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Motor Unit Identification From High-Density
Surface Electromyograms in Repeated

Dynamic Muscle Contractions
Vojko Glaser and Aleš Holobar , Member, IEEE

Abstract— We describe the method for identification of
motor unit (MU) firings from high-density surface elec-
tromyograms (hdEMG), recorded during repeated dynamic
muscle contractions. A new convolutive data model for
dynamic hdEMG is presented, along with the pulse-to-
noise ratio (PNR) metric for assessment of MU identification
accuracy and analysis of the impact of MU action potential
(MUAP) changes in dynamic muscle contractions on MU
identification. We tested the presented methodology on
signals from biceps brachii, vastus lateralis, and rectus
famoris muscles, all during different speeds of dynamic
contractions. In synthetic signals with excitation levels
of 10%, 30% and 50%, and MUAPs experimentally recorded
from biceps brachii muscle, the presented method identified
15 ± 1, 18 ± 1, and 20 ± 1 MUs per contraction, respectively,
all with average sensitivity and precision >90% and PNR
>30 dB. In experimental signals acquired during low force
contractions of vastus lateralis and rectus femoris muscle,
the method identified 9.4 ± 1.9 and 7.8 ± 1.4 MUs with PNR
values of 35.4±3.6 and 34.1±2.7 dB. In comparison with the
previously introduced Convolution Kernel Compensation
method, the capability of the new method to follow dynamic
MUAP changes is confirmed, also in relatively fast muscle
contractions.

Index Terms— Motor unit, firing pattern, high-density
electromyogram, dynamic contraction, decomposition,
motor unit action potential.

I. INTRODUCTION

SKELETAL muscles spatially spread and amplify the
neural codes that control human movements [5], [6], [17]

and have been under intense investigation in the fields
of neurophysiology, neurology, rehabilitation, prosthetics,
ergonomics and many others [22]. Information on motor
units activity has also contributed to better understanding
of many pathologies such as stroke [20] and pathological
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tremor [8], [9], [16], [29] and basic neurophysiologic research
of reflexes [32] and aging [31], among the others. Indeed,
in many different healthy and pathological conditions the
neuromuscular junctions remain stable, thus, the activity of
individual motor units (MUs) reflects the neural codes sent
down the motor neurons [5], [6], [17].

Recently, different methodologies for acquisition, assess-
ment and interpretation of large number of neural codes
via MU firing pattern identification have been intro-
duced [5], [6], [26], [27], complementing the indwelling
electromyography (EMG) with analysis of population cod-
ing in relatively large pools of MUs. Both surface and
indwelling multichannel recording system have been intro-
duced [1], [22], [24], [27], [30]. They both acquire activities
of several tens of MUs, superimposed into interferential
EMG patterns. Therefore, different computer-aided tech-
niques have been proposed for extraction of the individual
MU firing patterns from acquired multichannel EMG sig-
nals [2], [3], [5], [6], [12]–[17], [19], [25], [27], [28]. Due
to the complexity of the EMG mixing process, which is typ-
ically modelled by convolutive multiple-input-multiple-output
system [12]–[15], identification of individual MU firing pattern
has been largely limited to isometric muscle contractions,
in which the geometry of the muscle and surrounding tissue
does not change considerably. In such conditions, the MU
action potentials (MUAPs), acquired by the uptake electrodes
are relatively stationary and the main EMG nonstationarity
comes from the MU recruitment and firing rates modulation.
The isometric muscle contractions are then used as a test bench
for the functional evaluation of neural system. Whether or
not the population coding of MUs in isometric conditions is
representative also for the dynamic conditions remains an open
research question.

In dynamic contractions, the muscle shortening affects the
latency at which the action potential terminates at the muscle-
tendon junction, causing the nonpropagating MUAP compo-
nent. Also, the distances between the muscle fibers and the
uptake electrodes change with muscle shortening. Both factors
affect the detected MUAP shapes [22]. Namely, interposed
tissue acts as a low-pass filter that suppresses high frequencies.
The intensity of this filtering is related to the interposed tissue
thickness and varies substantially with muscle shortening.
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This volume conductor changes are reflected in the acquired
EMG, but are not related to the changes of the muscle excita-
tion during the human motion. Therefore, both aforementioned
factors of EMG nonstationarity need to be separated when we
interpret EMG.

