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A High Performance Spelling System based
on EEG-EOG Signals With Visual Feedback

Min-Ho Lee , John Williamson, Dong-Ok Won , Siamac Fazli, and Seong-Whan Lee, Fellow, IEEE

Abstract— In this paper, we propose a highly accurate
and fast spelling system that employs multi-modal
electroencephalography-electrooculography (EEG-EOG)
signals and visual feedback technology. Over the last
20 years, various types of speller systems have been
developed in brain-computer interface and EOG/eye-
tracking research; however, these conventional systems
have a tradeoff between the spelling accuracy (or decoding)
and typing speed. Healthy users and physically challenged
participants, in particular, may become exhausted quickly;
thus, there is a need for a speller system with fast typing
speed while retaining a high level of spelling accuracy.
In this paper, we propose the first hybrid speller system
that combines EEG and EOG signals with visual feedback
technology so that the user and the speller system can act
cooperatively for optimal decision-making. The proposed
spelling system consists of a classic row-column event-
related potential (ERP) speller, an EOG command detector,
and visual feedback modules. First, the online ERP speller
calculates classification probabilities for all candidate
characters from the EEG epochs. Second, characters are
sorted by their probability, and the characters with the
highest probabilities are highlighted as visual feedback
within the row-column spelling layout. Finally, the user can
actively select the character as the target by generating
an EOG command. The proposed system shows 97.6%
spelling accuracy and an information transfer rate of 39.6
(±13.2) [bits/min] across 20 participants. In our extended
experiment, we redesigned the visual feedback and
minimized the number of channels (four channels) in order
to enhance the speller performance and increase usability.
Most importantly, a new weighted strategy resulted in 100%
accuracy and a 57.8 (±23.6) [bits/min] information transfer
rate across six participants. This paper demonstrates that
the proposed system can provide a reliable communication
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channel for practical speller applications and may be used
to supplement existing systems.

Index Terms— Brain-computer interfaces (BCI),
electroencephalography (EEG), electrooculogram (EOG),
P300 speller, visual feedback.

I. INTRODUCTION

SPELLER systems [1]–[6] provide a new method of com-
munication for patients who suffer from neuromuscular

diseases, such as locked-in-syndrome (LIS) and paralysis.
These patients can only control part of their body or the
movement of their eyes. For the past two decades, speller
systems have seen considerable development within various
research fields. Fundamentally, speller systems utilize two
branches of technology: eye movement detection and
BCI (Brain-Computer Interface).

There are several eye-based spelling systems using elec-
trooculography (EOG) and eye-tracking. EOG measures
the voltage fluctuations that result from eye movements.
By exploiting these signal changes, EOG can be used to
systematically track the eye-gaze direction of the user. Addi-
tionally, EOG also conveys highly recognizable information
from eyelid movements such as blinking, gazing, and winking.
At present, numerous studies have explored the possibility of
designing EOG-based Human-Computer Interfaces (HCIs) and
have had positive outcomes [7]–[10].

One of the problems with EOG interfaces is the lack
of adequate support for a large number of classes due to
a limited number of movement patterns. Deng et al. [8]
proposed an EOG-based HCI system that detected variations
of EOG signals for different directions in eye-movements
(e.g., horizontal, vertical direction). Their paradigm contained
six classes (go/stop and four directions) that could be decoded
with an average accuracy of 90%. Usakli and Gurkan [11]
proposed an EOG-based virtual keyboard system using four
eye directions and double blinking. The spelling speed showed
a very promising performance where five random letters were
written in about 25s, but the system required great effort by
the user because of the repeated EOG movements (two eye-
blinks in the best case when choosing the first letter or, sixteen
eye-movements per letter in the worst case). This means that
the user must make anywhere from 10-80 EOG movements to
spell a five letter word. To reduce the workload in EOG tasks,
Huang et al. [12] and He and Li [13] proposed a one channel
EOG system where the symbols were flashed sequentially in
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TABLE I
SUMMARY OF THE PREVIOUS WORK ON EEG- AND EEG+EOG BCI SPELLER SYSTEMS

a predefined one-by-one manner. The user performed a blink-
ing task to generate a selection when the target symbol was
flashed. The decoding accuracies of both systems exhibited
a strong performance of 94.4% [12] and 96.7% [13] for the
40 symbols in the speller and the 13 symbols of wheelchair
system, respectively (see Table I).

