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Abstract— Human-machine interfaces have not yet
advanced to enable intuitive control of multiple degrees
of freedom as offered by modern myoelectric prosthetic
hands. Pattern Recognition (PR) control has been proposed
to make human-machine interfaces in myoelectric pros-
thetic hands more intuitive, but it requires the user to
generate high-quality, i.e., consistent and separable, elec-
tromyogram (EMG) patterns. To generate such patterns,
user training is required and has shown promising results.
However, how different levels of feedback affect effectiv-
ity in training differently, has not been established yet.
Furthermore, a correlation between qualities of the EMG
patterns (the focus of training) and user performance has
not been shown yet. In this study, 37 able-bodied partic-
ipants (mean age 21 years, 19 males) were recruited and
trained PR control over five days. Three levels of feedback
were tested for their effectiveness: no external feedback,
visual feedback and visual feedback with coaching. Training
resulted in improved performance from pre- to post-test with
no interaction effect of feedback. Feedback did however
affect the quality of the EMG patterns where people who did
not receive external feedback generated higher amplitude
patterns. A weak correlation was found between a princi-
pal component, composed of EMG amplitude and pattern
variability, and performance. Our results show that training
is highly effective in improving PR control regardless of
feedback and that none of the quality metrics correlate with
performance. We discuss how different levels of feedback
can be leveraged to improve PR control training

Index Terms— Electromyography, motor learning,
myoelectric control, prosthesis, pattern recognition.

I. INTRODUCTION

MYOELECTRIC prosthetic hands have evolved from one
degree of freedom (DoF) grippers to multi-articulated
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hands with multiple DoFs. However, the commercially avail-
able human-machine interface that should allow control of
those multiple DoFs has not yet advanced to make the control
process intuitive [1]. In particular, the Direct Control (DC)
scheme used by these hands only allows for control of one DoF
at a time. Moreover, switching between DoFs is done sequen-
tially using electromyography (EMG) trigger signals generated
using unintuitive muscle contractions. Pattern-Recognition
(PR) control has been proposed as an alternative, since the PR
algorithm can learn to predict movement intent using EMG
patterns generated from the corresponding (phantom) move-
ment. This would allow for almost instantaneous switching
between grips which could lead to faster, more fluent and more
intuitive control [2]–[4].

A prerequisite for good PR control is that EMG patterns
have specific qualities. In the context of PR this means that
EMG patterns are sufficiently distinct, not too variable and
can be generated with high reliability [5]–[7]. However, since
the EMG patterns are measured at the surface of the skin,
the quality of the EMG patterns is negatively affected by non-
stationarity effects such as sweat and electrode shifts [2], [8].
In addition, movement repetition variability can also negatively
affect specific qualities of the EMG patterns so that they
differ between repetitions, since humans cannot naturally
generate EMG with such high precision [9], [10]. While
non-stationarities can be reduced by improving algorithms’
classification accuracy and reducing noise from data acquisi-
tion, the quality of the generated EMG patterns can only be
improved by training the user.

Although user training for PR control has been studied
previously [6], [11], results are inconclusive as studies dif-
fer in methods, results and lack statistical power due to
small sample sizes [5], [6], [11], [12]. All the aforemen-
tioned studies do however report significant improvements
after training and most attribute the improvements to changes
in a set of representative EMG features [5], [6], [12].
This set spans a feature space and changes in said feature
space have been hypothesized to correlate with performance
improvements.

When analyzing the feature space, metrics such as the
distance between EMG patterns of different movements (sep-
arability), the distance between EMG patterns belonging to
the same movement (consistency), and the size of the EMG
patterns (variability) are used to assess the quality of the EMG
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patterns [3], [5], [6], [12]. In studies on user training for
PR control, EMG pattern quality improved, albeit in different
ways. The level of feedback given during training differed
among the studies which arguably played a role in those
differences. The feedback ranged from no feedback [12],
to visual feedback [5], to visual feedback with individualized
coaching [6]. It is currently unknown which aspects of EMG
pattern quality are the most important for good prosthetic
performance, as no clear correlation between any metrics
derived from the feature space and PR control performance
has been shown. To develop an effective training scheme for
PR control it is important to know which aspects of EMG
pattern quality to target and which level of feedback improves
this most [5].