In this study, we extend the previously introduced Convo-
lution Kernel Compensation (CKC) method for EMG decom-
position [12]–[15] from isometric to repeated dynamic muscle
contractions. Moreover, we show that the extent of MUAP
changes in dynamic contractions is not only muscle and con-
traction, but also MU specific. We therefore introduce a MU
specific measure of MUAP changes that can be used directly in
the space of identified MU spike trains and does not depend on
any external measure of muscle geometry or joint angle. This
greatly simplifies the acquisition of dynamic EMG signals.
We test the newly proposed methodology for dynamic EMG
decomposition on a set of high-density surface EMG (hdEMG)
signals from biceps brachii, vastus lateralis and rectus femoris
muscle of young healthy subjects and show that Pulse-to-Noise
Ratio [17], previously introduced for measuring the accuracy
of MU identification in isometric muscle contractions, can also
be applied to dynamic conditions.

II. METHODS

A. hdEMG Modelling in Dynamic Muscle Contractions

In dynamic muscle contractions, we model multichannel
surface EMG by the the convolutive data model [12], [13]:

y(n) = H(n)t̄(n) + ω(n), (1)

where y (n) = [y1 (n) . . . yM (n)]T combines the
n-th sample of M hdEMG measurements, ω (n) =
[ω1 (n) . . . ωM (n)]T is noise vector and t̄ (n) =
[t1 (n) , t1 (n − 1) . . . t1 (n − L) . . . tM (n) . . . tM (n − L)]T

contains L + 1 samples of the MU spike trains [12], [13].
The j -th MU spike train is defined as:

tj(n) =
�

k
δ
�
n − τj (k)

�
, j = 1 . . . N, (2)

whereat δ is the unit-sample pulse and the k-th MUAP of the
j -th MU appears at time τ j (k).

The mixing matrix H (n) = [H1 (n) . . . HN (n)] comprises
all the L + 1 samples long MUAPs as detected by the surface
electrodes, where

Hj (n) =
⎡
⎢⎣

h1j (n, 0) . . . h1j (n, L)
...

. . .
...

hMj (n, 0) . . . hMj (n, L)

⎤
⎥⎦, j = 1 . . . N. (3)

and hij (n, l) stands for the l-th sample of the j -th MU’s action
potential as detected by the i -th uptake electrode at the time
of the n-th EMG sample.

In isometric non-fatiguing muscle contractions, the mixing
matrix H (n) may be assumed stationary. In such a case,
classical hdEMG decomposition techniques, such as CKC,
can be applied to the entire hdEMG signal [12]–[15], [21].
In slow dynamic muscle contractions and long isometric
contractions, MUAP shapes change gradually, either due to
geometric deformations or due to muscle fatigue [22]. There-
fore, the hdEMG needs to be divided into short enough epochs

in which the H (n) does not change significantly. Consequently
classic hdEMG decomposition techniques need to be applied
independently to each signal epoch. In a typical setup, signal
epochs overlap for 50% in order to support efficient merging
of different fragments of the MU spike train, identified from
different hdEMG epochs.

In moderate and fast dynamic contractions, H (n) becomes
nonstationary, but still follows the locality principle in a sense
that it changes gradually and these changes can be modeled
by continuous function. Therefore, we may rewrite the model
(1) as:

y(n) = H̄t̄ (n) + �H(n)t̄ (n) + ω (n)

= H̄t̄(n) + z(n) + ω(n), (4)

where H̄ is the average H(n) over the observed time inter-
val and �H(n) models the differences between the H̄ and
the true mixing matrix H(n). From the isometric hdEMG
decomposition viewpoint [14]–[16], we may consider z (n) =
�H (n) t̄ (n) in (4) a model error that adds to the noise term
ω(n) in MU identification.

In repeated non-fatiguing muscle contractions H(n) and
�H(n) become cyclostationary. z (n) is not necessarily strictly
cyclostationary as it also depends on the firing times t̄ (n).
Nevertheless, as demonstrated by the results in Section IV,
cyclostationarity is at least partially reflected in correlation
matrix of z(n). We can assume z (n) to be zero-mean.

B. Initial MU Spike Estimation in Dynamic Contractions

In isometric contractions, the CKC estimates the j -th MU’s
spike train as [12], [13]:

t̂ j (n) = cT
tjyC−1

y y(n), (5)

where Cy = E
�
y(n)yT (n)

�
is correlation matrix of hdEMG

measurements, ct j y = E
�
t j (n)y(n)

�
is the cross-correlation

vector between t j (n) and y (n) and E(.) stands for mathemat-
ical expectation. Note that ct j y is not known in advance but
can be estimated by gradient optimization described in [14]
and [17].

