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Abstract— Sleep spindles are important electroen-
cephalographic (EEG) waveforms in sleep medicine;
however, it is burdensome even for experts to detect
spindles, so automatic spindle detection methodologies
have been investigated. Conventional methods utilize
waveforms template matching or machine learning for
detecting spindles. In the former approach, it is necessary
to tune thresholds for individual adaptation, while the latter
approach has the problem of imbalanced data because
the amount of sleep spindles is small compared with the
entire EEG data. The present work proposes a sleep spindle
detection method that combines wavelet synchrosqueezed
transform (SST) and random under-sampling boosting
(RUSBoost). SST is a time-frequency analysis method
suitable for extracting features of spindle waveforms.
RUSBoost is a framework for coping with the imbalanced
data problem. The proposed SST-RUS can deal with the
imbalanced data in spindle detection and does not require
threshold tuning because RUSBoost uses majority voting
of weak classifiers for discrimination. The performance of
SST-RUS was validated using an open-access database
called the Montreal archives of sleep studies cohort 1
(MASS-C1), which showed an F-measure of 0.70 with
a sensitivity of 76.9% and a positive predictive value
of 61.2%. The proposed method can reduce the burden of
PSG scoring.

Index Terms— Sleep spindle detection, electroen-
cephalography, polysomnography, synchrosqueezed
wavelet transform, random under sampling boosting.

I. INTRODUCTION

POLYSOMNOGRAPHY (PSG) is a gold standard test
for sleep disorders, which records many channels

simultaneously during sleep, e.g., electroencephalogram
(EEG), electrocardiogram (ECG), electrooculography (EOG),
electromyography (EMG), airflow, and oxygen saturation. PSG
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Fig. 1. Examples of sleep spindle waveforms: the red underlines denote
spindle waveforms.

data analysis includes sleep stage scoring based on visual
inspection of the EEG data. In particular, sleep spindle and
k-complex detection are important for sleep stage scoring since
they characterize non-rapid eye movement (NREM) sleep
stage 2 although some sleep spindles and k-complexes also
occur in NREM sleep stage 3.

According to a sleep scoring manual published by the Amer-
ican Academy of Sleep Medicine (AASM), sleep spindles
are defined as a train of distinct sinusoidal waves having
a frequency of 11-16 Hz (most commonly 12-14 Hz) and
a duration ≥ 0.5 s, usually maximal in amplitude in cen-
tral derivations [1]. Figure 1 illustrates typical sleep spindle
waveforms.

It is suggested that sleep spindles are linked to occurrence
of neurologic diseases. Latreille et al. reported that spindle
density, which is defined as the number of sleep spindles
observed in unit time, significantly decreased in Parkinson’s
disease (PD) patients and was in association with cognitive
impairment [2]. In addition, the number of sleep spindles
was significantly lower in schizophrenia patients than that of
non-schizophrenic patients [3].

Although accurate detection of sleep spindles is clin-
ically essential, manual detection thereof is difficult and
time-consuming even for experts. Wendt et al. reported that
the average intra-expert and inter-expert F-measure agreements
in sleep spindle detection were 72±7% and 61±6%, respec-
tively [4]. Thus, automatic sleep spindle detection methods
have been investigated in order to relieve the burden on experts
as well as to improve detection accuracy.

Existing automatic sleep spindle detection methods are
classified into two approaches: template matching approach
and machine learning approach [5]. The former approach
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divides EEG data into multiple segments and calculates the
similarity between the divided EEG data and templates of the
spindle waveforms. The EEG segments are detected as sleep
spindles when the calculated similarities exceed a predefined
threshold [6]–[8]. Since there is individuality in EEG data,
the threshold needs to be tuned for individual adaptation.
Some self-adjustment methods of the threshold have been
proposed, which use prior knowledge of spindles included
in the EEG data or information about previously detected
spindles [9], [10].

The machine learning approach extracts multiple features
from the EEG data and discriminates the EEG data between
spindles and non-spindles from the extracted features by using
a trained classifier [5]. Various machine learning methodolo-
gies have been adopted for sleep spindle detection, such as
support vector machine (SVM), neural network (NN), hidden
Markov model (HMM), and the Bayesian model [11]–[14].

