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Detection of the Intention to Grasp During
Reaching in Stroke Using Inertial Sensing
A. L. van Ommeren , B. Sawaryn, G. B. Prange-Lasonder, J. H. Buurke , J. S. Rietman,

and P. H. Veltink

Abstract— To support stroke survivors in activities of
daily living, wearable soft-robotic gloves are being devel-
oped. An essential feature for use in daily life is detection
of movement intent to trigger actuation without substantial
delays. To increase efficacy, the intention to grasp should
be detected as soon as possible, while other movements
are not detected instead. Therefore, the possibilities to
classify reach and grasp movements of stroke survivors,
and to detect the intention of grasp movements, were inves-
tigated using inertial sensing. Hand and wrist movements
of 10 stroke survivors were analyzed during reach and
grasp movements using inertial sensing and a Support
Vector Machine classifier. The highest mean accuracies
of 96.8% and 83.3% were achieved for single- and multi-
user classification respectively. Accuracies up to 90% were
achieved when using 80% of the movement length, or even
only 50% of the movement length after choosing the optimal
kernel per person. This would allow for an earlier detection
of 300-750ms, but at the expense of accuracy. In conclusion,
inertial sensing combined with the Support Vector Machine
classifier is a promising method for actuation of grasp-
supporting devices to aid stroke survivors in activities of
daily living. Online implementation should be investigated
in future research.

Index Terms— Stroke, inertial sensing, assistive technol-
ogy, soft-robotic glove, grasp intention, machine learning.

I. INTRODUCTION

IN 2013, 25.7 million people of the world population suf-
fered a stroke [1], of which 77.4% show motor impairments
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of the upper extremities [2]. The impairments manifest as
muscle weakness, changes in muscle tone and a decrease in
motor control, which results into difficulty of successfully
performing basic hand movements such as reaching, grasp-
ing objects, and holding objects [3]. Even though strategies
in rehabilitation therapy exist to aid recovery, 40% of the
total stroke population suffers from chronic motor impairment
[3], [4]. Stroke survivors with only one functional hand are
restricted in the performance of daily life tasks like preparing
meals, housework, and shopping [4], [5].

Stroke survivors can be supported by means of robotic
orthoses, functional aids, casts, splints, biofeedback, and elec-
trical stimulation [6], [7]. However, most of these technologies
either are bulky, restrict movement or are uncomfortable [7].
The development of orthoses to support the hand during activ-
ities of daily living (ADL) is becoming increasingly preva-
lent [8]. The majority of them is controlled by either surface
electromyography, interaction forces or human movement [8].
One developed orthosis that is slim, portable, and developed to
support grip strength in ADL, is the Soft Extra Muscle (SEM)
Glove™ from Bioservo Technologies AB [9] Force sensors
measure forces during grasping, which are located at the gray
circles of the distal phalanges of the thumb, middle- and ring
finger when worn (Fig. 1a). The SEM Glove™ is developed
to support users in grasping and holding objects by actuation
of artificial tendons to apply extra force to the object as soon
as a grasping force is detected. This could make the SEM
Glove™ a suitable solution for stroke survivors that do not
show spasticity or contractures but still experience problems
with executing grasping movements. Up to now, a comparable,
further developed, version of the SEM Glove™ is the only
wearable soft-robotic glove that has shown to be feasible when
used for four weeks independently during ADL at home by
stroke patients [10].

The force sensors on this glove are currently the only
source of detection of grasp movements, which means that
detection occurs after the subject touches the object. In a
study performed by Radder et al. [11], elderly people with
declined hand function, performed tasks considerably faster
without a comparable glove having the same force sensors
compared with performance of the same task with glove.
To increase efficacy of the SEM Glove™ to support stroke
survivors in ADL, the intention to grasp should be detected
as soon as possible while other movements, such as reaching,
are distinguished from grasp movements.