The mean square error between the true and CKC-estimated
spike train of the j -th MU can be modelled by [18]

E
��

t j (n) − t̂ j (n)
�2

�
= Bjj(n) (6)

where Bjj(n) denotes the j -th diagonal element of B(n) =
Ct − CtH̄T

�
�(n) + H̄CtH̄T

�−1
H̄Ct and Ct = E

�
t(n)tT (n)

�

stands for correlation matrix of motor unit spike trains. In
isometric conditions, �(n) is correlation matrix of noise ω(n),
whereas in dynamic conditions, �(n) is correlation matrix
of model errors and noise ψ (n) = z(n) + ω(n). Then,
by following the derivations in [18], we can redefine the Pulse-
to-Noise Ratio (PNR) of t̂j (n) as:

PNR
�
t̂j (n)

� = 10 · log

⎛

⎜⎜⎝

E

�
t̂2

j (n)
���
t̂j(n)=1

�

E

�
t̂2

j (n)
���
t̂j(n)=0

�

⎞

⎟⎟⎠

= 10 · log

�
1 + ctjtj − Bjj(n)

ctjtjBjj(n)

�
(7)
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where ctjtj is the j -th diagonal element of Ct. Note that
PNR → ∞ when �(n) → 0, and PNR → 0 when �(n) →
∞.

Let us now use Eq. (5) to identify the t̂j (na) on the interval
na ∈ [a1, a2] and compute the ct j y on this interval:

ct j y,na =
�

na∈[a1,a2]

t j (na) y (na) (8)

Then, we rewrite Eq. (5) to

t̂ j,na (n) = cT
t j y,na

⎛
⎜⎜⎝

�

p∈[a1,a2]
∪[b1,b2]

y (p) yT (p)

⎞
⎟⎟⎠

−1

y (n) (9)

where [a1, a2] and [b1, b2] are two non-overlapping time
intervals and n ∈ [a1, a2]∪ [b1, b2]. Let us further assume that
the interval [a1, a2] is short enough so that �H (na) and�(na)
do not change considerably for na ∈ [a1, a2]. Then, P N R(na )
is approximately constant on this interval, whereas, according
to Eq. (7), its value on the interval nb ∈ [b1, b2] depends
on �H (nb). The larger the difference �H (na) − �H (nb),
the lower the PNR(nb). This is, in fact, imposed by limiting
the calculation of ct j y in Eq. (8) to the time interval [a1, a2].
Therefore, we may use the PNR metric in Eq. (7) to search for
the time intervals [b1, b2] on which the H (nb) ≈ H (na) and
then improve the estimate of ct j y and t̂ j (n) by recalculating
them over all time intervals with similar mixing matrices
H (n). This is crucial for reducing the impact of noise and
model errors in ct j y estimation [18].

In the sequel, we will refer to PNR metric, calculated on the
shorter time intervals as local PNR, whereas the PNR metric,
calculated over the whole time range of hdEMG signals will
be referred to as global PNR.

As indicated by Eq. (7) and further demonstrated in Fig. 3,
the changes in the local PNR are MU specific. Namely,
the PNR value in Eq. (7) depends on the shape of the j -th
MU’s MUAPs in all the hdEMG channels [18]. Thus, local
PNR allows for MU specific selection of time intervals with
relatively constant ct j y and Cy. Furthermore, similar to H (n),
the local PNR follows the locality principle and gradually
decreases its value with the increase of difference between
the H (na) and H (nb) in Eqs. (8) and (9).

C. MU Tracking in Dynamic Muscle Contractions

The procedure introduced in the previous section allows us
to estimate the MU spike train t̂ j,na (n) on all the intervals
nb ∈ [b1, b2] where the mixing matrix H (nb) is similar to
the initial matrix H (na). For identification of spikes outside
these intervals, we need to update ct j y and shift it towards new
intervals while reliably tracking the spikes of the selected MU.
For this reason, we update the ct j y vector in (8) as:

ĉt j ,y(na) =
�

n∈[a1,a2]

f
�
t j,na , n

�
y (n) (10)

Here f (.) denotes the window function. As demonstrated in
Fig. 4, f (.) may be used to increase the MU spikes at selected
portion of the [a1, a2] interval. For example, function f (.)

Pseudocode 1 The Proposed Cyclostationary CKC Method

1: Select the interval [a1, a2] and step �a. Initialize
j=1.

2: Initialize ϒ = ∅ to empty set and let t j (n) = 0
3: Use classical CKC [12] to estimate t̂ j (na) for

na ∈ [a1, a2].
4: Use Eq. (8) to compute ct j y,na on [a1, a2].
5: Set b1 = 0 and ct j y = 0
6: While b1 + �a < signal length

Use Eq. (9) to compute t̂ j,na (n), for
n ∈ [a1, a2] ∪ [b1, b1 + �a].
Segment t̂ j,na (n) into spikes and base-line
noise [18] and use Eq. (7) to calculate
P N R

�
t̂ j,na (nb)

�
where nb ∈ [b1, b1 + �a].