The main goal of this study is to determine the effect
of the level of feedback on EMG pattern quality and how
this influences PR control performance. The primary outcome
variables used are the test scores (number of completed move-
ments and online accuracy) measured after training, which
describe PR control performance. The secondary outcome
variables are a selection of metrics describing EMG pattern
separability, consistency and variability, which overall describe
EMG pattern quality. We hypothesize that (1) higher levels of
feedback result in higher test scores and (2) that higher levels
of feedback results in larger changes in quality of the EMG
patterns and (3) that a strong correlation exists between the
primary and secondary outcome variables.

II. METHODS

A. Participants

Participants were eligible if they were able bodied with no
physical limitations. The study took place in the laboratories
of the Department of Human Movement Sciences at the Uni-
versity of Groningen, the Netherlands. Four junior researchers
recruited the participants using their social networks and by
advertising the study on student forums. Prior to participation
all participants were informed about the experiment and signed
a letter of informed consent. This study was approved by the
local ethics committee (ECB/2017.01.12_1).

B. Materials

Participants were seated at a table with their non-dominant
hand resting at the edge of that table and the elbow resting on
the chairs’ arm rest. Hand dominancy was determined using
an adapted version of the Edinburgh inventory [13], [14].

A brace (Medical Specialties Wrist Lacer) was attached
to the distal part of the non-dominant side, restricting the
movements of the wrist and thumb. By restricting the wrist
and thumb, participants produce isometric muscle contrac-
tions similar to those of a person with an upper-limb
defect. [15], [16]. We restricted the hand, to improve the
transferability of our results to individuals with an upper limb
defect.

Eight active bi-polar electrodes (Otto Bock 13E200=50AC)
were attached equidistantly around the proximal side of the
participants’ non-dominant forearm. EMGs were sampled
at 1 kHz and transmitted wirelessly to a laptop computer

Fig. 1. Screen feedback given during system training in the pre- and
post-test. A: Visual cue, the height of the moving red dot was determined
by averaging the root mean square of the EMG over all electrodes.
The participant was asked to match the height so that the red dot
followed the blue trapezoid shape. B: picture of the requested movement.
MVC=Maximal Voluntary Contraction.

(Dell XPS 15 9550). Participants started training minutes
after putting on the electrodes and noise was assessed before
training by visual perusal of the EMG. Four time-domain
features of the EMG (mean absolute value, waveform length,
zero crossings and slope changes) were extracted from 128 ms
windows with 32 ms overlap [17]. The features were classified
into one of 8 classes (7 movements + rest) using a Linear
Discriminant Analysis (LDA) classifier and mapped to a
movement and velocity.

C. Procedure

The experiment was conducted over five days, and consisted
of daily sessions. EMG production during each session was
limited to 30 minutes to avoid fatigue. On day 1 a pre-test
was conducted followed by a 20-minute user training session.
On days 2-4 the participants followed a 30-minute user train-
ing session. On day 5 the participants followed a 20-minute
user training session and subsequently performed the post-
test. Pre- and post-test lasted ∼10 minutes. By changing the
order between test and training on days 1 and 5, training
time was maximized. Training, as well as the pre- and post-
tests, consisted mainly of system training and Motion test
procedures. Total session time was between 45 and 60 minutes.

1) Pre-Test and Post-Test: The pre-test and post-test were
identical and consisted of two parts: System training and
Motion test [18].

a) System training: In PR control, system training is the
procedure in which the user supplies training data to construct
the feature space on which the PR algorithm is trained.
In the current experiment system training was done with
seven movements: supination, pronation, wrist flexion, wrist
extension, hand open, key grip and fine pinch. Each of the
seven movements was executed four times for three seconds:
once at 100% maximum voluntary contraction (MVC), which
was only used to calibrate the height of the visual cue on
the screen (see Figure 1). Participants had to follow this cue
when they performed subsequently the movement at 30%,
60% and 90% MVC respectively [17]. Each movement was
demonstrated by the experimenter before and during system
training. The movement executions at 30%, 60% and 90%
MVC were used to train the classifier.
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Fig. 2. Screen feedback given during the Motion test in the pre- and post-
test. Left: Picture of the requested movement. The green bar (1) denotes
the requested EMG amplitude and the smaller green bar with the handles
(2) denotes the margin that the EMG amplitude from (1) should be within.
Right: Picture of the predicted movement. The green (3) bar denotes the
measured EMG amplitude. The red circle denotes the remaining time
(in this instance, almost half the time has passed, as shown by the semi-
circle). When the movement was matched, a green circle started to form
next to the red circle. The green circle was full when the movement was
successfully completed.