The main weakness of the machine learning approach is the
difficulty in constructing an appropriate dataset for classifier
training. In order to construct reliable classifiers, sufficient
volumes of spindle data and non-spindle data are needed [15].
Since it is much easier to collect non-spindle data than
spindle data, the training dataset tends to be imbalanced – the
non-spindle data constitute the majority while the spindle data
constitute the minority. Coping with such imbalanced data is a
challenging problem for standard machine learning algorithms
since most of them are designed for balanced data [16], [17].

The present work proposes a new spindle detection
algorithm that overcomes the drawbacks of the existing
approaches – the drawbacks being the necessity for threshold
tuning for individual adaptation in the template matching
approach and classifier training from the imbalanced data in
the machine learning approach. The proposed method utilizes
random under-sampling boosting (RUSBoost) as a classifier.
Random under-sampling (RUS) is a framework for coping
with the imbalanced data problem by discarding randomly
selected majority samples so that the numbers of majority and
minority samples become balanced when a classifier is built.
Boosting is an ensemble method that constructs multiple weak
classifiers and combines the outputs of the weak classifiers into
the final output by means of majority voting [18]. RUSBoost is
a combination of RUS and boosting, which is able to cope with
the imbalanced data problem [19], because ensemble learning
algorithms tend to outperform other machine learning algo-
rithms when dealing with the imbalanced data problem [20].
Moreover, RUSBoost does not require threshold tuning for
individual adaptation because it uses the majority voting of
weak classifiers.

In order to construct a good classifier, appropriate input
features have to be selected. In this research, synchrosqueezed
wavelet transform (SST) is used for extracting features from
the EEG data. SST is a time-frequency analysis method
suitable for analyzing multicomponent signals with oscillating
modes. Since SST decomposes a signal into multiple fre-
quency components with high-resolution, it can be expected to
extract specific features of spindle waveforms appropriately.

In the proposed method, referred to as SST-RUS, multiple
features are extracted from the EEG data by SST, and sleep

spindles are detected from the extracted features by RUSBoost.
Spindle detection performance is improved by combining SST
and RUSBoost.

The performance of the proposed SST-RUS is demonstrated
through its application to an open-access database called
Montreal archives of sleep studies cohort 1 (MASS-C1) [21].

II. SPINDLE DETECTION

The present work proposes a new method for detecting sleep
spindles that can cope with the imbalanced data problem in the
machine learning approach and the threshold tuning problem
in the template matching approach. The proposed SST-RUS
uses SST for feature extraction and RUSBoost for classifier
construction. First, an explanation of SST is provided.

A. Synchrosqueezing Wavelet Transform (SST)

EEG signals are assumed to consist of several compo-
nents – background activities, temporary waves, and sleep
spindles – where sleep spindles are temporary waves whose
frequency range is 11-16 Hz. In order to separate spindles
from background activities, accurate frequency estimation of
the EEG signals is crucial. Previous studies have adopted
various time-frequency approaches for spindle detection, such
as continuous wavelet transform (CWT) [22] and empirical
mode decomposition (EMD) [8].

SST gives plausible frequency estimation of a signal when
it consists of several components with different frequency
ranges.

CWT is defined as inner products between a signal s(t) and
a mother wavelet ψ(·) [23]:

Ws(b, a) =
∫ ∞

−∞
1√|a|s(t)ψ∗

(
t − b

a

)
dt (1)

where a and b denote a scaling parameter and a translat-
ing parameter, respectively. ψ∗(·) is the complex conjugate
of ψ(·). Ws(b, a) is interpreted as the power of s(t) at time b
and scale a.