Brain-based spelling systems are less physically demand-
ing than the EOG systems because they use components
of the event-related potential (ERP) [9], [10]. ERPs are
brain responses to specific cognitive tasks. The P300 is an
ERP component with a strong deflection and has been widely
investigated over the past few decades. Specifically, the P300 is
a positive deflection in the electroencephalography (EEG)
signal over the central and parietal cortex. It occurs approxi-
mately 300 ms after a task-relevant stimulus is detected. In an
EEG-based speller system, the subject mentally attends to a
target letter, and the system infers the letter based on the
subject’s brain response because the target letters will show
a stronger P300 response as compared to non-target stimuli.
No additional input from the subject is needed. In conventional
speller systems, for instance, a letter-matrix composed of
alphabetical letters and digits is shown on a screen. The subject
attends to the target letter they wish to spell while the matrix
is displayed. During this period, rows and columns are flashed
consecutively (classic row-column (RC) paradigm [6]). When
the intended letter is flashed, an elevated P300 signal can be
detected from the subject’s brain without the need for any
muscle movements.

While EEG-based speller systems do not require any muscle
movements, the spelling speed and accuracy is much lower
than an EOG-based speller due to the poor signal-to-noise
ratio of the EEG signal. Due to the low signal-to-noise ratio
in single-trial EEG signals, the detection of target symbols
from a single trial is very difficult. Therefore, the target and
non-target symbols must be flashed several times for each
choice. The epochs corresponding to each target and non-
target trials are then averaged over time in order to improve the
spelling (decoding) accuracy. Consequently, the typing speed
depends on how many trials are averaged for a desired spelling
accuracy, thereby the development of fast and accurate spelling
systems is the most important factor for ERP spelling studies.

Additional BCI research has investigated the utility of visual
feedback which is a subtype of biofeedback (or neurofeed-
back) that uses real-time displays of brain activity so that sub-
jects may perform self-regulation of their brain signals. It has
been commonly employed in clinical therapies for Attention
Deficit Hyperactivity Disorder (ADHD) [14], stroke [15], and
user training in BCIs [16]. Previous studies have shown that
visual or auditory feedback positively impacts typing speed,
accuracy, and subjective experience [17].

Given the advantages and drawbacks of the two core
technologies, EOG and EEG, combining the two devices
into a ‘hybrid’ BCI system can maximize typing speed and
decoding accuracy. Usakli et al. [18] compared the spelling
performance of the EOG and EEG modalities independently.
The EOG and EEG systems required 24.7 s and 105 s,
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respectively, for writing five letters. At the time, the authors
suggested the concept of a hybrid EEG-EOG system in
furtherance of efficient human-computer communication by
using the characteristic signals of the EEG and EOG systems
(e.g., signal waveforms, features, required practice).

Lee et al. [32] proposed a hybrid spelling system that com-
bines EEG signals with a webcam-based eye-tracking system.
A QWERTY keyboard layout was presented on a monitor
divided into three sections, corresponding to the right, left, and
middle fields of vision. The information obtained from eye-
gaze direction was then used to prevent any errant spellings by
the system. In short, this hybrid system focused on the reduc-
tion of errors in EEG-based spellers. The authors reported a
reduction in the error rate by 40%. Similar approaches where
the visual stimulus were divided into a number of sections with
the EOG and EEG modalities used to classify the target section
and the symbol, respectively, have been proposed based on the
dual-monitor [25] and half checkerboard paradigms [23].

Lin et al. [26] proposed a hybrid BCI system based on
the steady-state visually evoked potential (SSVEP) and elec-
tromyography (EMG). The speller layout was divided into four
sections with the same frequency set. The target symbol was
classified by the SSVEP signal in the selected section which
was classified using the EMG signals from the forearm. The
classification accuracy and ITR at 81.0% and 83.6 bits/min
was a significantly enhanced performance compared to the
single modality.