b) Motion test: In the Motion test participants performed
the same movements as in the system training, but now the
PR algorithm was used to classify the movement performed
by the participant. This was done using the feature space
constructed with the data from the system training. In the
Motion test, participants performed 21 movement trials; all
movements from the system training at 30% (±15%), 60%
(±20%) and 90% (±30%) MVC respectively, presented in
random order. While performing the movement, participants
saw an image of the requested movement, the predicted
movement and a timer on a screen, as shown in Figure 2.
A movement trial was considered successful if the participant
could perform the requested movement in such a way that
the PR algorithm classified it for a minimum of two seconds
within a three second timeout at the requested MVC level. The
Motion test is comparable to the test and training used in the
study of Bunderson and Kuiken [5].

D. Training Program

Identical to the pre- and post-test the user training ses-
sions consisted of the system training and the Motion test,
albeit with different feedback depending on the group to
which the participant was assigned: no feedback, visual feed-
back, and visual+coaching feedback (Experimental groups,
see section E). System training and Motion test were chosen
for training since proper execution of both is necessary to
achieve good prosthesis control. Both were conducted as train-
ing, twice on day 1 and 5 (after and before pre-test and post-
test, respectively) and thrice on days 2-4. Participants were

assigned to a specific group based on the inclusion date, with
1/3 of consecutive participants in each group.

E. Experimental Groups

All the groups received feedback about their performance
in the pre-test and in the post-test; after the Motion test the
number of correct movements and the online accuracy (Per-
formance metrics, see section F1) were shown on the screen.
The groups differed with respect to the level of feedback they
received during training, as described below.

1) No Feedback [NF]: The NF group followed the training
program, but without visual screen feedback. This meant they
did not receive any feedback on how to perform the move-
ments nor any feedback on their performance during training.
More specifically, they did not see the content presented in
Figures 1 and 2 during the user training sessions but only
during the pre- and post-test. Participants in this group did not
receive any visual feedback and relied on the cues provided by
the experimenter, who performed the movements and told the
participants when to start and stop executing the movements.

2) Visual Feedback [VF]: The VF group followed the train-
ing program while receiving visual screen feedback (see
Figures 1 and 2) as in the pre-test and post-test.

3) Visual+Coaching Feedback [VCF]: The VCF group
received the same visual feedback as the VF group while
in addition they received coaching from the experimenter
after each Motion test. The coaching was based on different
metrics (see section F2a1, F2b1 and F2c1) of EMG pat-
tern consistency, separability and variability. Before coaching,
the experimenter reviewed a plot for each metric. To train
consistency, the experimenter would instruct the participant
to focus on the execution of the movement with the worst
reproducibility (highest within-class distance). To train separa-
bility, the experimenter would instruct the participant to adapt
the least separable pair of movements so as to make them
more separate in terms of EMG patterns, following the general
principle used by Powell and Thakor [19], see Figure 3. The
experimenter also used a spider plot showing the root mean
square of the EMG patterns to explain to the participant how
the movement adaptations would affect the patterns and make
them more separable, see Figure 3 [20]. To reduce variability,
if the movement with the highest variability was also in
the pair of the least separable movements, the experimenter
would instruct the participant to focus on the execution of the
movement with the highest variability (highest mean semi-
principal axis) to make it less variable.

F. Metrics

1) Performance Metrics: In the Motion test two feedback
metrics were computed, number of completed movements and
online accuracy. These two feedback metrics were the primary
outcome variables.

a) Number of completed movements: The number of com-
pleted movements was the total number of successful move-
ment trials (maximum 21).
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Fig. 3. Example of movement adaptation and feedback given to VCF group. A: fine pinch grip with the non-essential fingers flexed. B: fine pinch
grip with the non-essential fingers extended. Right: Example of spider plot with EMG patterns from three movements plotted. The spider plot shows
the root mean square of the EMG pattern for each channel and serves as a simplified representation of the feature space with each movement
(EMG pattern) represented by one colored shape. Overlap can be visually perused and the experimenter can guide the participant to minimize it.
Variations A and B of fine pinch are represented by the blue and the green shape respectively. For clarity we added a red dotted shape, representing
an example EMG pattern that has considerable overlap with variation B of fine pinch. To show an example of an extreme case, the red shape was
fabricated and is not based on EMG of a real grip. In this case, the experimenter would ask the participant to execute the fine pinch such as in
variation A, to find the variation that causes the least overlap with the EMG pattern represented by the red dotted shape.

b) Online accuracy: The online accuracy denoted the per-
centage of time participants conducted the movement in such a
way that the classifier could correctly predict it independently
of whether the movement trial was successful or not. The
participant could always see the current prediction as depicted
on Figure 2.