SST is an extended version of CWT for analyzing mul-
ticomponent signals with high-resolution [24], [25]. In SST,
the phase transform fs(b, a) is obtained as

fs(b, a) = 1

2π j Ws(b, a)

∂

∂b
Ws(b, a) (2)

where j denotes the imaginary unit. Equation (2) represents
mapping from time-scale representation to time-frequency
representation. SST with accuracy δ and threshold � is defined
as

S(b, f ) =
∫

As,� (b)
Ws(b, a)

1

δ
h

(
f − fs(b, a)

δ

)
a− 3

2 da (3)

where f is a frequency and
As,�(b) = {a ∈ R+; |Ws(b, a)| > �}. h(t) is a function
with

∫
h(t)dt = 1. S(b, f ) is referred to as the SST

coefficient.
This transformation gives the squeezed CWT because the

instantaneous frequency band is reassigned at the centroid
of the CWT time-frequency region. Thus, this frequency
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Fig. 2. Scalograms of CWT (left) and SST (right) of a chirp signal. These
examples show that SST gives a sharper time-frequency representation
than CWT.

reassignment results in a sharpened output in comparison with
the CWT.

A comparison example of CWT and SST is shown in
Fig. 2. The original signal consists of two components: a
chirp signal, whose frequency increases from 16 Hz to 36 Hz,
and a sinusoidal signal having a frequency of 8Hz. SST
gives a sharper time-frequency representation than CWT. This
characteristic of SST may be beneficial for spindle detection.

Kabir et al. proposed an SST-based spindle detection
method that derives an original index and detects spindles
when the derived index exceeds a threshold [26]. According
to the method, the threshold has to be tuned appropriately in
advance.

B. SST-Based Feature Extraction

The present work introduces three SST-based features for
spindle detection: sigma index SI , sigma ratio S R, and Teager
energy operator T E . SST is applied to each EEG segment to
obtain the SST coefficient S(b, f ), and features are calculated
by using S(b, f ). The Morlet wavelet, which has a similar
form to sleep spindles, is adopted as the mother wavelet in
this study. Details of the three features, SI , S R, and T E , are
as follows.

1) Sigma Index: The sigma index SI represents the ratio of
the peak power of a spindle (11-16 Hz) to the peak powers
of the frequency range around the spindle range. The original
sigma index proposed by Huupponen et al. is as follows [7]:

SI (t) = 2 · max(|Psp(t)|)
mean(|Plow(t)|)+ mean(|Phigh(t)|) (4)

where Plow(t), Phigh(t), and Psp(t) are the power spectra of
frequency ranges 4 − 10 Hz, 20 − 40 Hz, and 11 − 16 Hz,
respectively. Each P(t) is obtained using Fourier transform
with a 1 s window centered at t . Max and mean denote the
maximum and the mean values in the specific frequency range.

In this research, the sigma index is modified by replacing
P(t) with S(t, f ), which makes it possible to distinguish the
sleep spindles from the alpha activity. The modified SI (t)
becomes a large value when sleep spindles occur, as shown in
Fig. 3 b). The red horizontal lines in Fig. 3 a) denote spindle
waveforms labeled by an expert.

2) Sigma Ratio: The original sigma ratio S R was proposed
by Patti et al. [27]:

S R(t) = R(t)

R(t − 1)+ R(t + 1
) (5)

Fig. 3. Extracted features: a) original EEG, b) SI, c) SR, and d) TE. SI
and TE significantly fluctuated when the spindle waveforms generated.

where R(t) is the ratio of the power of the spindle frequency
range (11-16 Hz) to the whole signal power at time t . When
a waveform with a frequency range of 11 − 16 Hz appears,
S R(t) becomes large.

This research uses a modified version of the sigma
ratio S R(t), by replacing R(t) with the modified sigma
index SI (t), because it is thought to be more sensitive to
spindle occurrence than R(t). In Fig. 3 c), SI (t) became large
exactly when the first spindle appearance started.

3) Teager Energy Operator: The Teager energy operator T E
is defined as follows [27]:

T E(t) = s(t)2 − s(t − 1)s(t + 1) (6)

where s(t) is the analyzed signal. T E(t) represents instan-
taneous changes in the signal amplitude. That is, the signal
amplitude becomes high when temporary waves such as sleep
spindles appear. A large fluctuation of T E(t) is observed when
a sleep spindle occurs, as shown in Fig. 3 d).

C. Random Under-Sampling Boosting (RUSBoost)

RUSBoost is a boosting algorithm that can deal with the
imbalanced data problem [19]. Since the number of spindle
samples is smaller than that of non-spindle samples, the adap-
tation of RUSBoost as a classifier for spindle detection is
reasonable.