Other types of hybrid BCI systems have used an EOG
signal as the main modality for decoding a target sym-
bol [21] or independently utilized each modality to extend
the available number of classes [24]. Ma et al. [21] proposed
an EOG-EEG hybrid HCI interface for robotic controls. Seven
eye movement patterns and five ERP targets were classified
(12 classes in total) and used to control robot behaviors
such as go/stop, turn, and dance among others. Results from
the thirteen subjects indicated an EEG decoding accuracy
rate of 70% after the first sequence and an EOG accuracy
of 92%. Jiang et al. [24] proposed an EOG+event-related
desynchronization (ERD)-based BCI system in a three target
selection interface. The system first classified a target symbol
by estimating the direction of the eyes based on the EOG sig-
nal, then the system executed a command when the user
generated ERD components by performing a motor-imagery
task. The accuracy and completion time for target selection
showed 89.3% and 24 s, respectively.

Eye-based speller (EOG or eye tracker) systems are sourced
from eye movements. These signals show significant patterns
that can lead to high classification accuracy, but the system
requires a high level of voluntary eye movement to control
a target. ERP spellers, on the other hand, do not require any
specific movements by the user but suffer from relatively low
classification accuracy due to small signal amplitudes and
a low signal-to-noise ratio (SNR) in the EEG. While it is
possible to increase the accuracy of ERP spellers with visual
feedback, it is often applied merely as a confirmation of the
decision reached by the system.

While there have been numerous types of EEG-EOG
approaches in hybrid BCI systems, the target applications have

mostly been in robotics systems such as wheelchair [19], [20],
robot arm [21], or exoskeleton [22] control. Details of these
hybrid EEG-EOG BCI systems are included in Table I.

To the best of our knowledge, this study is the first to
propose an EEG-EOG hybrid BCI speller system with the
novel idea that the subject can actively select the target letter
by using the visually informed classification result. The system
presents a brain-based classification score for the candidate
character to inform the subject about the current prediction of
the system. If the ongoing classification is correct, the human
actively selects the target letter through a simple movement
task, specifically an eye wink in our case. We term this
paradigm row-column visual feedback (RC-VF).

By adding active human feedback to the system,
the required quantity of brain signal samples for reliable
classification is minimized. As a result of the system design,
the system performance, namely accuracy and spelling speed,
has greatly increased. At the same time, only minute eye
activity is required. The average classification accuracy and
information transfer rate (ITR) across 20 participants were
found to be 97.6% and 39.6 (±13.2) [bits/min] so 8.2 s were
required for the spelling of each character on average.

Additionally, a second experiment was designed to enhance
the spelling performance and to increase convenience as a real-
world application by applying the proposed RC-VF method
with other recent advances in ERP spelling systems. The
purpose of the experiment was to maximize the performance of
our novel ERP spelling system while demonstrating that our
system could be combined easily with previous approaches
that have led to additional performance increases. First,
we modified the presentation matrix type (e.g. color, size, face
image, rate, and motion) as found in [27], [33], and [34].
Secondly, we varied the original experimental setup in
regards to electrode montages, inter-stimulus interval (ISI),
stimulus onset asynchrony (SOA), and target-to-target inter-
val (TTI) [28], [35]. By reducing the number of channels
to only 4, we increased convenience and practicality, and by
using an alternative EOG signal for classification, we increased
comfort and ease of use. Most importantly we modified the
classification strategy by the number of allowed sequences
in order to guarantee a promising performance. The results
show 100% spelling accuracy and 57.8 (±23.6) [bits/min] ITR
corresponding to 6.2 s for spelling a character across six par-
ticipants. These results compare very favorably to other current
state-of-the-art ERP spelling devices [28]–[31], [36]–[38].

II. MATERIALS AND METHODS

A. Participants and Data Acquisition

Twenty healthy subjects (aged 24-32, 12 males, 8 females)
participated in the experiment. None of the participants had a
previous history of psychiatric, neurological, or other pertinent
diseases. Participants were seated 60 (±5) cm in front of a
19” LCD monitor (60 Hz refresh rate, 1280×1024 resolution)
on which the stimuli were presented. EEG was recorded
with 24 channel Ag/AgCl actiCAP EEG and EOG electrodes
(Brain Products, Germany) at a sampling rate of 500 Hz.
The following were the measured channels according to the
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Fig. 1. EEG and EOG channel locations. International 10-20 system
(24 EEG electrodes (black circles), reference: FCz, ground: Fpz,
A: EOG1, B: EOG2).

International 10-20 system: Fp1, Fp2, F7, F3, Fz, F4, F8,
FC5, FC1, FC2, FC6, C3, Cz, C4, CP5, CP1, CP2, CP6,
P3, Pz, P4, O1, Oz, O2, EOG1, and EOG2 (see Figure 1).
EOG electrode configurations were as shown in Figure 1, with
two bipolar electrodes Fp2-A (EOG1) and Fp1-B (EOG2) used
for recording movements of each eye. EOG signals were then
down-sampled to 32 Hz with a 5th order digital Chebyshev
filter.