If PNR
�
t̂ j,na (n)

� ≥ 28 dB
ct j y = ct j y + �

n∈[b1,b1+�a]
t̂ j,na (n) y (n)

ϒ = ϒ ∪ [b1, b1 + �a]
b1 = b1 + �a

7: Normalize ct j y so that ct j y = ct j y/
��ct j y

�� and use it
in Eq. (5) to estimate t̂ j (n) on the entire signal
length.

8: Add current spike train estimate to the previous ones:
t j (n) = t j (n) + t̂ j (n)

9: Search for sample c in ϒ such that c+1 is not in ϒ .
If found

Use Eq. (10) with
f
�
t̂ j (n) , n

� = t̂ j (n) · (0.5 − (c − �a − n) /�a) to
estimate new “right-shifted” ĉt j ,y(nc) on
nc ∈ [c − �a, c].
Update ct j y,na = ĉt j ,y(nc) and set
ϒ = ϒ ∪ [c + 1, c + �a/2] and
[a1, a2] = [c − �a/2, c + �a/2]. Go to step 5.

10: Search for sample c in ϒsuch that c-1 is not in ϒ .
If found

Use Eq. (10) with
f
�
t̂ j (n) , n

� = t̂ j (n) · (0.5 + (c + �a − n) /�a) to
estimate new “left-shifted” ĉt j ,y(nc) on
nc ∈ [c, c + �a] .
Update ct j y,na = ĉt j ,y(nc) and set
ϒ = ϒ ∪ [c − �a/2, c − 1] and
[a1, a2] = [c − �a/2, c + �a/2]. Go to step 5.

11: j = j + 1
12: Repeat steps 2-11 for preselected number of

decomposition runs.

that is depicted in the upper panel of Fig. 4 increases the
estimated MU spikes at the beginning of the interval [a1, a2],
left-shifting the ĉt j ,y(na) in (10) by making it similar to the
ct j y

�
na−�a/2

�
. On the other hand, the f (.) function that is

depicted in the lower panel of Fig. 4 increases the spikes
at the end of the interval [a1, a2], shifting ĉt j ,y(na) to the
right, i.e., towards ct j y

�
na+�a/2

�
. By wisely selecting f (.)

and gradually moving the [a1, a2] interval in (10) across the
entire signal, different portions of MU spike train are identified
(Pseudocode 1).
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The parameter �a is contraction, muscle and even MU
specific (see Fig. 3). We may assess its optimal value by
observing the local PNR value, but such a specific optimization
may be time consuming. In this study, �a was fixed to
1/5 of the contraction ramp (see the next section), whereas
the number of decomposition runs in step 12 was fixed to
100 [12], [13]. The linearly increasing and decreasing f (.)
functions used in Steps 9 and 10 were empirically selected,
but we did not extensively test their optimality in different
experimental conditions.

III. EXPERIMENTAL PROTOCOL

A. Synthetic Dynamic hdEMG Signals

Validation of dynamic surface EMG decomposition is cur-
rently an open research problem. The two source validation
approach with simultaneous acquisition and decomposition
of surface and indwelling EMG is not feasible in dynamic
conditions, whereas the simulators of synthetic dynamic EMG
are still under development [10], [23]. In our study, the vali-
dation of EMG decomposition was performed by convolving
the synthetic MU spike trains with experimentally recorded
MUAPs of biceps brachii muscle. For this purpose, slow
dynamic contraction of dominant biceps brachii was recorded
in five right-handed young males (age of 34.4 ± 5.4 years,
height of 1.77 ± 0.05 m and weight of 77.2 ± 5.5 kg). The
subjects received a detailed explanation of the study and
gave their written informed consent prior to participation.
The study was conducted in accordance with Declaration of
Helsinki and was approved by the local ethics committee.
Array of 13 × 5 electrodes (OT Bioelettronica, Torino, Italy)
with interelectrode distance of 8 mm was centered over the
innervation zone of the short head of dominant biceps brachii.
The arm was placed in the custom made brace (Fig. 1) with
lever rotatable in the sagittal plane. We used adjustable support
to fix the elbow joint in the center of the rotation axis. The
lever was carefully balanced by mounting the counterweights
(Fig. 1). Afterwards, we used wires and custom made pulley
system to fix the 1 kg weight on the lever. In this way, the lever
acted on the subject’s arm with a constant torque of 3 Nm,
regardless the elbow joint angle. The subject controlled the
brace by hand grip that was adjusted to his forearm length.

