.

Fig. 4 displays the distributions of correlations between
corresponding features for pairs of preprocessing methods
when ERPs (left graph) and ERSPs (right graph) are computed
by trial averaging. Correlations are computed in the interval
[0, 1] seconds.

The graphs show that the relative levels of correlation
between corresponding features are similar to those levels
seen in the spectral analysis. The two variants of ASR are
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Fig. 4. Correlations between corresponding event-related features
produced by different pairs of preprocessing methods. Left boxplot shows
ERPs and right boxplot shows ERSPs both computed by trial averaging.
(Results using regression rather than trial averaging are similar and are
not shown.)

TABLE II
CORRELATIONS BETWEEN CORRESPONDING

AVERAGED ERPS (DF = 840K)

the most highly correlated although there are quite a few
outlier features. LARG and MARA are more highly correlated
for ERPs than either of those methods are with ASR_5∗ and
ASR_10∗. LARG and ASR_10∗ are slightly more correlated
than LARG and MARA for ERSPs.

For each pair of pre-processing methods, we used one-
sample t-tests to test whether the mean of the distribution
of ERP correlations (over all channels, analyzed events, and
recordings) is significantly non-zero. Table II shows the means
and 99% confidence intervals, confirming that the average
correlation is significantly non-zero for all pairs of methods.
Also shown in Table II are the median and the signed-rank
statistic calculated using the Wilcoxon signed rank test for
each pair of preprocessing methods. Regressed ERPs as well as
averaged and regressed ERSPs gave similar statistical results.
In all cases, the mean correlation was lower than the median.

To evaluate the consistency of features across recordings,
for different preprocessing methods, we calculated the
correlations among the features for recordings for each
(study, event-code) triplet. We then performed paired t-tests
and signed-rank tests both at the study and cross-study level
to see which preprocessing methods produced the highest
correlation for corresponding features across recordings. In all
cases, both at the study level and at the corpus level, there
was a strict statistically significant ordering of correlations
(MARA > LARG > ASR_10∗ > ASR_5∗) with extremely
small or vanishing p-values for both averaged and regressed
features. That being said, the overall differences in correlations
were very small. For regressed features, for example,

Fig. 5. Comparison of study averages of (r)ERSP features for target
events selected RSVP studies for channel FCz. Top group: averages of
regressed ERSPs; bottom group: averaged ERSPs. Gray areas indicate
lack of statistical significance (p > 0.01, FDR corrected).

the confidence intervals for the paired t-test comparisons were
MARA−LARG: [0.001959, 0.002890], LARG−ASR_10∗:
[0.0095999, 0.010449], and ASR_10∗−ASR_5∗: [0.015595,
0.016365]. The statistics for averaged features were
similar.

Although the feature correlations between preprocessing
methods are similar, the actual features computed using trial
averaging and regression have substantial differences. Fig. 5
displays study-wide feature averages for target events in three
different RSVP studies for channel FCz. These studies were
performed at three sites using three different Biosemi headsets.
The top group of plots uses temporal overlap regression
to compute regressed ERSPs (rERSPs), while the bottom
group uses averaging (ERSPs). Outlier detection algorithms
are incorporated in both averaging and regression techniques
as described in [20]. Within a feature computation technique,
agreement is fairly consistent and a prominent P300 apparent;
although MARA appears to have removed most of this signal
in the study averages of regressed features for RsvpB. ASR is
known to have this issue for low burst cutoff thresholds, but for
higher amplitude phenomena such as P300 there appears to be
little difference between ASR_5∗ and ASR_10∗. Importantly,
the problematic nature of averaging is evident across all
preprocessing methods. The bottom group of plots in Fig. 5
clearly shows the effect of other correlated and confounded
events on ERSP estimation, with significant activity prior to
the target event.

D. Effects of Preprocessing on Blink Removal

Using box plots of the blink amplitude ratio, Fig. 6 summa-
rizes how well the respective preprocessing methods remove
blinks in the time domain.

MARA and both variants of ASR display significant resid-
uals in blink amplitude (ratio > 1) as shown by the extended
whiskers in the corresponding box plots. In some recordings,
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Fig. 6. Temporal blink features after preprocessing. Top: Distribution
of blink amplitude ratios for the corpus recordings using different pre-
processing pipelines. Bottom: Blink (r)ERPs for a typical recording, with
blink amplitude ratios closest to the median ratios. Blink amplitude ratios
are computed for the 26 common channels in all recordings.

this residual is very large, The ASR variations tend to leave
more blink residual than MARA, while LARG tends to remove
signal along with blinks (ratio < 1). Signed-rank tests show a
strict ordering of mean blink amplitude ratio of (LARG � 1
� MARA < ASR_5∗ < ASR_10∗) with p values of essen-
tially 0.