B. Experiment Stimuli and Paradigm

The interface layout of the speller followed the original
design of the RC speller [6]. Thirty-six character symbols
(‘A’-‘Z’, ‘1’-‘9’, ‘_’) were equally spaced on screen in a
configuration of 6 rows and 6 columns (see Figure 2-A).
Individual columns/rows of characters were flashed sequen-
tially. A single iteration of flashing all rows and columns
was considered a sequence. As such, each sequence consisted
of 12 flashes: 6 flashes from rows and 6 flashes from columns.
For each selection of a target character, a maximum of ten
sequences (i.e. 120 flashes) was allotted without prolonged
inter-sequence intervals. The paradigm code was developed
with the Psychophysics Toolbox (http://psychtoolbox.com)
and OpenBMI [39], [40] in Matlab (MathWorks; MA, USA).

Across all spelling conditions, each line of characters was
flashed for 200 ms, followed by an inter-stimulus interval (ISI)
of 50 ms corresponding to 3 s for one sequence (250 ms×12).
The paradigm was divided into two phases: the training phase
and the test phase. The training phase was composed of two
sessions; one was for calibrating the EEG-based classifier,
and the other was for estimating the parameters of the
EOG detector for the subject. The test phase was divided into
four sessions: two RC-VF sessions, then one RC session, and
then a final free spelling RC-VF session.

The two RC-VF sessions and one RC session were copy-
spelling procedures that prompt the user to pay attention to
a pre-defined letter sequence which was the same as the
calibration session. The copy-spelling sessions were done to
compare the performance differences between the conventional
RC speller and proposed RC-VF speller. The additional free
spelling session with the RC-VF speller was conducted to
investigate whether the proposed RC-VF system successfully
works in a free spelling environment where environmental
noise and task difficulty could affect the result.

C. Offline Training Phase: RC Spelling

In the EEG calibration session of the training phase, sub-
jects were instructed to relax their muscles and minimize
movements. Subjects were tasked to spell the given phrase,
‘BRAIN_COMPUTER_INTERFACE’ (24 characters includ-
ing spaces) by gazing at the target characters on the screen.
Throughout the session, the task sentence was displayed
in the top center area of the screen with the target letter
emphasized, and the speller was displayed in the area below
(see Figure 2-A). The training phase was done offline, and
no feedback was given to the subject while the EEG sig-
nals were collected. Subjects were instructed to count the
number of times each target character had flashed. For the
offline data analysis of the training data, EEG and EOG
data were band-pass filtered between 0.1 and 25 Hz with
a 5th order Butterworth digital filter. The EEG data were
segmented from −200 to 800 ms with respect to stimulus
onset. Then, baseline-correction was applied by subtract-
ing the mean amplitudes in the −200 ms to 0 ms pre-
stimulus interval from all segmented data. Eight discriminant
intervals were extracted with a heuristic based on signed
r-values [41], [42]. Mean amplitudes were calculated and used
as ERP features. These subject-dependent spatio-temporal
feature vectors were therefore formed with 192 dimensions
(i.e., 24 channels×8 features). After that, the linear discrim-
inant analysis (LDA) [43] classifier was trained using these
feature vectors.

w = argmaxw
wTSBw
wTSww

(1)

where SB and Sw denote the between-class and within-class
covariance matrices, respectively and w the hyper-plane for
separation of the classes, which can be obtained by maximiz-
ing the Rayleigh coefficient.

f (v) = wT · v + b (2)

where b is a bias term and v is the ERP feature vector con-
taining EEG data for a single trial x. f (v) is the classification
output from the single trial’s feature vector.