Algorithm 1 describes the procedure of RUSBoost.
A dataset consists of samples xi and their labels yi as D =
{xi , yi } (i = 1, · · · , N) and Y = {−1,+1}. N denotes the
total number of samples, and the ratio of positive and negative
samples is unbalanced. Before training, it is necessary to
determine the number of iterations T and the ratio of the
number of the majority samples to that of samples in an
under-sampled dataset D�, c̃.

In step 1, the weight of each sample is initialized equally
to 1/N . Randomly-selected majority samples are discarded so
that the ratio of the number of the majority samples to that of
samples in D� becomes c̃ in step 3. The t th weak classifier ht

is trained from D�
t and the hypothesis ht (xi ) (i = 1, . . . , N) is

obtained in steps 4 and 5. In steps 6 and 7, the error rate εt of
the t th weak classifier ht is calculated and the weight update
parameter βt is obtained. The boosting weights wt are updated
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Algorithm 1 RUSBoost
Input: D, T , c̃
1: Initialize boosting weights w1(xi ) = 1/N for all i .
2: for t = 1, 2, . . . , T do
3: Perform random under-sampling to get D�

t .
4: Train weak classifier ht from D�

t .
5: Get hypothesis ht (xi ) for all i in D.
6: Calculate the error of ht : εt = ∑

i:ht (xi ) �=yi
wt (xi ).

7: Set the weight update parameter βt = εt/(1 − εt ).
8: Update the boosting weight wt+1(i):

wt+1(i) = wt (i)×
{
βt ht (xi ) = yi

1 otherwise
.

9: Normalize wt+1:
wt+1(i) = wt+1/Zt where Zt = ∑N

i=1 wt+1(i).
10: end for
Output: The final classifier:

hfin(x) = arg max
y∈Y

∑
t :ht (x)=y log(1/βt ).

in steps 8 and 9. After T iterations, the final classifier hfin(x)
is returned as a weighted vote of the T weak hypotheses.
A classification and regression tree (CART) is adopted as a
weak classifier in this work [28].

Because the final classifier is the weighted sum of multiple
CARTs, the variable importance of the pth variable, V Ip ,
is defined as the weighted sum of the decreases by the pth
variable splitting:

V Ip = 1

ZVI

∑
t

log(1/βt)	I t
G(p) (7)

where 	I t
G(p) (t = 1, · · · , T ) is the Gini coefficient decrease

by the pth variable splitting in the tth CART, and ZVI is a
normalization constant.

D. SST-RUS

The present work proposes a new automatic spindle detec-
tion method that combines SST and RUSBoost, which is
referred to as SST-RUS.

Since the length of sleep spindles ranges from 0.5 s to 1.5 s,
the extracted features are segmented by using a 0.5 s moving
window with a 0.25 s overlap. The maximum, median, and
mean values of each of the three features in each segment
are used as input variables of a classifier constructed by
RUSBoost. That is, the total number of input variables is nine.

The procedure for SST-RUS training is described in
Algorithm 2. K is the number of subjects adopted in the train-
ing dataset. The input features are extracted from the PSG
recording of the kth subject, that is, the EEG data are seg-
mented by a moving window, and the SST-based features are
extracted in each EEG segment in steps 2 and 3. In step 4,
the SST-based features are arranged as the kth feature matrix
X(k) ∈ R

Nk×p (k = 1, · · · , K ), where p and Nk are the
numbers of input variables and feature samples collected from
the kth PSG recording, an p = 9 in this research. In step 5,
a label vector y(k) ∈ YNk (Y = {−1,+1}) is prepared,
of which the sample is annotated as a sleep spindle when

Algorithm 2 Classifier Training
Input: The PSG recordings collected from K subjects, T , c̃.
1: for k = 1, 2, . . . , K do
2: Segment the EEG data by the moving window.
3: Apply the SST to the segmented EEG recording.
4: Extract a feature matrix X (k).
5: Construct a label vector y(k).
6: end for
7: Merge the matrices X(k) into one matrix X .
8: Merge the label vectors y(k) into one matrix y.
9: Construct dataset D = {X, y}.

10: Train a classifier by RUSBoost with D.
Output: The final classifier h.

more than 75% of one segment is occupied by a sleep spindle
according to expert labeling. In this algorithm, the label “+1”
denotes a segment with a spindle.