The bottom graph of Fig. 6 shows typical blink ERPs
overlaid for different preprocessing methods and different
computation strategies. The ERP versions have been scaled
by subtracting the mean in the intervals [−2, −1.5] and
[1.5, 2] and then dividing by the median absolute value of
the resulting amplitude in those subintervals. The particular
recording whose (r)ERPs were chosen is the one whose blink
amplitude ratio was closest to the individual median blink
amplitude ratios for the different preprocessing methods.

This example is typical of the others that we have examined.
The residual signal is quite large for all preprocessing methods
except LARG, which directly regresses out the blink signal
in the interval [−1, 1]. In this example (which is typical),
the other methods appear to remove too much signal at the
blink maximum and too little signal before and after the
maximum. The averaged and regressed blink ERPs are close
for the ASR variants, but the averaged blink ERP for MARA
shows more blink residual than its regressed version.

All four preprocessing methods show spectral blink residu-
als. Fig. 7 compares the study averages of the rERSPs associ-
ated with the blink maximum event for three different studies.
GuardA is a complex, time-extended visual search task, LKCal
is a simulated vehicular lane-keeping task, while RSVPI
is a demanding, time-compressed visual target detection
task.

The top group shows channel FCz, while the bottom group
shows channel O1. All of the methods exhibit a significant
burst-like increase in power in the beta frequency range occur-
ring slightly after the blink maximum, possibly associated with

Fig. 7. Comparison of regressed ERSPs of blink events for 3 selected
studies. The top group displays the results for channel FCz and the
bottom group displays the results for channel O1. Gray areas indicate
lack of statistical significance (p > 0.01, FDR corrected).

the beginning of the eye opening phase. MARA, and to a
lesser extent the ASR variants, show significant low-frequency
activity time-locked to the blink maximum, which could be
associated with residual blink activity.

IV. DISCUSSION

This paper investigated differences in outcome at various
stages in analysis due to choices made during processing.
We focused on two types of processing approaches: ICA-based
(LARG and MARA) and subspace reconstruction (ASR_5∗
and ASR_10∗). Our large-scale analysis shows that the result-
ing signals have generally similar characteristics, but there
are small systematic differences in outcomes, even between
closely related methods.

A. Eye Artifacts Affect Signal Characteristics

The characteristics of signals with just external artifacts
removed (top row of Fig. 1) are dramatically different than the
characteristics of signals in which subject-generated artifacts
(rows 2 through 5 of Fig. 1) are also removed. Fig. 1 also
shows that the global signal characteristics after subject-
generated artifacts are removed are very similar across pre-
processing methods. Since LARG mainly focuses on the
removal of blinks and eye artifacts, one can conclude,
as expected, that the majority of the large-scale signal dif-
ferences are due to blinks.

These methods produce data in which blinks are difficult
to observe in single trials. LARG, which directly regresses
out blinks during preprocessing, has blink amplitude ratios
less than 1, leading to the concern that perhaps too much
EEG signal has been removed, while the other preprocessing
methods may not remove enough of the blink artifacts (Fig. 6).
All of the methods, including LARG, show similar well-
defined time-frequency features time-locked to blink events
after blink removal (Fig. 7).
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We also computed (not shown here) blink amplitude ratios
of epochs time-locked to the blink maximum for selected indi-
vidual recordings. The blink ratios for the individual epochs
are very close to 1 for all methods and indistinguishable from
randomly selected epochs that contain no blinks. However,
when we average these epochs for a single recording, the blink
ratios are in agreement with those reported in Fig. 6. This
suggests that direct viewing of the signals after preprocessing,
may lead to a false conclusion that the blink effects have
been mostly removed, when in fact there are systematic biases
in blink epochs. Blum et al. [21] recently compared blink
removal in the regular ASR algorithm and a modification based
on Riemannian geometry. They also observed systematic blink
residuals that may be indicative of event-related potentials
associated with eye blinks.

Blink entrainment in certain visual tasks can further com-
plicate the interpretation [22]. We recommend that researchers
generally assume residual blink signals are present in their
data after preprocessing and take active measures to address
this when interpreting their results. However, researchers have
observed neural activity locked to spontaneous blinks. This
is hypothesized to be related to attentional disengagement
and transient activation/deactivation of cortical brain net-
works [23]. It is therefore important to examine multiple fac-
tors, including the spatial and spectral distribution of residual
activity locked to blinks, when characterizing the origin of
this activity. Temporal overlap regression [5], [6] may also
be a particularly suitable method to address this problem by
regressing out common patterns of activity unique to blink
events.

B. Scaling by a Constant Reduces Inter-Recording
Variability

As we reported in earlier work [7], our results highlight
the potential for factoring out a portion of inter-recording
variability by uniform scaling of channel amplitudes (Fig. 2).
This simple step is effective across preprocessing methods
and is strongly recommended for cross-recording comparisons,
even within a single study. This scaling does not change the
relative sizes of the respective channel amplitudes.