D. Offline Training Phase: EOG Calibration

EOG electrodes were placed as shown in Figure 1.
EOG1 recorded the winking of the right eye while electrode
EOG2 recorded the winking of the left eye. Subjects were
tasked to choose the eye they were more comfortable winking
with and then wink thirty times with the chosen eye. In this
study, amplitude values acquired during the process of winking
were then used to determine the subject-dependent threshold
for detecting wink executions [8], [21]. All subjects were
instructed to wink 30 times following a cue with the chosen
eye. Thirty trials of EOG signal were then corrected and
averaged to determine subject-specific threshold values for
winking detection. The maximum and minimum amplitude
value (i.e., thmin and thmax , respectively) were heuristically
determined based on the peak of averaged EOG signals and
its standard deviation (STD) (see Figure 3). The values of
the thmin and thmax were selected at a level not exceeding
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Fig. 2. RC-VF speller system architecture. A: design of the row-column speller B: expansion of the target character with ranking score as visual
feedback C: data analysis of EEG and EOG signals.

Fig. 3. Procedure for EOG detection. In the left plot, black and red lines correspond to the averaged EOG signals from the EOG1 and EOG2 channels
during the winking task. In the right plot, the black line indicates the averaged EOG signals for the eye-up task from the FP1 channel, and the green
line indicates the averaged EOG signals for the natural eye-blink task from the same channel of FP1. Standard deviation of the signal is given by
blue bars. The gray-patch indicates a sliding window (size of 150ms) along with the time courses of EOG signal.

two standard deviations from the peak of averaged EOG
signals. After determining the threshold parameter, subjects
were asked to perform various strong head movements and
blinking to check whether the EOG detector was working
properly. For most subjects, the threshold values lied within
the 200-400 µV amplitude range.

To detect the winking task in the real-time environment,
a sliding window (size of 150 ms) was created (see Figure 3),
and the EOG detector generated a command every 0.05 s
(i.e., step size=50ms). Assume that xn(t) is original EOGn

data at a time point t , and n (n = 1 or 2, corresponding to
the EOG1 and EOG2) is the subject’s selected channel. The
mean amplitude value (mean [E]t2

t1) within the time intervals
of t1 and t2 is calculated as an EOG feature. Finally, the

EOG detector was generated when the value of mean [E]t2
t1

was ranged in the thmin and thmax .

thmin ≤ meant∈〈t1,t2〉 E(xn) ≤ thmax (3)

Please note, that winking and blinking may have a sim-
ilar signature in the EOG signal to some degree. However,
when winking these changes occur predominantly in one
EOG channel only. Furthermore, blinking is a relatively
short implicit process as compared to conscious winking,
which leads to stronger and more prolonged activations
in EOG (see Figure 3). Afterward, subjects were given a
short online practice session (<2min), so that they could
familiarize themselves with using the on/off control of the
EOG detector.
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E. Online Test Phase: RC Spelling

In the RC session of the online test phase, subjects were
instructed to spell ‘KOREA_UNIVER-SITY’ (16 characters
including space) using the RC speller. The target sentence was
colored with red and presented in the top left corner of the
screen. During online data analysis, the real-time data was
acquired from the EEG amplifier with a down sampling rate
of 100 Hz. The continuous EEG data was then segmented
from −200 to 800 ms with respect to the stimulus presentation
and band-pass filtered in the same frequency band as the
offline data analysis (0.1 to 25 Hz). Baseline correction and
ERP feature extraction were applied, and the classification
output was calculated using the LDA classifier, which was
estimated previously from the training data set.

In performing RC spelling, the highest scored character was
estimated as the target in individual sequences. The decoding
accuracy was therefore validated in each sequence (i.e., one
to ten sequences). After all ten sequences, the final result for
the target character was estimated by the averaging of epochs
accumulatively through the sequences. The estimated target
character was colored with green and displayed on the top
left area of the screen as online feedback (Figure 2-A).

F. Online Test Phase: RC-VF Spelling

During RC-VF sessions the conventional RC-speller was
combined with sequential visual feedback. After the end of
the first sequence (and the end of all the following ones),
the four letters with the highest selection probability were
highlighted with a small number (see Figure 2-B). If the
desired letter was labeled with a ‘1’, the subject was able
to intervene and select the desired letter by winking. There-
fore, the RC-VF system is divided into three submodules of
1) EEG classification, 2) visual feedback, and, 3) EOG detec-
tion modules (see Algorithm I).