Volunteers performed 80 s long slow isokinetic dynamic
contraction, starting with elbow fully extended and ending at
elbow fully flexed. The brace lever position was tracked by
Fastrak motion tracker (Polhemus, USA) and displayed online
on the computer monitor, along with the reference lever’s
position. Monopolar surface EMG signals were sampled at
2048 Hz and 12 bit resolution (EMG-USB2 amplifier, OT
Bioelettronica, Torino, Italy), bandpass filtered between 20 and
700 Hz and stored on the computer’s hard drive for offline
processing.

The recorded signals were divided into 10 s long epoch with
50 % overlapping. Each epoch was independently decomposed
by CKC decomposition technique [12], [13] and identified MU
spike trains were pairwise compared to identify the MU firing
pattern on the entire 80 s of the recorded signals. Identified
firing patterns were manually inspected by two experienced

Fig. 1. Custom made brace for recording of dynamic hdEMG signals
from biceps brachii muscle. The brace lever was rotatable in the sagittal
plane and its torque due to the gravity was counterbalanced with
counterweights. Before the measurement, additional 1 kg weight was
fixed to the brace lever producing a constant torque of 3 Nm to the
subject’s dominant hand.

Fig. 2. MUAP changes in dynamic contraction. A) Representative exam-
ples of MUAPs from five different MUs, estimated on four neighboring
hdEMG channels by spike trigger averaging at 36 different levels of
muscle shortening (denoted by different colored lines). Blue and red lines
depict the MUAP shape with muscle fully extended and fully shortened,
respectively. B) Distribution of maximal peak-to-peak (P2P) amplitude as
assessed across all the hdEMG channels and all the muscle shortening
levels per motor unit. C) Correlation coefficients between the MUAP
shapes at the muscle fully extended and MUAP shapes at different levels
of muscle shortening. Blue and red lines depict the mean value and
standard deviation, respectively.

operators and all the MUs with irregular firing patterns or with
local PNR bellow 30 dB were discarded [18]. In total, 252 dif-
ferent MUs were identified from all the recorded contractions.
Their MUAPs were estimated by spike triggered averaging
of 36 consecutive 10 s long EMG epochs that overlapped for
7.8 seconds. Finally, MUAPs from all the identified MUs were
joined into common MUAP library. Fig. 2 depicts represen-
tative example of MUAP shapes at different percentages of
muscle shortening and the distribution of their peak-to-peak
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Fig. 3. Simulated MUAP trains in rows 4, 5, 6 and 7 of the central electrode column (panels A1 and A2), simulated (gray) and identified (blue) spike
trains (panels B1 and B2) and local PNR values (panels C1 and C2) for two motor units, identified by Eq. (9) from simulated dynamic hdEMG of
biceps brachii during the full extension of the elbow joint. The ctjy ,na was calculated on the na intervals denoted by the horizontal black lines (panels
B1 and B2). The simulated muscle shortening is depicted by red dotted line, whereat the value 1.0 denotes the full muscle shortening. Dashed lines
in panels C1 and C2 denote the PNR value of 30 dB.

amplitudes. All the identified MUs extensively changed their
MUAPs with muscle shortening (Fig. 2, panels A and C).

MU recruitment and spike trains were generated by the
model proposed in [7] with the parameters adapted for the
biceps brachii muscle. 200 MUs were simulated and their
recruitment followed exponential distribution with many MUs
active at low contraction levels and progressively fewer high-
threshold MUs [11]. MUs fired at 8 Hz when recruited and
linearly increased their firing rate for 0.3 Hz per % of muscle
excitation. The MU firing rate peaked at 35 Hz and the last
MU was recruited at 80 % of maximal muscle excitation. MU
interspike interval variability followed Gaussian distribution
with coefficient of variation set to 20%. 60 s long constant
10%, 30% and 50% muscle excitations were simulated, result-
ing in 105, 155 and 178 active MUs, respectively.

Muscle shortening profiles consisted of full flexion-
extension ramps. The number of ramps was set to 2, 3, 6 and
12, resulting in full muscle extension/flexion in 15, 10, 5 and
2.5 s, respectively. The generated spike trains were convolved
with dynamic MUAPs from previously described MUAP
library, selecting one of the 36 discrete dynamic MUAP shapes
(Fig. 2) based on the simulated muscle shortening level.