2) EMG Pattern Quality Metrics: To determine the specific
EMG pattern qualities related to PR control several metrics
describing EMG pattern consistency, separability and variabil-
ity were computed. These metrics were the secondary outcome
variables.

a) Metric of EMG pattern consistency:

(1) Within-class Distance (WD)
The WD is a consistency metric of EMG patterns over
repetitions of the same movement.

W D j =
∑3

k=1

distr j
kj ∗ distkj

r j

di str j
kj + distkj

r j

(1)

Where distr j
kj and distkj

r j are half the Mahalanobis
distances in feature space between the EMG patterns
of repetitions r and k of movement j and between
repetitions k and r of movement j respectively:

distr j
kj = 1

2

√(
μT r j − μT kj

)T ∗ S−1
T r j ∗ (

μT r j − μT kj
)

(2)

distkj
r j = 1

2

√(
μT kj − μT r j
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T kj ∗ (

μT kj − μT r j
)

(3)

where μTrj and μTkj denote the feature vectors contain-
ing the four features calculated from the system training
data from repetition r and k respectively. STrj and STkj
are the covariances of the training data from repetition
r and k respectively. When computing the total WD for

a participant and not just one movement, we took the
mean WD over all movements

W Dtotal = 1

7

∑7

j=1

⎛
⎝∑3

k=1

distr j
kj ∗ distkj

r j

di str j
kj + distkj

r j

⎞
⎠

(4)

b) Metrics of EMG pattern separability:

(1) Inter-class Distance Nearest Neighbor (IDNN)
The IDNN is based on the Separability Index (SI) of
Bunderson and Kuiken [5] and is a separability metric
of EMG patterns over different movements. We defined
IDNN as

I DN Ni = min
i=1,... j−1, j+1,...7

dist i
j ∗ dist j

i

di st i
j + dist j

i

(5)

Where dist i
j and dist j

i is half the Mahalanobis distance
in feature space between movements i and j and between
movements j and i of movement j respectively

dist i
j = 1

2

√(
μT i − μT j

)T ∗ S−1
T i ∗ (

μT i − μT j
)

(6)

dist j
i = 1

2

√(
μT j − μT i

)T ∗ S−1
T j ∗ (

μT j − μT i
)

(7)

where μTi and μTj denote the feature vectors containing
the four features calculated from the training data from
movement i and j, respectively. STi and STj are the
covariance of the training data from movement i and j,
respectively. This distance metric is the same as the
one for WD (see equations 2 and 3) except that instead
of measuring distances between clusters from the same
movement the distance is measured between clusters
of different movements. The IDNN differs from the SI
in that the Mahalanobis distance between clusters are
measured in both directions instead of only one, meaning
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that the covariance of both clusters is considered. The
SI differs depending on which cluster is measured from
(dist i

j �= dist j
i ) [21], [22] whereas the IDNN between

two clusters are always the same. When computing the
total IDNN for a participant and not just one movement,
we took the mean IDNN over all movements

I DN Ntotal = 1

7

∑7

j=1

⎛
⎝ min

i=1,... j−1, j+1,...7

dist i
j ∗ dist j

i

di st i
j + dist j

i

⎞
⎠

(8)

(2) Inter-class Distance all Neighbors (IDAN)
The IDAN metric is similar to IDNN, with the difference
that instead of measuring the distance to the nearest
neighbor only, distances to all neighbors are calculated.
Using the same notation as for IDNN (equation 5-8),
we defined IDAN as

I D AN = 1

7

∑7

j=1

⎛
⎝ dist i

j ∗ dist j
i

di st i
j + dist j

i

⎞
⎠ (9)

(3) Most Separable Dimension (MSD)
The MSD metric is similar to IDNN, with the difference
that instead of measuring the distance using the entire
feature vector (i.e. all 32 dimensions) only the dimen-
sion in which the separability to the other movements
is largest is used to determine the nearest neighbor.
Using the same notation as for IDNN (equations 5-8),
we defined MSD as