Given EEG epochs, x j
i where the i (i = 1,. . .,12) is number

of trials corresponding to 12 flashes (6 row+6 column) in the
sequence j ( j = 1,. . .,10), the ERP feature (v j

i ) sets were also
calculated.

x j
i =

[
x j

1 , x j
2 , ..., x j

i

]
(4)

After the first sequence (i.e., j = 2), the averaged
ERP features v̄i were calculated by accumulatively averaging
the current feature vector with the correct set of previous trials.
Please note that the RC and RC-VF system followed the same
feature averaging approach where the ERP features for target
and non-target trials were averaged accumulatively over time
to achieve a reliable result.

v̄i = 1

n

n∑
j=1

v j
i (5)

Where n represents currently available number of sequences
during spelling and v̄i indicates averaged ERP features. The
LDA classifier output Yi = f (v̄i) is then calculated from the
input feature vectors v̄i for each trial i .

Yi = wT · v̄i + b (6)

Where Yi,i=(1,...12) denotes the classification outputs
for 6×6 matrix positions; 6 rows Y(1,...,6) and 6 columns
Y(7,...,12). The classification scores for the 36 characters were
calculated by summation of Yrow and Ycolumn according
to each character’s row/column positions. For instance,
the classification score of the character ‘K’ was calculated by
summation of Y2 and Y5.

The 36 letters were then ranked, based on their classification
scores (rankp , and p = 1, . . . , 36). In other words, the letter
with the highest classification score appeared in the first
position of the rank variable (= rank1). The classification
scores were updated on a single trial basis, i.e. after every
row/column flash.

Once the first sequence was completed, the four letters with
highest classification outputs (i.e., = rank(1,2,3,4)) were chosen
and visualized on the screen. The ranking was indicated by the
superscripts 1/2/3/4 above the characters (Figure 2-B). While
the rank of all 36 letters was calculated on a single trial basis,
the ranking was visibly updated twice per sequence (i.e. every
6 flashes, which corresponds to 1.5 s).

If the classifier denoted the target letter as the top candi-
date (= rank1) at any given time, subjects were instructed
to actively wink once. This action would be recognized as
a selection of the candidate letter; the selection command
was generated if the EOG signal satisfied the predefined
stopping criterion (i.e., equation 3), and the spelling of the
next character would begin (See Algorithm 1 for the detailed
procedures).

Similar to the standard RC speller, the RC-VF speller
was limited to a maximum of 10 sequences to select each
character. In the event that the classifier was unable to mark
the intended character as number ‘1’ after 10 sequences,
the highest ranked character would be automatically chosen,
as is done in the conventional RC speller. Subjects were
instructed to spell ‘KOREA_UNIVERSITY’ throughout the
session. The spelling result of each character was displayed
on the top left of the screen in the same fashion as in the RC
speller paradigm.

The multi-score visual feedback was dynamically presented
above the characters. The decision to display the rankings of
the characters with the four highest scores was made based
upon the high level of competition observed in the selection
procedure (see Table IV).

Specifically, high levels of competition mostly occurred
between the first few highly ranked characters (typically
ranked 1 to 6 as seen in pseudo-online emulation) in the
early stage of the sequential procedure. For instance, Table IV
indicated that most of the target characters were ranked
in the top 3 (except ‘A’, and ‘R’) at the end of second
sequence. Our decision to display the top 4 was due to the
need to minimize visual complexity while maintaining a high
probability that the target character would be displayed with
some ranking in the early stages of the sequential progression.
We displayed four visual scores as this number satisfied
those conditions, but this parameter could be flexibly adjusted
in consideration of the experimental environment or user’s
preference.
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Algorithm 1 RC-VF Speller Procedure
Input: EEG epochs (x), LDA parameters (w, b)

• X={xi} j , i = (1, ..., 12), j = (1, ..., 10), EEG epochs (x) where the i and j denote the number of flashes
(6 rows+6 columns) and sequences, respectively.

• mean [E]t2
t1, Mean amplitude within the time intervals of t1 and t2 from the EOG channel.

Output: Selected target character: rank1

• rank p, p is ranking index (p = 1, 2, ..., 36) by sorting the classifications scores for all 36 characters .