In each hdEMG decomposition, only the MUs with rela-
tively large MUAPs at the surface of the skin are identified,
whereas the other MUs contribute to the physiological noise.

Therefore, our library of dynamic MUAPs is biased towards
MUs with large MUAPs. In order to compensate for this and
generate physiological noise from small and distant MUs, all
the MUAPs of each simulated MU were multiplied by a scalar
value α before their convolution with MU spikes:

α = e

�
10·x

TotNoMUs

�

e10 + 0.1, (11)

where x is a random integer on the interval [1, TotNoMUs] and
TotNoMUs stands for the total number of simulated MUs. This
resulted in 10, 15 and 17 MUs with α > 0.5 and 13, 19 and
22 MUs with α > 0.4, on average, for 10%, 30% and 50%
excitation, respectively.

We conducted ten simulation runs for each simulated exci-
tation level and each number of flexion-extension ramps,
randomly selecting the scalar factors α in each run. The
generated hdEMG signals were sampled at 2048 Hz.

B. Experimental hdEMG

Five healthy young subjects (four males and one female, age
of 31.6 ± 4.8 years, height 1.74 ± 0.03 m, weight 70 ± 10 kg)
participated to the study that was conducted in accordance
with Declaration of Helsinki and was approved by local ethics
committee. The subjects received a detailed explanation of the
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study and gave their written informed consent prior to partic-
ipation. hdEMG signals were recorded by two arrays of 13 ×
5 electrodes (OT Bioelettronica, Torino, Italy, interelectrode
distance of 8 mm) fixed on the surface of the skin above the
vastus lateralis and rectus femoris muscle of the dominant leg,
respectively, with the five electrode columns approximately
aligned with the direction of muscle fibers. The subject was
sitting upright on a chair with height adjustable saddle. Both
hands rested on the arm holders. In each trail, the subjects
performed repetitive flexion-extension movements of the knee,
whereat the weight of 1 kg was fixed to the ankle of the domi-
nant leg. The knee joint angle was measured by Fastrak motion
tracker (Polheus, USA) and reference knee angle changed at a
steady rate from 100 to 160 degrees and back in 10 (moderate
speed) and 20 seconds (slow contraction). Here 180 degrees
corresponds to full knee extension. The ankle joint was fixed
at a 100-degree angle. Each trial consisted of eight (moderate
speed) or four (slow speed) consecutive repetitions of the
described knee movement, with EMG recorded continuously
and knee angle tracked continuously throughout each trial.
At least five minutes of rest were provided between trials. All
but one subject performed two trials at each speed, whereas
subject S1 performed only one trial at each speed.

IV. RESULTS

Fig. 3 depicts the spike trains of two representative MUs,
identified by Eq. (9) from synthetic dynamic dhEMG, gener-
ated by convolving the experimental MUAPs of biceps brachii
muscle with synthetic MU firing patterns at 30 % muscle
excitation level. The ct j y,na vector was calculated on the na

intervals denoted by the horizontal black lines and Eq. (9) was
consecutively applied to different nb intervals. The two MUs
demonstrated different sensitivities of identified spike trains
to muscle shortening (note the height of MU spikes). The
spikes of the first MU were identified over the entire range
of muscle contraction, whereas the second MU demonstrated
spikes only in the intervals between 50 % and 90 % of muscle
shortening. The spike height and, thus, the local PNR followed
the locality principle, changing gradually in time. We observed
similar behavior of other MUs, regardless the position of na

interval.
Fig. 4 depicts the effect of different f(.) functions in Eq. (10)

on the identified MU spike trains. By manipulating f(.) we
may fine tune the ct j y(na) vector for identification of spikes
in different regions. At the end, the spike trains identified by
different f(.) functions are summed together to yield the entire
spike train (Pseudocode 1).

Fig. 5 depicts the number of MUs, identified by the pro-
posed cyclostationary CKC method from synthetic hdEMG
signals, their global PNR values (calculated over the entire
time range of hdEMG signals), sensitivity and precision of
MU firing identification (identification tolerance was set to
0.5 ms). The results are averaged over ten simulation runs
per simulated contraction ramp and excitation level. The
number of identified MUs was not dependent on the length
of muscle contraction ramp. Also the PNR value, sensitivity
and precision did not change considerably with the length of

Fig. 4. Impact of different f(.) functions on the MU spike train estimation
from synthetic dynamic hdEMG. Linearly decreasing f(.) function applied
to 4 s long interval amplifies MU spikes at the beginning of the interval
(upper panel), whereas linearly increasing f(.) function amplifies spikes
at the end of the interval (lower panel). Depicted f(.) functions are defined
in Pseudocode 1.