M SD

= 1

7

∑7

m=1
max

d=1,...,32

⎛
⎝ min

1=1,... j−1,+1,...7

dist i
j ∗ dist j

i

di st i
j + dist j

i

⎞
⎠

(10)

where the feature vectors of dist (μTi and μTj in equa-
tion 6-7) are calculated for each of the 32 dimensions
(d = 1, . . . , 32) and the dimension where the distance
is the largest (max) is then used to calculate MSD.

c) Metric of EMG pattern variability:

(1) Mean Semi-principal Axis (MSA)
The MSA is unaltered from the formulation given by
Bunderson and Kuiken [5] except that for feedback we
only calculated the MSA for a single movement as
opposed to the average of all movements as done by
Bunderson and Kuiken. The MSA is a metric for how
variable a movement of a participant is and is formulated
as

M S Ak =
(∏16

k=1
ak

) 1
16

(11)

where ak is the geometric mean of the semi-principal
axes of the hyperellipsoids. When computing the total
MSA for a participant and not just one movement,
we took the mean MSA over all movements

M S Atotal = 1

7

∑7

j=1

((∏16

k=1
a jk

) 1
16

)
(12)

d) Metric of EMG pattern amplitude:

(1) Mean Absolute Value (MAV)
The MAV metric was used to determine the EMG
amplitude as EMG amplitude correlates with force. This
metric was used in conjunction with the other metrics to
determine if a change was the result of increasing force
or of change in dimensionality

M AV = 1

7

∑7

m=1
|E MGm | (13)

where E MGm is the EMG of movement m of the
training data.

G. Data Analysis

Several of the metrics used in the analyses were the same as
those used to compute feedback to the participants in the VCF
group (WD, IDNN, MSA). For the analyses the metrics were
averaged over all movements as was described in section F2.
All dependent variables were tested for normality in separate
Kolmogorov-Smirnov tests.

To establish the effect of feedback on movement perfor-
mance and EMG pattern quality, training outcome results
and EMG patterns from the pre- and post-test were analyzed
in separate ANOVAs. These analyses were conducted using
two-way repeated-measures ANOVAs with test outcome (pre-
test vs post-test) as the within-subjects factor and group
(feedback level) as the between-subjects factor, using each of
the primary and secondary outcome variables as the dependent
variable in separate ANOVAs. Effect sizes were calculated
using generalized eta-squared statistics [23]. Post-hoc testing
was done using T-test with Bonferroni correction.

A Principal Component Analysis (PCA) [24] was addition-
ally conducted to determine if any principal components (PCs)
derived from the secondary outcome variables were correlated
with any of the primary outcome variables. The PCA was per-
formed on the percentage of change from pre- to post-test for
each participant (37 observations) with variables represented
by one of the EMG metrics described above (6 metrics). Used
in this manner, PCA can reveal if a combination of metrics
can explain the effect of feedback on training. The PCs thus
obtained, which are as many as the metrics, represent the
normalized linear combination of the metrics that explain a
percentage of the variance in the percentage of change. This is
done so that the first PC has the largest variance, the second PC
has the second-largest variance and so on. The loading vectors
represent the directions of variability of the data in the variable
space, with the first loading vector as the direction along which
the data vary the most and so on. We analyzed the set of PCs
that together explained 90% of the variance. The PCs between
groups were compared using ANOVAs with group as between
subject factor using the PCs as dependent variables. Post-hoc
testing was done using the T-test with Bonferroni correction.

To determine if there was a correlation between pattern
change and training outcome, we calculated Pearson’s corre-
lation coefficient between the primary and secondary outcome
variables. Pearson’s correlation coefficient was also calcu-
lated between the primary outcome variables and the PCs.
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Fig. 4. Boxplots showing (A) online accuracy (B) number of completed movements and (C) Interclass Distance Nearest Neighbor (IDNN) from pre-
to post-test. The red crosses denote the mean and the red line in each plot is the median. Outliers, marked with plus signs, are defined as points
that lie outside 1.5 the interquartile range. Individual data points are marked with black crosses.

Results are reported using mean ± standard error of the mean.
The PCA analysis was conducted using Matlab R2016a and
all other analysis was conducted using IBM SPSS Statistics
version 23.

III. RESULTS

Thirty-seven participants were included in the experiment
(N=37, female=18; mean age 21.6 ± 2.1 years). There were
13 participants assigned to the NF group, 12 to the VF group
and 12 to the VCF group.