C. Filtering and Pre-Processing Differences

Filtering and its effects on EEG signals is a complex
issue that has been examined by a number of authors [24].
Widmann et al. [25] provide useful guidelines, pointing out
that filter design trade-offs are highly dependent on the nature
of the problem being addressed and on the signal quality.
In this paper, we opted for high-pass filtering using FIR
non-casual zero-phase filtering with Hamming windows for
all preprocessing methods. We recognize that this choice is
limiting for certain applications, and that a large-scale study
of signal distortion for different filtering alternatives would
be useful. Universal recommendations for filter selection are
probably not possible, even if trade-offs are well-documented.

One place where there was a distinct difference in the choice
of filter parameters was in the high-pass filter used for ASR
versus the other preprocessing methods. ASR depends on the

signal having zero mean, both globally, as well as over local
(e.g., 0.5 sec) analysis windows. High-pass filtering is an effec-
tive way to remove local signal drift and produce a zero-mean
time series. However, EEG recording hardware from some
manufacturers, such as Biosemi, have large DC offsets or drift
that may require a suitably large stop-band suppression in
the filter to ensure that power at 0 Hz (corresponding to the
mean) is as close to zero as possible. In this work, we used
an FIR high-pass filter with a 0.75-1.5 Hz transition band to
achieve 70 dB reduction in power at 0.5 Hz using the same FIR
filtering approach used for LARG and MARA. However, since
LARG and MARA used a 0.5-1 Hz transition band, we cannot
rule out that some differences observed between these methods
and ASR, particularly in the delta band, may be attributed to
differences in the filter cutoff. However, since each pair of
methods (pair 1: LARG and MARA; pair 2: ASR_10∗ and
ASR_5∗) used the same input within the pair, the large spectral
differences within each pair of methods is likely attributable
to differences in artifact handling not filtering (Fig. 3).

Another difference between the input signals to the four
preprocessing pipelines is that ASR requires full-rank data
and thus cannot be applied after channel interpolation, ICA
component removal, or other rank-reducing methods. How-
ever, the comparison metrics described here require a fixed,
common set of channels. LARG and MARA interpolated bad
channels prior to performing their analysis and used PCA to
reduce rank. The normal offline ASR algorithm operates after
bad channels have been removed. ASR∗ just dealt with the bad
channels as part of its subspace removal and did relatively
well. The effects of channel interpolation should be further
investigated.

D. Event-Related Features

ERPs have been used in restricted experimental settings
to assess processing or headsets effects. Barham et al. [26]
compared correlations of individual target and non-target trials
for 15 subjects in an auditory oddball task. They also compared
the N200 and P300 amplitudes and latencies between standard
and deviate trials. Cruz-Garza et al. [19] used a spectral
clustering approach to quantify headset differences since direct
comparison was not possible across different datasets.

Fig. 6 shows that, although one might expect roughly
similar event-related features across preprocessing methods,
the details of individual corresponding features may differ
considerably. Even the two ASR variants, which have a
median feature correlation greater than 0.9, have many outlier
examples with very low correlation. All of the event-related
features computed in this paper used a trial outlier method that
excludes epochs with unusually large amplitudes. Identifying
other types of artifactual trials before preprocessing and sys-
tematically examining how excluding these trials changes the
feature may be useful in evaluating feature generalizability.

To improve the generalizability, we used a diverse set of
stimulus events and extended the comparison to event-locked
time-frequency features and regression-derived features.
Our conclusions are generally consistent across feature and
event types. Fig. 5 shows that ERSPs computed by trial
averaging can have significant mixing of evoked responses
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from temporally adjacent events, particularly for RSVP par-
adigms that elicit overlapping activity from rapidly presented
stimuli.

V. CONCLUSION

In this work, we characterized the effects of four pre-
processing approaches on spatial, spectral, and temporal EEG
features across 17 heterogeneous studies. Our results suggest
that even small changes in artifact removal strategy may result
in differences with large effects on particular portions of the
signal. While there is general agreement on the steps that
should be taken for preprocessing (e.g., filtering, line-noise
removal, referencing, bad channels handling, artifact removal),
a range of “standard” choices may affect results in unknown
ways. While differences may be small when averaged over a
large, diverse corpus, they may be significant when considered
for a single study. Rather than anoint a particular analysis
path as the “gold standard”, a diversity approach may lead
to more reproducible and meaningful results. If a federa-
tion of automated processing pipelines with well-documented
parameter choices were available, researchers could run their
data through several of them and compare the results as
part of reporting their research. Large differences in analysis
output would be analyzed as part of the research reporting,
leading to a better understanding both of the methods and the
underlying neural phenomena. In addition to using regression
instead of averaging to calculate event-related features, we also
recommend that researchers analyze the distribution of blinks
relative to other events.
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