In steps 7 - 9, the feature matrices X(k) and the label vectors
y(k) (k = 1, · · · , K ) are merged into one feature matrix X ∈
R

N×p and one label vector y ∈ YN respectively, where N =∑K
k=1 Nk . In addition, the training dataset D is constructed as

D = {X, y}. Finally, a classifier is trained with the training
dataset D in step 10.

In order to construct a highly-accurate classifier by RUS-
Boost, appropriate hyperparameters – the number of iterations
T and the ratio of the majority samples in the data c̃ – need
to be tuned. This study uses 70% of samples in the whole D
for classifier training, and the other 30% of samples are for
searching optimal hyperparameters that minimize misclassifi-
cation errors.

Since the proposed SST-RUS uses a 0.5 s moving window
with a 0.25 s overlap, spindle detection is performed every
0.25 s, and each 0.25 s segment spans two moving windows.
When and only when two successive segments are classified
as positives, their overlapping part is regarded as a sleep
spindle candidate. Finally, successive sleep spindle candidates,
whose durations are higher than 0.5 s, are accepted as spindle
waveforms because the minimum duration of a sleep spindle
is 0.5 s [1].

Algorithm 3 shows a procedure for sleep spindle detection.
In steps 1-3, feature extraction is conducted in the same
manner as Algorithm 2. Spindle candidates are marked in
steps 4 and 5, and, in step 6, it is judged whether or not
their durations exceed 0.5 s to output the final result.

III. CASE STUDY

The usefulness of the proposed SST-RUS was validated
using an open-access database, Montreal archives of sleep
studies cohort 1 (MASS-C1) [21], which consists of five
subsets of PSG recordings. This study used only subset 2 (SS2)
because it has sleep spindle annotation in the EEG data.

A. Data Description

The SS2 dataset in the MASS-C1 data consists of 19 PSG
recordings (eight males and eleven females; 18-33 y.o.),
and each recording includes EEG, EOG, ECG, EMG, and
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Algorithm 3 Spindle Detection
Input: The PSG recording and classifier h.
1: Segment the EEG data by the moving window.
2: Apply the SST to the EEG recording.
3: Extract a feature matrix X .
4: Predict labels ŷ using h and X .
5: Mark the overlapping parts where both successive segments

are classified as positives as spindle candidates.
6: Search the spindle candidates whose successive duration
> 0.5 s.

Output: Detected spindles.

TABLE I
THE NUMBER OF SLEEP SPINDLES INCLUDED IN EACH SUBJECTS

respiratory data. The EEG data were recorded according to the
international 10-20 system. An expert identified sleep stages
of successive 20 s durations following the Rechtschaffen and
Kales (R&K) rules [29], and we analyzed the NREM sleep
stage 2 EEG data that contain spindle waveforms.

Two different experts performed manual sleep spindle detec-
tion independently using the C3 channel. While expert 1 anno-
tated sleep spindles using the R&K rule, expert 2 adopted
a wider frequency band in sleep spindle definition than the
R&K rule. Since the second expert scored only 15 out
of 19 recordings, subjects 4, 8, 15, and 16 were excluded
from this analysis. This work adopts EEG segments agreed
upon by both experts to be sleep spindles. The number of
the detected sleep spindles in each subject is summarized in
Table I, in which E1 and E2 denote the numbers of sleep
spindles detected by experts 1 and 2, and E1 ∩ E2 is the
number of the agreed-upon sleep spindles. The total numbers
of E1∩E2 and non-spindle samples were 9,066 and more than
150,000, respectively, which indicates that spindle detection is
a typical imbalanced data problem. Finally, we constructed the
dataset DE1∩E2 for analysis.

B. Evaluation Criteria

This study evaluated the spindle detection performance
using by-event-performance measure [30]. Let E and A
denote exact sleep spindle segments defined in Sec. III-A
and spindle waveforms detected by the algorithm, respec-
tively, and l(A ∩ E) and l(A ∪ E) are the lengths of the
intersection and the union between E and A, as shown
in Fig. 4. Note that multiple overlaps between E and A are
not allowed here, that is, one A must be matched to one E .