The Kolmogorov-Smirnov tests showed that all dependent
variables followed a normal distribution.

A. Effect of Test and Feedback on Primary
Outcome Variables

The analysis on online accuracy revealed a significant
effect of test (F(1,34) = 48.41; p < .0001; η2

G =.0009)
with an increase between pre- and post-test (64% ± 2.3%;
85% ± 1.6%, Figure 4a). The analysis on the number of
completed movements also revealed a significant effect of
test (F(1,34) = 175.121; p < .001; η2

G = .66) with an
increase between pre- and post-test (3.56 ± .29; 10.18 ± .47,
Figure 4b)1. In both analyses none of the effects involving the
three feedback groups were significant.

B. Effect of Test and Feedback on Secondary
Outcome Variables

1) Metric of EMG Pattern Consistency: No significant effects
were found for WD.

1To assess if the increase in the primary outcome variables was due to
training or was the result of a random effect, we performed a repeated
measures ANOVA on the results from the intermediate Motion tests (first
Motion test after pre-test, last Motion test on days 1-4 and the last Motion test
before the post-test) as within-subject factor and Feedback group as between-
subject factor. The ANOVA showed only a significant main effect (p < .0001)
of the tests, thus we concluded that the effect is due to training.

Fig. 5. Mean semi-principal axis for all groups from pre- to post-test.
Error bars shows the standard deviation.

2) Metrics of EMG Pattern Separability: IDNN showed a
significant effect of test (F(1,34) = 8.326; p = .007; η2

G = .05)
with an increase from pre- to post-test (7.6 ± .27; 8.37 ± .29,
Figure 4c). None of the other effects were significant. No sig-
nificant effects were found for IDAN and MSD.

3) Metric of EMG Pattern Variability: MSA revealed a signif-
icant effect of test (F(1,34) = 12.174; p = .001; η2

G = .064)
with an increase between pre-test and post-test (56,764 ±
3,521; 67,297 ± 3,333). This effect of test interacted with
that of group (F(2,34) = 7.53; p = .002; η2

G = .078). Post-hoc
analysis using Bonferroni correction revealed that participants
in group NF increased MSA between pre-test and post-test
(p < .0001) while participants in groups VF and VCF did not
change (p = .584 and .199 respectively), see Figure 5.

4) Metric of EMG Pattern Amplitude: MAV revealed a sig-
nificant effect of test (F(1,34) = 9.983; p = .003; η2

G = .06)
with an increase between pre-test and post-test (1,101 ± 70;
1,306 ± 70). This effect of test interacted with that of group
(F(2,34) = 7.842; p = .002; η2

G = .09). Post-hoc analysis
using Bonferroni correction revealed that participants in group
NF increased MAV between pre-test and post-test (p < .0001)
while participants in groups VF and VCF did not change
(p = .486 and .372 respectively), see Figure 6.
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Fig. 6. Mean Absolute Value for all groups from pre- to post-test. Error
bars shows the standard deviation.

Fig. 7. Biplot of the first two principal components and loading vectors of
the PCA. Each point represents the score of the first two principal com-
ponents for one participant in a given group (NF/VF/VCF). The lines rep-
resent the first two principal component loading vectors. Abbreviations:
IDNN (Interclass Distance Nearest Neighbor), IDAN (Interclass Distance
All Neighbors), WD (Within-class Distance), MSA (Mean Semi-principal
Axis), MAV (Mean Absolute Value), MSD (Most Separable Dimension).

C. Principal Component Analysis

Three PCs were analyzed explaining 61%, 23% and 8% of
the variance, respectively. The composition of the first two
PCs can be seen in Figure 7. The composition of the third
PC is mainly explained by WD (0.93) and MSD (-0.28).
The ANOVAs revealed that there was a significant effect
of feedback group for PC1 (F(2,34) = 5.863; p = .006;
η2

G = .13). Post hoc tests revealed that participants in group
NF had significantly larger values of PC1 than participants in
group VF (F(23); p < .001), but did not differ from VCF, see
Figure 8.

No significant effects were found for PC2 and PC3.