The possibility to detect different final hand postures of both
healthy subjects and stroke survivors was already investigated
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by several studies [12]–[19]. To classify the final hand posture,
bend sensors, pressure sensors, position of the fingertips, elec-
tromyography, electromagnetic sensors in combination with
electromyography, and segment angles were used. In contrast
to classifying different final hand postures, de Vries et al. [20]
studied the possibility to distinguish reach from grasp move-
ments while using a minimal amount of inertial sensing. In that
study reach and grasp movements were classified in healthy
subjects using single- and multi-user classification support
vector machine (SVM) classifiers with accuracies up to 98.2%
and 91.4% respectively. By using 40% of the available data
of a single movement, an accuracy of 85.3% was achieved.
Although at the expense of accuracy, grasp movements could
be detected up to 1200 ms before the subject touches the
object. However, stroke survivors show altered upper limb
kinematic movement characteristics within a reach and grasp
movement as compared to healthy subjects [21]. Therefore,
as a next step, this research needs to be translated such that
ultimately the prospective solution could be applied in the grip-
supporting glove for stroke if proven useful. Hence, the goal
of this study was to investigate the possibilities to classify
reach and grasp movements of stroke survivors by analyzing
their finger and hand movements using a minimal number of
inertial sensors. Furthermore, the possibilities to detect a grasp
movement by analyzing the intention of the movement was
investigated.

II. METHODS

A. Participants

Ten stroke survivors were recruited for this cross-sectional
study performed at Roessingh Research and Development
(RRD), Enschede, the Netherlands. Criteria for inclusion
into this study were: 1) clinically diagnosed with unilateral
ischemic or hemorrhagic stroke at least three months before
inclusion; 2) between 18-80 years of age; 3) able to actively
extend the fingers enough to grasp a cylindrical object with
a diameter of 6 cm; 4) able to actively extend the fingers
enough to grasp a ball with a diameter of 7.5 cm 5) a
sufficient cognitive status to understand two-step instructions
in Dutch; and 6) having (corrected to) normal vision. Criteria
for exclusion were: 1) severe sensory problems or pain of the
affected hand; 2) severe contractures limiting the passive range
of motion and; 3) co-morbidities limiting functional use of
the hand. The Medical Research Ethics Committee (MREC)
Twente, the Netherlands, approved the study (CCMO num-
ber NL64511.044.17). All stroke survivors provided written
informed consent prior to the start of this study.

B. Instrumentation

The force sensors in the three-fingered SEM Glove™ were
used to detect, and determine the duration of, contact with the
object in the case of a grasping movement. The thumb, middle-
and ring finger are covered by the glove. The force sensors
are located at the distal part of those fingers. Relaxation of
active finger flexion enables releasing of the object. An inertial
measurement system [22] with inertial measurement units was
placed on the ulnar styloid, the dorsal side of the hand, and the

Fig. 1. Representation of instrumentation of the experiment. A) shows
the entire SEM Glove� with force sensors placed on the grey circles,
B) shows the SEM Glove with the white inertial measurement system.

Fig. 2. Schematic representation of the task locations for the experiment.

phalanges of the thumb, index and middle finger to measure
the angular velocities in order to detect flexion and extension
movements of the thumb, fingers and wrist. A combination
of the SEM Glove™ and the inertial measurement system as
used in the current study can be seen in Fig.1.

C. Experimental Set-Up

The set-up used in this study (Fig. 2) was similar to study
design of de Vries et al. [20]. The participant was seated at
a table with adjustable height to make sure that the elbow of
the affected side was flexed 90◦ and aligned with the trunk.
Targets were presented in five horizontal directions (0◦, 45◦,
90◦, 135◦, and 180◦) on locations within the active reaching
range of motion of the participant. The affected hand was
initially positioned in the middle of the semi-circle.

D. Protocol

Prior to the start of the reach and grasp movements,
the upper extremity part of the Fugl-Meyer assessment was
performed to evaluate the motor status and degree of synergies
in the upper limb [23]. Thereafter, anatomical rotation axes
were defined with a sensor-to-segment calibration, described
in the section below.

As described by de Vries et al. [20], two different grasp
tasks and two different reach tasks towards the five different
locations were performed: 1) grasping a wooden ball with
a diameter of 7.5 cm; 2) grasping a cylindrical object with
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a diameter of 6 cm; 3) reaching towards a target location whilst
in pronation; and 4) reaching towards a target location whilst
in supination. The grasp gestures, cylindrical and spherical,
represent two common grasps in stroke [24]. The protocol
allowed compensatory movements to ensure that natural move-
ments from each individual were captured. In healthy subjects,
a minimum number of 70 movements were needed to train
the classifier accurately [20]. Based on the results from de
Vries et al. [20], it was decided to repeat all tasks 5 times
per location. Besides a specific task and location, the patient
was also instructed to have one of two different starting hand
postures; either flat on the table with the dorsal side upwards
or making a fist with the medial side resting on the table.
Therefore, a total of 100 grasp and 100 reach movements were
performed of which the order of the tasks as well as the order
of initial hand posture and the locations were randomized.