Fig. 5. Results of MU identification from dynamic hdEMG signals with
synthetic MU spike trains and experimentally assessed MUAPs from
biceps brachii muscle. Panel A depicts the number of MUs (mean ±
SD) identified by the proposed cyclostationary CKC as a function of
muscle excitation level and speed of muscle contraction. Panels B, C
and D depicts their PNR values, sensitivity and precision, respectively.
Panels E and F depict the results of decomposition by classic CKC
method [12]–[14].

contraction ramp (Fig. 5), demonstrating relative robustness
of the presented method to the speed of muscle contraction.
In contrast to the proposed cyclostationary CKC, the classical
CKC method [14], [18] identified larger number of MUs
but with significantly lower sensitivity (Fig. 5). This is in
agreement with the examples of identified spike trains in
Fig. 3.

Sensitivity and precision of MU firing identification by
cyclostationary CKC were positively correlated with the
PNR value, whereat all the MUs with the PNR value
of 30 dB or greater demonstrated sensitivity ≥90 % and
precision ≥90 % (Fig. 6). The false alarm rates were relatively
low in all the cases and were negatively correlated with
the PNR values (Fig. 6). This is in agreement with the
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Fig. 6. Sensitivity (mean ± SD), precision (mean ± SD) and false
alarm rate (mean ± SD) in identification of MU firings by cyclostationary
CKC as a function of PNR and speed of muscle contraction. Results are
accumulated across all the simulated muscle excitation levels.

Fig. 7. MU spike trains identified by classic CKC (panel B) and
cyclostationary CKC (panel C) during the moderate speed contraction
of a vastus lateralis muscle in a representative subject. Panel A depicts
the measured knee angle.

results of classical CKC-based MU identification in isometric
conditions [18].

Fig. 7 depicts the representative MU spike train identified by
cyclostationary CKC (panel C) and classical CKC (panel B)
from vastus lateralis muscle. Classical CKC identified only a
portion of the MU spike train. These results agree with the
ones on synthetic hdEMG signals (Figs. 3 and 5).

Figs. 8 and 9 depict the spike trains and smoothed MU
firing rates, identified from experimental hdEMG of vastus
lateralis and rectus femoris muscle, respectively, whereas
Tables I and II report the results accumulated across all the
subjects. On average, 9.4 ± 1.9 and 7.8 ± 1.4 MUs were
identified per trail with global PNR > 30 dB from vastus
lateralis and rectus femoris muscle, respectively. The number
of identified MUs and their PNR values did not depend
significantly on the investigated speed of muscle contraction
(paired t-test, p > 0.05).

V. DISCUSSION

We introduced the new methodology for identification of
MU spike trains in dynamic muscle contractions. We also

TABLE I
NUMBER AND PNR OF MUS IDENTIFIED FROM

VASTUS LATERALIS MUSCLE

TABLE II
NUMBER AND PNR OF MUS, IDENTIFIED

FROM RECTUS FEMORIS MUSCLE

extended previously introduced PNR metric to dynamic con-
ditions and showed that we can use it for assessing the
impact of MUAP changes on MU spike trains identified by
cyclostationary CKC. Noteworthy, this PNR does not depend
on the external measurements of investigated joint angle or
any measurement of muscle geometry and can, thus, be used
to study hdEMG dynamics in arbitrary and highly complex
muscle contractions. Moreover, we showed that the impact of
the MUAP changes on identified MU spikes is MU specific.

Theoretically, local PNR value could be used to estimate
the optimal �a parameter in Eq. (10) for each individual
MU. However, this would likely add considerably to the
computational complexity of MU tracking in dynamic con-
ditions. Therefore, in this study, the local PNR value was
used to empirically determine the globally optimal value of
�a parameter, i.e., the same value for all the MUs in each
individual speed of muscle contraction. On the other hand,
local PNR value was used to determine all the nb intervals
with approximately the same ct j y (nb) and, thus, H (nb) values.
In this way, we significantly increased the robustness of MU
spike estimation to model errors in (4).

The results on the synthetic EMG signals with modelled
MU spike trains and experimentally recorded MUAPs demon-
strated relatively strong robustness of the proposed methodol-
ogy to the speed of muscle contraction. Neither the number
of identified MUs nor their PNR values changed consider-
ably when the speed of muscle contraction was increased,
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Fig. 8. Panel A depicts representative hdEMG signals (blue) and sum of identified MUAPs (red) from vastus lateralis muscle during dynamic knee
extension and flexion. Panel B depicts the results of hdEMG decomposition into individual MU spike trains. Each vertical bar depicts one MU firing.
Panel C depicts smoothed firing rate of identified MUs. Different MUs are depicted by different colors. Knee joint angle is depicted by solid grey line.
For clarity reasons, only 4 out of 8 recorded contraction ramps are depicted.