D. Correlation Between Pattern Change and
Training Outcome

The analysis revealed that there was no significant
correlation between any primary and any secondary

Fig. 8. Boxplot showing Principal Component 1 (PC1) from pre- to post-
test. The red crosses denote the mean and the red line in each plot is
the median. Outliers, marked with plus signs, are defined as points that
lie outside 1.5 the interquartile range. Individual data points are marked
with black crosses.

outcome variables. However, a correlation was found
between online accuracy and PC1 (ρ = .36, p = .028).
No significant correlation was found between the primary
outcome variables and PC2 or 3.

IV. DISCUSSION

To the best of our knowledge, this is the first study that
compared different levels of feedback during user training
in PR control over several days to determine the effect of
feedback on control performance and EMG pattern quality.
The results showed that user training improved PR control per-
formance, independent of the level of feedback received during
training. Training led to significant increases in performance
(Figure 4a and 4b) that exceeds the ∼10% error differences
between different classifiers [25], [26]. Training thus seems
to have a larger impact on PR control than the choice of
the classifier. For improving PR control, it might therefore
be very beneficial to further investigate user training and its
effect on classifier performance. In addition, we found that
providing no external feedback during training led to higher
amplitudes and more variability of the EMG patterns than
training with feedback. Furthermore, a correlation was found
between online accuracy and a principal component (PC1),
primarily reflecting the amplitude and variance of the EMG
patterns, derived from the feature space.

A. Training PR Control Is Possible Without Coaching

Our results demonstrated that user training for PR control
led to significant improvements in performance even with-
out visual feedback on the screen or individualized coach-
ing. It might thus be possible to develop effective training
schemes for the home environment, where therapist coaching
is difficult to organize, in which higher training exposure is
easily possible. This is important from a clinical standpoint,
since insufficient training has been linked to high prosthesis
abandonment rates [27], [28].
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Our results are different from what we hypothesized and
what would be expected from literature, where the study of
Powell et al. [6] trains with high-feedback VCF and shows
larger improvement after training than other studies training
with less feedback [5], [12]. However, participants in the
study by Powell et al. had an upper-limb defect, in contrast
to the other studies [5], [12] in which able-bodied persons
participated. Consequently, the persons with limb defects had
the lowest pre-test scores and thus more room for improve-
ment. However, a more comprehensive understanding of how
differences in training effects between able-bodied and those
with an upper-limb defect are mediated by feedback levels
requires a direct comparison of those groups in an experiment.
Such a comparison is currently not available in the literature
and is something we aim to address in a future study.

B. Feedback Affects the Quality of EMG Patterns

We hypothesized that higher levels of feedback would lead
to larger changes in the quality of the EMG, but it appears
that this relation is not straightforward. The results show that
training with no feedback increases EMG amplitudes (MAV)
and pattern variability (MSA) compared to higher levels of
feedback. Our results differ from those of He et al. [12] as
we found no significant changes in pattern consistency (WD).
This might be the result of the different pattern consistency
metrics used or the longer training duration in the study by
He et al. (10 days vs. 5 days in our study). Unlike the study
of He et al., we additionally found a significant change in
pattern separability. This effect that was nearly significant
in the study of Bunderson and Kuiken [5], who reported
that experienced participants had significantly higher pattern
separability compared to trained novices. Our study confirms
that training leads to higher pattern separability. It appears
that different levels of feedback have different effects on the
quality of the EMG patterns.

C. Correlation Between Outcome Metrics

We did not find a correlation between the primary and
secondary outcome metrics. However, a compound metric
derived from the secondary outcome metrics, namely principal
component 1, was weakly correlated with online accuracy.
While a compound metric, such as principal component 1,
might be used to improve training programs, it is unlikely that
the PCA space can be made generalizable enough to facilitate
training for all PR control trainees.

Without a metric that correlates with performance it is
difficult to facilitate training beyond trial and error. This is
highly problematic since it is a requirement for designing an
effective training scheme for PR control [5]. We also find it
problematic for the widespread adoption of PR control that
a strong relationship has not yet been established. This might
also explain why all studies we know of comparing PR control
with conventional direct control have been unable to clearly
show that PR is superior to direct control [29]–[32] with
the exception of one study performed on participants who
had undergone targeted muscle re-innervation surgery [33].
Additional studies on user training for PR control should be

conducted using different feedback metrics to find a correlation
that can be used to facilitate training beyond trial and error.