E. Sensor-to-Segment Calibration

A sensor-to-segment calibration as described by
Luinge et al. [25] was performed to determine the anatomical
rotation axes. Participants were instructed to stand upright
and hold their elbow in a flexion angle of 90◦ while the
dorsal side of the hand faced upwards as reference position.
Participants were then asked to perform and repeat six
tasks five times: 1) flexion and extension of the fingers;
2) ab- and adduction of the fingers; 3) flexion and extension
of the thumb; 4) flexion and extension of the wrist; 5) ab- and
adduction of the wrist; 6) flexion and extension of the elbow.
The coordinate system of each segment was defined according
to the coordinate system of the whole body in anatomical
position. The x-axis was defined as the anteroposterior axis
pointing in anterior direction representing ab- and adduction,
the y-axis was defined as the mediolateral axis pointing in
lateral direction of the right hand representing flexion and
extension, and the z-axis was the longitudinal axis pointing
in caudal direction, which represents pro- and supination.
The direction of the x-axis was determined by measuring the
gravitational force at the reference position. By analyzing the
direction of angular velocity during flexion of the different
segments (middle finger, index finger, thumb, wrist and arm),
the direction of the y-axis was determined. The direction of
the z-axis was then determined by the cross-product of the
x- and y-axis. To correct for unwanted movements performed
in the reference position and to make the coordinate system
orthogonal, the direction of the x-axis was recalculated by
computing the cross-product of the y- and z-axis. Finally,
to acquire the segment data with the coordinate system of
the human body, the gyroscope data was multiplied with the
rotation matrices specified by the unit vectors.

F. Data Analysis

Data was acquired from the SEM Glove™ using Tera
Term version 4.98 and from the inertial measurement system
using MATLAB version 2016b on a laptop running a 64-bit
Windows 10 OS with a 2.20 GHz i7-2670QM Intel® Core™
CPU and 6 GB of RAM. For safety reasons, the SEM
Glove™ was connected to the laptop with a USB isolator

(Model UH401) from Advantech. Data analysis was performed
using MATLAB version 2017b on a desktop running a 64-bit
Windows 10 OS with a 3.40 GHz i5-7500 Intel® Core™ CPU
and 8 GB of RAM.

1) Pre-Processing: The offset of the sensors from the iner-
tial measurement system and the SEM Glove™ was removed
from a manually determined baseline at the beginning of each
recording. Throughout the baseline, no movement of the hand
and no force on the SEM Glove™ was present. After removal
of the offset, data from the inertial measurement system was
filtered with a 4th order, zero-lag, low pass Butterworth filter.
The cut-off frequency was set at 6 Hz. [26], [27]

2) Training and Classification: Within the classification
learner toolbox of MATLAB, the Support Vector Machine
(SVM) was used for classification of the data since it is able to
find patterns in high dimensional, non-linearly separable data
and can accurately distinguish between two discrete classes
[28], [29]. The two defined classes in the current study were
‘reach’ and ‘grasp’ and the SVM classifiers were trained and
validated using 10-fold cross-validation. Besides the standard
linear boundary, the quadratic, cubic, fine Gaussian, medium
Gaussian and coarse Gaussian kernels were investigated in the
current study. Classification was performed in two scenarios:
1) by splitting the dataset of one patient into a test and training
set, i.e. single-user analysis; 2) by splitting the dataset of all
patients into a test set of one patient and a training set of other
patients, i.e. multi-user analysis.

3) Database: The data were divided into 200 trials per
subject, each trial containing a reach or grasp movement.
During a reach movement, the beginning and end of a trial
were determined using a threshold detector algorithm for the
angular velocity (threshold ± 0.1 rad/s) [20]. In case of a
grasp movement, the end of a trial is defined as the moment
the force sensors in the SEM Glove™ detected contact.

4) Single-User: In case of single-user classification, 25% of
the 200 trials (25 grasp and 25 reach trials) was randomly
selected for the test set. The remaining 150 trials of the same
participant were used for training.

5) Multi-User: Two methods of multi-user classification were
performed. First, the trials of one participant were selected for
the test set, while the trials of the remaining subjects were
selected for the training set. Second, the participants were
first divided into categories of stroke severity (mild, moderate
and severe [23]) following the FMA score after which the
first classification method was done for each group. For each
participant, a separate database was created.