Fig. 4. The intersection and the union between E and A.

Fig. 5. Confusion matrix of spindle detection by the proposed SST-RUS.
True negative was not described here because the number of non-spindle
samples was much larger than that of spindle samples.

The degree of overlap between E and A is defined as
follows:

OAE = l(A ∩ E)

l(A ∪ E)
. (8)

When OAE exceeds a predefined overlap threshold Ō , we dis-
criminate A as true positive (TP). Otherwise, E and A are
regarded as false negative (FN) and false positive (FP), respec-
tively. In this study, the threshold Ō was set to 0.20 following
previous research [27], [30].

The present work adopted three types of performance met-
rics: sensitivity (SEN), positive predictive value (PPV), and
F-measure.

SEN = TP

TP + FN
(9)

PPV = TP

TP + FP
(10)

F = 2TP

FP + FN + 2TP
(11)

Specificity was not used in this study because true negatives
cannot be defined in the by-event-performance measure.

C. Spindle Detection

In this section, the application results of the proposed
SST-RUS to spindle detection in the MASS-C1 data are
reported. Eight randomly selected PSG recordings out of
fifteen in the SS2 dataset were used for training, and the
rest were used for testing. 30% of the training data were
split into a hyperparameter tuning dataset in SST-RUS. Thus,
we used about 4,000 spindle samples for training and about
1,000 spindle samples for tuning. All of the calculations were
repeated ten times for precise evaluation.

The overall performance of the proposed SST-RUS resulted
in a sensitivity of 76.9±6.0%, PPV of 61.2±6.4%, and an
F-measure of 0.70±0.015 on average. A confusion matrix of
this result is shown in Fig. 5, in which true negative was not
calculated because the number of non-spindle samples was
much larger than that of spindle samples.
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Fig. 6. Spindle detection result. The red-colored and yellow-colored bands denote spindles detected by SST-RUS, and the true sleep spindles,
respectively. The spindle waveforms occurred around 11 and 17 s were successfully detected by SST-RUS, and the spindle waveform around 4 s
was not detected.

Fig. 7. Spindle detection performances for each subject. SST-RUS
achieved good detection performance in almost all subjects except
subjects 3, 5, and 14.

An example of a sleep spindle result is shown in Fig. 6. The
red-colored bands represent spindles detected by the proposed
SST-RUS, and the yellow-colored areas are true sleep spindles.
That is, the figure contains one FN and two TP.

Figure 7 illustrates the spindle detection performance
of SST-RUS for each subject, showing that the proposed
SST-RUS achieved good detection performance in almost all
subjects except subjects 3, 5, and 14. This individuality among
subjects is discussed in Sec. IV.

IV. DISCUSSION

Overall, the proposed SST-RUS detected about 80% of
true sleep spindles when the spindle dataset DE1∩E2 was
adopted; however, spindles in subjects 3, 5, and 14 were
not appropriately detected according to Fig. 7. In order to
investigate its cause, the variable importance defined by Eq. (7)
was calculated, which is shown in Fig. 8.

The variable importance of the mean of the sigma index
SImean was the highest of all variables, while the mean of

Fig. 8. Variable importance calculated by Eq. (7), showing that SImean
was the most important feature for spindle detection.

Fig. 9. Scatter plots of SImean vs. Emean in subjects 3 and 10. The red
dots and the blue dots denotes features extracted from sleep spindle and
non-spindle waves. The distribution of TEmean varied greatly between
two subjects.

the Teager energy operator T Emean was the second highest.
This result is reasonable since SI (t) was the most sensitive
to spindle occurrence, according to Fig. 3. Figure 9 shows
the scatter plots of SImean vs. T Emean of subjects 10 and 3,
in whom the proposed method respectively did and did not
accurately detect spindles. The red dots and the blue dots
represent features extracted from sleep spindle and non-spindle
waves. Although the distribution of SImean did not differ much,
the distribution of T Emean varied greatly between two subjects.
Although detailed data of subjects 5 and 14 are not described
here, the same tendency was observed. Thus, the low value
of T Emean might lead to deteriorating the spindle detection
performance. The Teager energy operator T E(t) represents an
instantaneous change in the EEG amplitude, which becomes
high when sleep spindles appear with a large amplitude. This
indicates that the amplitude of spindles in subjects 3, 5, and
14 might be small in comparison with the background EEG
activities.
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TABLE II
SUMMARY OF PERFORMANCES IN THE MASS-C1 DATABASE

Fig. 10. Effect of the number of CARTs on the detection performance.
Although the F-measure and PPV were stabilized from around T = 200,
the sensitivity slightly deteriorated in the area over T = 200.