Fig. 9. Individual MU spike trains identified from rectus femoris muscle during dynamic knee extension and flexion (Panel A) and their smoothed
firing rates (Panel B). Different MUs are depicted by different colors, whereas knee joint angle is depicted by solid grey line. For clarity reasons, only
4 out of 8 recorded ramps are depicted.

regardless the tested level of muscle excitation. The same
applies to the sensitivity, precision and false alarm rate (Fig. 5).
The number of accurately identified MUs was relatively high
and comparable to the results of isometric decomposition.
This also depends on the number of decomposition runs as
up to one MU is identified by cyclostationary CKC in each
decomposition run. In this study, the number of decomposition
runs was limited to 100, based on our experiences in isometric
conditions [12]–[17].

The results on synthetic hdEMG signals also show that
the PNR ≥ 30 dB, introduced in isometric conditions [18],
corresponds to high sensitivity and precision (>90 %) and low

false alarm rate (<1 %) in identification of MU firings also
in dynamic conditions (Fig. 6). This threshold value is likely
conservative in dynamic conditions as we clearly demonstrated
that the PNR value is also affected by the changes of MUAPs
during muscle shortening. Thus, the criterion of PNR ≥ 30 dB
should be used for local PNR, whereas considerably lower
global PNR values were frequently observed in MUs with
sensitivity >90 % (Fig. 6).

The experimentally estimated MUAPs during the dynamic
contraction of biceps brachii muscle showed relatively large
range of MUAP changes. The average correlation coefficient
between the MUAPs at the muscle fully extended and the
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muscle fully shortened was 0.47 ± 0.3 (Fig. 2). This number
was assessed over 252 experimentally identified MUs and the
accuracy of MU identification was indirectly confirmed by the
continuity of the MUAP shapes (Fig. 2) and by the very strict
selection criteria (global PNR > 30 dB and manual inspection
of each identified MU spike train). The presented changes of
MUAP shapes may, thus, be considered representative for the
short head of biceps brachii in young healthy subjects.

The results of experimental decomposition of hdEMG sig-
nals in vastus lateralis and rectus femoris muscle agree with
the ones from synthetic hdEMG signals. The number of
identified MUs was lower than in the synthetic case, but this is
reasonable given the relatively low level of muscle contraction
force.

The processing time required by newly proposed cyclosta-
tionary CKC method depends on the sensitivity of identified
MUs to the exerted geometric changes of the investigated
muscle. In our tests, the method required ∼20 minutes on
Intel i7 processor with 32 GB of memory to decompose 60 s
long hdEMG signals. For comparison, classical CKC method
requires around 9 minutes for decomposition of 60 s long
isometric hdEMG signals.

For the purpose of fair comparison, the length of hdEMG
signals has been kept constant in this study, regardless the
speed of muscle contraction. Clearly, several repetitions of the
same muscle movement are required by the decomposition
concepts presented herein. The sensitivity of MU identification
to the number of movement repetitions per trail is muscle and
contraction level specific and its detailed analysis exceeds the
scope of this study. As a general rule, the higher the speed
of movement, the larger the required number of movement
repetitions. Noteworthy, the movement repetitions do not need
to be of the same duration as the MU tracking implemented in
Step 6 of Pseudocode 1 automatically determines the optimal
time support for MU spike identification in each movement
repetition.

Finally, no attempt has been made to keep the contraction
levels of vastus lateralis and rectus femoris strictly constant
during their shortening. Therefore, the presented MU firing
patterns reflect the natural MU control strategies during the
dynamic knee flexion and extension. No attempt has been
made to explain the differences in the MU firing rates during
concentric and eccentric phase and also to explain the differ-
ences between the firing pattern of MUs in vastus lateralis
and rectus femoris muscle. These explanations would require
much larger number of repeated muscle contractions and are
beyond the scope of this study.

In conclusion, we have introduced the new methodology
that extends the previously presented CKC decomposition
technique to repeated dynamic contractions. The introduced
methodology demonstrated considerable robustness to MUAP
changes and speed of muscle contraction. Therefore, it has a
substantial potential in studies of human movement, at least
in controlled environments. Further studies are required to
assess the appropriateness of the described methodology
for MU identification in different skeletal muscles and to
analyze its sensitivity to the number of muscle contraction
repetitions.
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