6) Feature Extraction: The extraction of features was per-
formed in a similar way as by de Vries et al. [20]. The
movements of each segment were expressed with respect to
the dorsal side of the hand by determining the relative angular
velocity of a segment s (ωs) in each rotation axis separately
and the norm angular velocity vector of a segment s (norms).
The previously described sensor-to-segment calibration was
used to determine the relative angular velocity, ωs , by sub-
tracting the data of the dorsal side of the hand from the data
of a segment s. The second parameter, norms , was calculated
by taking the norm of the difference in angular velocities on
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TABLE I
FEATURE COMBINATIONS OF THE EXPERIMENT. EACH DESCRIBED

FEATURE IMPLIES THE MEAN AND SD OF SAID FEATURE

the x-, y-, and z-axes between a segment s and the dorsal side
of the hand.

Two features of the segments, the mean and standard
deviation (SD), were calculated for both parameters to get
eight features per segment relative to the dorsal side of the
hand; two for the norm and six for the three components of
the relative angular velocity. In total four segments were used
to calculate the separate features: the distal part of the forearm
and the distal phalanges of the thumb, index and middle finger.
So in total, a number of 32 features were extracted from each
trial.

Several different combinations of these features were deter-
mined to train and test the SVM classifier. To limit the
number of sensors, at most two sensors were used in each
feature combination: the dorsal side of the hand with one
other segment. Table 1 shows the combinations of features
used in the experiment. The first four feature combinations
consist of the mean and SD of the norm angular velocity vector
of the middle finger, index finger, forearm and thumb with
respect to the dorsal side of the hand. Feature combinations
5 to 8 represent the mean and SD of the relative angular
velocities of all axes of the described segments. Because
the y-axis of each segment represents flexion and extension,
the mean and SD of the relative angular velocity of only the
y-axis were used as separate feature combinations, which are
numbers 9 to 12. Finally, due to the saddle joint of the thumb,
the mean and SD of the relative angular velocities of the
x- and z-axis of the thumb were also used as the last two
feature combinations. This means that all feature combinations
consist of two features per combination, except for combina-
tions 5 to 8, which contain six features each.

III. RESULTS

A. Participants

Ten chronic stroke survivors were included in this study
(Table 2). Based on a categorization of the FMA score without
reflexes [30], six (60%) of the included stroke survivors
were mildly affected (FMA score > 41), and four (40%)
were moderately affected (28 ≥ FMA score ≥ 41). In six

TABLE II
PARTICIPANT CHARACTERISTICS

of the participants, the affected side was the dominant side
pre-stroke.

B. Single-User Classification

Using single-user classification for all combinations of
feature combination and kernel, which required on average a
computing time of 175.0s (±40.4s), the highest mean accuracy
of 96.8% (±4.54%) was achieved by the mean and SD
of the relative angular velocities of all axes of the middle
finger (feature combination 5) with the medium Gaussian
kernel (Table 3). This combination of the SVM classifier was
trained in 0.073s on average and showed a mean sensitivity
and specificity of 98.0% (±3.37%) and 96.1% (±6.25%)
respectively. When optimizing the feature combination and
kernel for each person, accuracies ranging from 96.0%-100%
were found, with an average accuracy of 99.0%.

C. Multi-User Classification

The highest mean accuracy of 83.3% (± 9.99%) for the
multi-user classification for all combinations of feature com-
bination and kernel was achieved by the mean and SD of
the relative angular velocities of all axes of the middle finger
(feature combination 5) with the medium Gaussian kernel
(Table 4). This combination of the SVM classifier was trained
in 0.43s on average and showed a mean sensitivity and speci-
ficity of 87.2% (±8.22%) and 83.0% (±12.8%) respectively.
The highest mean accuracy after the categorical multi-user
classification for the mildly affected stroke survivors, 85.3%
(±8.31%), was achieved by the mean and SD of the relative
angular velocities of all axes of the middle finger (feature
combination 5) with the linear kernel and was trained in 0.5s
on average. For the moderately affected category, the highest
accuracy was 77.4% (±12.7%) by the mean and SD of the
relative angular velocity of the y-axis of the index finger
(feature combination 10) with the coarse Gaussian kernel and
was trained in 0.12s on average.

D. Grasp Intention Detection

The mean accuracies and SD using the described variation
of trial lengths for the single-user classification are shown
in Table 5. Using 80% of the movement length, a mean accu-
racy of 87.6% (±9.42%) was achieved by taking the mean and
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TABLE III
MEAN ACCURACIES AND SD (%) OF COMBINATIONS OF FEATURE COMBINATION AND KERNELS FOR THE SINGLE-USER CLASSIFICATION.