Procedures:

while speller on until stopping criterion is satisfied do
EEG/EOG signal acquiring
if EOG signal is not generated then

v̄i= f eature(x j
i ), � Accumulatively averaging ERP features

Yi =wT · v̄i + b, � Classifier output for input feature vector v
Yk=[(Y1 + Y7) , (Y1 + Y8) , ..., (Y6 + Y12)],k = (1, ..., 32) � Classification scores
rank p=sor t (Y), p = (1, ..., 32) � Ranking index p for all 36 characters
rankold

p =ranknew
p � Update rank scores on every iteration

end
if half or end of sequence then

vi sual f eedback(rank(1,2,3,4)); � Present visual feedback
end
if EOG buffer full then

if thmin ≤ mean [E]t2
t1 ≤ thmax then

interrupt; � Stopping criterion satisfied
selection(rank1) � Target character is selected

end
end

end

G. Online Test Phase: Free RC-VF Spelling

In the free spelling RC-VF session, subjects were given
the liberty to decide what they wanted to spell. For instance,
subject C spelled the sentence ‘WELCOME_TO_SEOUL’.
In this session, the sentence and target characters were not
presented at the top of the monitor, only the characters selected
by the user were displayed.

III. PERFORMANCE EVALUATION

For evaluation of the two types of spelling systems, the clas-
sification accuracies, as well as information transfer rates
(ITRs), were computed across the 20 subjects. ITRs are
commonly used as an evaluation measurement for BCIs. The
unit of ITRs is given as bits per unit time [bits/min] and can
be calculated as:

ITR = M

{
log2 N + Plog2 P + (1 − P)log2

( 1 − P

N − 1

)}
(7)

where M denotes the number of commands per minute and
N indicates the number of possible choices. Each choice N has
an equal probability of being selected by the user. P is the
accuracy of the speller (i.e. the probability that the speller
selects the desired letter). In summary, the ITR corresponds
to the amount of information received by the system per unit
time [44]. A paired t-test (significance level: p < 0.05) was

computed to examine the performance improvement between
the RC speller and the RC-VF system for accuracy and ITR.
The statistical tests were performed with the null hypothesis
of equal means. For the performance evaluation of the free
RC-VF spelling system, accuracy, ITR, and spelling time of
each letter were calculated.

IV. RESULTS

Figure 4 depicts the classification accuracy for individual
subjects along with their averages. Averaged ITRs are shown
across all subjects. The decoding accuracies (y-axis) are cal-
culated with respect to the number of sequences (x-axis). The
number of sequences varied from one to ten. Results for the
two conditions, namely the RC speller (blue square boxes)
and the RC-VF speller (red square box), are shown. The
performances of both RC-VF sessions were averaged. It is
important to note that the proposed RC-VF system selects
the target character by the generated EOG signal; each target
character was chosen at a different time-point within the
sequential procedure. The red square box and the red line
indicate the mean of the sequential time-point and its standard
deviation, respectively.

Detailed results for both conditions can be obtained
from Table II. The accuracy and ITRs for each subject as
well as their averages are reported for the RC condition and
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Fig. 4. Classification accuracy curve for each subject. Two conditions (RC, RC-VF) were evaluated. Average spelling performance (y-axis) was
calculated for one to ten sequences (x-axis). Averaged classification accuracy and ITR is shown in the lower right.

both RC-VF sessions. Previous BCI studies have argued that
a minimum accuracy level of 70% is needed for efficient
communication [45]. To reach an accuracy level of 70% in
the RC condition, 3 sequences would need to be averaged,
which would take 9 s per letter. For an accuracy level of 90%,
7 sequences would need to be averaged (21 s per letter). In the
two sessions of the RC-VF condition, the average accuracies
were 97.5% and 97.8%. An average spelling time of 8.5 s
(±3.0) (or 2.9 sequences) per character and 7.8 s (±2.0)
(2.5 sequences) per character were required. In this study,
subject B exhibited the best performance: only 5.1 s were
needed to spell each character while maintaining perfect, 100%
accuracy.

The Average ITRs of the two RC-VF speller sessions were
38.6 (±12.5) bits/min and 40.6 (±12.8) bits/min. The average
ITR for the RC speller was 25.5 (±18.9) bits/min, if only
one sequence is averaged. If more sequences are averaged,

the ITR decreases (see Figure 4). Paired t-tests did not reach
a statistical significant level for the differences of ITR between
RC-VF sessions one and two (p=0.077).