The spindle detection performance of SST-RUS was
compared with various conventional methods using the
MASS-C1 data. The Kabir algorithm, which uses SST for
feature extraction [26], achieved an F-measure, sensitivity,
and PPV of 0.65, 74%, and 58% on average when the
detection threshold was optimized so that the F-measure
in the training set was maximized. This comparison result
clearly illustrates that the proposed SST-RUS achieved better
performance than the Kabir algorithm in all performance
metrics. Tsanas et al. proposed a CWT-based sleep spindle
detection algorithm, whose sensitivity and PPV were 83% and
16%, respectively, when the MASS-C1 data was used [22].
This result indicates that the number of FP by the proposed
SST-RUS was smaller than that of the Tsanas method. Patti
et al. combined the sigma index and the sigma ratio with the
Gaussian mixture model (GMM) for sleep spindle detection
and validated it with the MASS-C1 data. Its detection perfor-
mance was an F-measure of 0.69 and sensitivity of 74.1% [27].
Thus, the proposed SST-RUS achieved a spindle detection
performance superior to the Patti method. These comparison
results show the usefulness of the proposed SST-RUS in
automatic spindle detection. Table II summarizes the spindle
detection performances of various conventional methods when
the MASS-C1 data was used.

We investigated the effect of the changes in the number
of CARTs T on the spindle detection performance in the
proposed SST-RUS. Figure 10 shows the detection perfor-
mance change of the proposed SST-RUS when T increased
from 1 to 400. Although the F-measure and PPV were stabi-
lized from around T = 200, the sensitivity slightly deteriorated
in the area over T = 200. Thus, the number of CARTs T
should be tuned carefully for good spindle detection.

The detection performance of RUSBoost was compared
with other ensemble machine learning methods – random
forest (RF) [31] and AdaBoost [32] – which do not use
under-sampling for data balancing. The input features and
the parameter tuning manner were the same as the proposed
SST-RUS. Figure 11 illustrates the F-measure, the sensitivity,
and the PPV of each method. RUSBoost performed the best

Fig. 11. Performance comparison of RF, AdaBoost, and RUSBoost.
RUSBoost achieved the highest F-measure and sensitivity in three
methods.

Fig. 12. Spindle detection performance by changing c̃. These results
indicate that the F-measure and the sensitivity were the highest when
c̃ = 1.

Fig. 13. Spindle detection performances of SST-based and CWT-based
features. SST was more appropriate than CWT for spindle detection.

of the three methods from the viewpoint of the F-measure
and sensitivity. Because the input features were the same,
it is suggested that RUSBoost used in the proposed method is
useful as a classifier for detecting sleep spindles.

To confirm the effectiveness of random under-sampling,
the spindle detection performance was compared when the
ratio of the number of the majority class samples to that of
samples in the whole dataset, c̃, was changed. Figure 12 shows
changes in spindle detection performances of the proposed
method with c̃ = 1 - 7. The red line in each plot denotes the
AdaBoost performance as a benchmark. The F-measure and
the sensitivity were the highest when c̃ = 1, which means that
the number of the minority class samples used for training
equaled to that of the under-sampled majority class samples.
Although the PPV was the lowest when c̃ = 1, it was not much
inferior to AdaBoost, and the performance of the proposed
method approached that of AdaBoost as c̃ increased. These
results indicate that the numbers of spindle and non-spindle
samples should be balanced for spindle detection algorithm
construction.

RUSBoost with SST-based features and RUSBoost with
standard CWT-based features were compared. The SST-based
features performed better than the CWT-based features from
the viewpoint of the F-measure and sensitivity, as shown
in Fig. 13. Since the sigma index expresses the intensity
of the peak power in the spindle frequency range, a sharp
time-frequency ridge obtained from SST emphasized the
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sigma index when sleep spindles occurred. Thus, SST is more
effective than CWT for spindle feature extraction.