ONLY THE FEATURE COMBINATIONS WHERE THE BEST PERFORMING KERNEL PER FEATURE COMBINATION SHOWED A MEAN

ACCURACY OF AT LEAST 90% ARE REPORTED. THE NUMBERS OF THE FEATURE COMBINATIONS CORRESPOND TO THE

DESCRIBED FEATURE COMBINATIONS IN TABLE 1. THE KERNEL WITH THE HIGHEST ACCURACY FOR EACH FEATURE

COMBINATION IS MARKED IN BOLD TEXT AND THE HIGHEST ACCURACY OVERALL IS UNDERLINED

TABLE IV
MEAN ACCURACIES AND SD (%) OF COMBINATIONS OF FEATURE COMBINATION AND KERNELS FOR THE MULTI-USER CLASSIFICATION.

ONLY THE FEATURE COMBINATIONS WHERE THE BEST PERFORMING KERNEL PER FEATURE COMBINATION SHOWED A MEAN

ACCURACY OF AT LEAST 90% IN THE SINGLE-USER CLASSIFICATION ARE REPORTED. THE NUMBERS OF THE FEATURE

COMBINATIONS CORRESPOND TO THE DESCRIBED FEATURE COMBINATIONS IN TABLE 1. THE KERNEL WITH THE

HIGHEST ACCURACY FOR EACH FEATURE COMBINATION IS MARKED IN BOLD TEXT AND THE HIGHEST

ACCURACY OVERALL IS UNDERLINED

TABLE V
MEAN ACCURACIES AND SD OF THE RELATIVE ANGULAR VELOCITIES

OF ALL AXES OF THE MIDDLE FINGER OF DIFFERENT TRIAL

LENGTHS FOR THE SINGLE-USER CLASSIFICATION WITH

THE MEDIUM GAUSSIAN KERNEL AND THE BEST

KERNEL COMBINATION PER PERSON

SD of the relative angular velocities of all axes of the middle
finger with a medium Gaussian kernel. After optimization of
the kernel per person, an accuracy of 90.4% (±6.10%) was
achieved when using only 50% of the movement length. The
intention to grasp could be detected approximately 750 ms
earlier with the IMU and SEM Glove™ setup combined with
the SVM classifier than the SEM Glove™ using the force
sensors when using only 50% of the movement length.

IV. DISCUSSION

The current study explored possibilities to classify reach
and grasp movements, as well as to detect the intention to
grasp, of stroke survivors by analyzing their finger, hand and
wrist movements using a minimal number of inertial sensors.
From the results of the experiment, it can be said that reach
movements can be distinguished from grasp movements by
using only two IMUs: one sensor on the dorsal side of the
hand and one on a distal phalange of the thumb, middle-
or index finger or distal part of the forearm. By using the
single-user classification method, the highest mean accuracy
of 96.8% was achieved whereas the multi-user classification
method achieved a highest mean accuracy of 83.3%. In both
cases these highest accuracies were achieved by the mean
and SD of the relative angular velocities of all axes of
the middle finger (feature combination 5) with the medium
Gaussian kernel. After optimizing the feature combination and
kernel per person, accuracies ranging from 96% to 100% were
reached. Accuracies up to 90% were achieved when using
80% of the movement length by taking the mean and SD
of the relative angular velocities of all axes of the middle
finger with a medium Gaussian kernel, or even only 50% of
the movement length after optimizing the kernel per person.
This would allow for an earlier grasp detection of 300 ms
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(80% movement length) to 750 ms (50% movement length)
compared to grasp detection by the force sensors in the original
setup of the SEM Glove™.

So far, studies distinguishing different grasps in stroke
show comparable or lower accuracies (87% [18], 89.5% [17]
and 73% [19]), using segment angles [18] or EMG signals
[17], [19] for classification. In contrast to those studies,
the present study used a minimal number of two inertial
sensors and distinguished between reach and grasp, instead
of using multiple sensors and distinguishing between different
grasps. In the work of de Vries et al. [20], single- and multi-
user classification accuracies of 98.2% and 91.4% respectively
were achieved when distinguishing reach from grasp in healthy
participants. In the case of single-user classification, our result
is similar to the results of the De Vries study, but the
multi-user classification showed a substantial lower accuracy.
As previously described, stroke survivors show different and
more variable movement patterns as compared to healthy
controls (21). Additionally, stroke survivors usually experience
spasticity which affects their ability to extend their fingers.
This all can explain that a multi-user classification method for
stroke survivors is not as robust as for healthy subjects with
less variable movement patterns.