The absence of a correlation between the primary and
secondary outcome metrics does not mean that the primary
and secondary outcome metrics are not related. Separability
(Interclass Distance Nearest Neighbor, IDNN) and perfor-
mance both increased significantly, but did not correlate with
one another. This might indicate that certain metrics are not
related to better performance beyond a specific value. For
example, if patterns do not overlap, better separability may
not lead to better performance. If a tool could be developed
that can identify when EMG patterns are separable enough it
would mean that the trainee would know when to shift focus
from separating patterns to improving other aspects such as
repeatability.

D. Participants Improve Using the Feedback
That Is Available

It appears that all participants increased the separability of
their EMG patterns (IDNN) from pre- to post-test using the
feedback that was available to them. Participants in group NF
appear to have done so by increasing the amplitude of their
EMG. A suggestion that might explain why participants in
the NF group generated EMG patterns with higher amplitudes
than those in the other groups stems from the literature on
motor learning [34]–[37]. It has been reported that having
an internal focus (i.e. focus on one’s movements, or one’s
muscle activity) as opposed to an external focus (i.e. focus
on the results of one’s movements) can lead to higher EMG
amplitudes when learning motor skills. Participants in the NF
group could only have used an internal focus since they did not
have any external feedback (i.e. they could not see the result
of their movements) and had to rely on the intrinsic feedback
given by their muscles. The increase in EMG amplitude
when training using an internal focus has been shown in
activities ranging from bicep curls to dart throwing [34]–[37].
Interestingly, the presumed side effect of no feedback, which
is using an internal focus, is the knowledge that increasing
EMG amplitudes could be beneficial when learning PR based
prosthesis control. While this was presumably the effect of
participants in group NF having an internal focus, it could also
be achieved by strength training. Strength training might thus
be an overlooked path to improve PR control performance.
While our results in this regard are inconclusive, we suggest
that future research considers muscle strength, or a derivative
thereof such as stump diameter, when assessing user PR
control skill. If muscle strength does lead to better PR control,
it could be a valuable tool in clinical rehabilitation.

Although the EMG patterns of group VF and VCF did
not increase in amplitude as group NF, some trends can still
be observed. EMG patterns of group VF were the only ones
that did not trend towards an increase in amplitude following
training (see Figure 6) and as a result the variability (MSA)
of the EMG patterns was also low. This can be interpreted as
that participants in group VF made their patterns less variable
and became proficient in reproducing them. EMG patterns
of group VCF varied a lot between participants considering
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the spread in Figure 7. This might be interpreted as that
participants in the VCF group used different aspects of the
feedback to improve. These findings show that feedback can
be successfully given at different levels facilitating different
kinds of training. A question for future research is if different
levels of feedback can be combined to improve training. As an
example, training could start with coaching in the clinic to
introduce the concepts of PR control and give initial feedback
on how to adapt movements to generate distinct patterns.
When the user is at home, training could continue with visual
feedback, to decrease pattern variability, and with no feedback
to increase EMG amplitudes to make patterns more distinct.
In this way, the specifics of each type of feedback are optimally
exploited in rehabilitation practice. A first step towards such a
training scheme would be to validate the results of this work
in a population with an upper-limb defect. If these effects
have been established, other aspects of training can be further
scrutinized in future research, such as optimal intensity of
training and variability in training.

E. Limitations

Our study has some limitations, most prominently that
participants were able-bodied and the results cannot be directly
applied to those with an upper-limb defect. In research on PR
algorithms similar performance differences have been found in
participants with or without an upper limb defect [38] (e.g. the
algorithm giving the best performance for able-bodied individ-
uals also gave the best performance for those with an upper
limb defect), but this has not been established for user training.
Another limitation is that the outcome task, the Motion Test,
does not measure prosthetic use, but only controllability of the
classifier output. Lastly, the test and training platform were the
same which means participants might have improved during
testing. We believe this did not have an effect on the results,
as all participants performed the same tests and all training
was conducted between the two tests.

V. CONCLUSION

The present study demonstrated that user training is a highly
effective way to improve PR control, independent of the
level of the feedback given during training. Training led to
higher EMG pattern separability independent of feedback and
to higher EMG amplitude when training with no feedback.
However, we found no correlation between qualities of the
EMG and performance, indicating that the mechanisms behind
improvement in user performance are not straightforward.
Future research should investigate the effect of training on
individuals with upper limb defects with a focus on functional
prosthetic performance. Such research could be important to
develop effective training schemes that do not rely on trial
and error. Furthermore, a metric which correlates the quality
of EMG patterns with user performance would be an important
step to improve training.
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