This study adopted spindles that two experts agreed to
be “true” spindles, constructed the spindle dataset DE1∩E2,
and trained the classifier SST-RUSE1∩E2; however, we con-
structed another dataset based on spindles labeled by at least
one of the experts, DE1∪E2, and trained SST-RUS using
DE1∪E2, which is referred to as SST-RUSE1∪E2. In DE1∪E2,
the number of spindle samples was 15,817. The performance
of SST-RUSE1∪E2 resulted in a sensitivity of 73.5±8.1%,
PPV of 71.6±7.8%, and an F-measure of 0.72±0.013. Since
the number of spindle samples used for training in DE1∪E2
was 1.75 times larger than DE1∩E2, the sensitivity and the
F-measure of DE1∪E2 were improved in comparison with
SST-RUSE1∩E2. On the other hand, the PPV slightly deterio-
rated, which means that the number of false positives increased
in SST-RUSE1∪E2. This suggests that many false spindles
might be contained in DE1∪E2. A high-quality spindle dataset
is required for accurate spindle detection.

In addition, we applied the proposed SST-RUS to another an
open-access database, the DREAMS Spindles Database [33],
Although the DREAMS database consists of eight PSG
recordings and usually two different experts performed man-
ual sleep spindle detection independently, only one expert
performed spindle detection in subjects 7 and 8. Thus,
we excluded subjects 7 and 8 from this analysis. This work
adopts EEG segments agreed upon by both experts to be
sleep spindles, and the total number of spindle waveforms
was 180. Four randomly selected PSG recordings out of six
in the dataset were used for training, and the rest were used
for testing. 30% of the training data were split into a hyper-
parameter tuning dataset in SST-RUS. All of the calculations
were repeated ten times for precise evaluation.

The application result showed a sensitivity of 72.3±8.8%,
PPV of 55.6±14.2%, and an F-measure of 0.61±0.074 on
average. Although the total performance in the DREAMS
dataset was slightly worse than the MASS-C1 dataset and their
standard deviations were larger than the MASS-C1 dataset due
to the small number of data size, the detection performance
of the proposed SST-RUS will be improved through further
parameter tuning. Therefore, the result of applying SST-RUS
to the DREAMS database showed that the applicability of the
proposed method in spindle detection.

The limitations of this study include the data used for
analysis, such as the limited number of subjects included in
the MASS-C1 data. The proposed SST-RUS should be applied
to different PSG data for further validation.

It is concluded that the combination of SST and RUSBoost
is effective for spindle detection. The proposed SST-RUS is
more promising than conventional spindle detection methods
with respect to detection performance. Therefore, the proposed
SST-RUS can contribute to mitigating the PSG scoring burden
on experts.

V. CONCLUSION

The present work proposed a new sleep spindle detec-
tion method that combines synchrosqueezed wavelet trans-
form (SST) and random under-sampling boosting (RUSBoost).

In the proposed method, referred to as SST-RUS, SST extracts
spindle features from the segmented EEG data, and RUSBoost
discriminates spindles from the extracted features. Since SST
decomposes a signal into multiple frequency components with
high-resolution, it extracts the features of spindle waveforms,
specifically. Also, RUSBoost can detect spindle waveforms
adequately because it constructs balanced datasets for binary
classification by discarding majority samples appropriately.
The proposed SST-RUS does not require any threshold tuning
for individual adaptation. The present work evaluated the
performance of the proposed SST-RUS through its application
to the MASS-C1 data. The mean spindle detection perfor-
mance of SST-RUS resulted in a sensitivity of 76.9%, PPV
of 61.2%, and an F-measure of 0.70, which are higher than
the conventional methods. In addition, the proposed SST-RUS
was applied to the DREAMS database, showing that the
sensitivity, PPV, and the F-measure were 72.3%, 55.6%, and
0.61, respectively. Theses results showed the applicability of
the proposed method in spindle detection.

In future works, the proposed SST-RUS will be applied
to spindle density visualization, which may contribute to
neurological disorder diagnosis.
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