Moderately affected stroke patients generally have a larger
movement variability than mildly affected stroke patients [21].
When dividing the stroke participants from the present study
in two categories for the multi-user classification and com-
paring the mean accuracies to the first grouped multi-user
classification, comparable results for the mild category were
achieved, but worse results were found for the moderate
category. A similar trend, in which lower accuracies occurred
when subjects were more severely impaired, was also found
in the study of Lee et al. [19]. Altogether, for the SVM
classifier to be feasible to distinguish reach from grasp of
stroke survivors accurately, a single-user classification method
might be the better option. Because optimizing the feature
combination and kernel per person showed possible increases
of the accuracy up to 100%, for future developments a tailor-
made system, in terms of software, should be considered.
Concerning computation time, this should not propose any
problems.

The results from the user dependent grasp intention detec-
tion showed that the intention to grasp could be detected
300 ms (80% movement length) to 750 ms (50% movement
length) earlier than when using the SEM Glove™ in its
original configuration using force sensors. Depending on the
accuracy that is desired, grasp intention could be detected even
earlier than 750 ms before the SEM Glove™ currently does
by optimizing sensitivity and specificity trade-offs individu-
ally. If a stroke survivor, for example, performs solely grasp
movements with the affected hand, the system can be more
sensitive, but if the movements involve a high variety in reach
and grasp, the system could be set at a higher specificity.

This research showed promising results for both single- and
multi-user classification to distinguish reach from grasp move-
ments in chronic stroke survivors. The IMU setup used in the
present study is suitably small to integrate in the glove itself,
if desired. Although the multi-user classification achieved

lower accuracies than single-user classification, higher accu-
racies for a specific stroke survivor could be achieved by
adjusting the sensitivity and specificity in a multi-user setting
as well. Only two sensors were used for each separate analysis
in this experiment. Although from the perspective of cost and
robustness it would be preferred to incorporate no more than
two sensors in the SEM Glove™, it might be that higher
multi-user classification accuracies could be achieved with
combinations that use more than two sensors. In the future,
combinations of sensors/features such as the mean and SD
of the relative angular velocity of all axes of the thumb and
middle finger, could be included in the analysis using SVM to
determine whether this yields generalizable results. Although
adding complexity to the system, this solution might be highly
advantageous when applied as intention detection method in
assistive technologies, since there is no need for establishing
a dataset for training the algorithm prior to use by a subject,
and the system can be used in a plug-and-play manner.

All filtering and classification was performed offline in the
current study, but ultimately the system should be able to
function online before implementing it in the SEM Glove™.
When filtering data in real-time, a latency is introduced
which should be accounted for during classification. However,
this latency can be minimized by choosing a suitable filter
and window. Ultimately, it might be beneficial for stroke
survivors to not only distinguish between reach and grasp
movements, but also between different grasp movements. If the
system should be able to classify between different reach and
different grasp movements online using the SVM classifier,
computational complexity increases and thus detection time
will increase and detection accuracies will possibly decrease.
Methods of using the SVM online have been proposed [31],
but other analysis methods such as a Matched Filter (MF)
with a threshold detection algorithm or a finite state model
such as a Hidden Markov Model (HMM) [32] might be more
suitable in terms of computational complexity. If the SVM
classifier were to be used online, it needs to wait for the
whole data sequence before doing a classification, whereas
a HMM is able to update its prediction every time a part of
the sequence is presented and would mean that computational
load is lower [33]. A MF algorithm would only involve
simplistic calculations which are easily computed. Therefore,
the most appropriate method for online implementation while
taking into account the computational complexity and its
properties and performance for this specific application should
be investigated.

V. CONCLUSIONS

In this study, grasp movements of stroke survivors could
be accurately distinguished from reach movements using a
minimal number of inertial sensors. Promising results for both
single-user (96.8%) and multi-user classification (83.3%) were
achieved. While using only part of the movement length, accu-
rate grasp detection would allow for a faster grasp detection
than the current method for detection in the glove. When in
future research comparable results could be achieved after
online implementation, inertial measurement units could be
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used to control devices that aid in daily life activities that
involve grasp movements.
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