In order to simplify the comparison of results between
the RC and RC-VF conditions, averaged performances
of the two copy-spelling RC-VF sessions were calculated
and subsequently used for statistical comparison. For the
RC-VF speller, the subject was able to actively stop the
presentation process at any time, so the sequence numbers
varied across trials. It is therefore not possible to match
the number of sequence in the RC-VF condition to those of the
RC condition. An average of 2.9 sequences are required in the
RC-VF condition; therefore, the decoding accuracy and ITR in
the sequences of 2, 3, and 5 which are close to the sequence
numbers in the RC-VF (i.e., 2.9 sequence) were chosen to
compare system performance. The RC-VF speller required
2.9 sequences to reach an average accuracy of 97.6%, while
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TABLE II
hl CLASSIFICATION ACCURACY AND ITR OF RC AND TWO SESSIONS OF RC-VF SPELLER. SEQ. STANDS FOR THE NUMBER OF AVERAGED

SEQUENCES (1 SEQUENCE=3S). THE AVERAGE OF 2, 3, 5 AND 10 SEQUENCES ARE CONSIDERED FOR THE RC SPELLER. THE

CALCULATION OF THE ITR FOR THE RC SPELLER WAS PERFORMED BY AVERAGING 1 OR 2 SEQUENCES (LAST TWO COLUMNS)

TABLE III
CLASSIFICATION ACCURACY AND ITR FOR FREE SPELLING WITH RC-VF. EACH SUBJECT SELECTED THEIR OWN SENTENCE

TO SPELL. THE CORRECTLY SPELLED LETTERS ARE COLORED BLUE WHILE MISSPELLED LETTERS ARE COLORED RED

the RC speller showed accuracies of 64.1%, 71.5%, 83.8%
and 93.8% for 2, 3, 5, and 10 sequences, respectively.

RC-VF accuracy was significantly higher than RC accuracy
at 2, 3, and 5 sequences ( p < 0.001) but only mar-
ginally if 10 sequences were averaged in the RC condition
(p = 0.0502). The RC-VF condition showed significant higher
ITRs for all sequences (i.e., one to ten) compared to the RC
condition ( p < 0.001).

Table III depicts the spelling performance of the RC-VF
system during free spelling. Most of the subjects were able to
successfully spell their sentence without making any mistakes.
Four subjects (D, N, Q, Y) did not reach 100% accuracy.

The average accuracies across subjects were 98.2%, and the
ITR was 37.6 (±12.2) bits/min. The average typing speed was
8.7 (±2.5)s/letter. Subject C showed the best performance.
He required 75.2 s (4.7 s per character)for writing the sentence
‘WELCOME_TO_ SEOUL’ (16 characters including space)
with 100% accuracy.

Figure 5 shows the relation of single-trial classification
performance (x-axis) to the spelling accuracy (y-axis) for
real-time RC (black dots) and RC-VF (red dots). Each
dot represents the results of a single subject. To calculate
single-trial classification performance, 8-fold chronological
cross-validation was performed using offline training data.
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Fig. 5. The relationship between offline single-trial classification performance (x-axis) on the training data using 8-fold cross-validation and online
spelling performance (y-axis). Accuracy (left) and ITR (right) are shown for each of the 20 subjects and the two conditions (red dots RC-VF; black
dots RC). Red and black lines depict a linear fit for each paradigm (RC-VF and RC).

The spelling accuracy and ITR were calculated from the
online RC and RC-VF data. To ensure maximal compara-
bility, the spelling accuracy and ITR were calculated with
the same number of sequences for RC and RC-VF data. For
instance, if subject B required 1.8 sequences on average to
spell in the RC-VF condition, 2 sequences were used for
the calculation of the accuracy and ITR in the RC condition
(accuracy: 75%, ITR: 20.7 bits/min; see Table II). A linear
regression model was calculated for each condition (red and
black lines). In both plots, the RC speller showed strong
positive correlations between the offline classifier performance
and online spelling performance (accuracy: RC=0.87; ITR:
RC=0.68). The correlation coefficient for the RC-VF con-
dition was considerably lower for the left plot (accuracy:
RC-VF=0.34; ITR: RC-VF=0.61).

V. DISCUSSION

A. EOG Performance

In this study, all of the subjects were able to generate
an EOG-based selection task intentionally in the RC-VF
spelling paradigm. The EOG signals are a reflection of muscle
activity, which has a comparatively high signal-to-noise ratio
(see Figure 3). Therefore, it is not very surprising to observe
perfect discrimination between the binary classes of ‘winking’
and ‘resting’. Similarly, previous studies were able to reach
accuracy rates of more than 90% in a four-class paradigm
based on EOG data [7], [8].

We considered two types of EOG errors in the RC-VF
experiment. The first one is that the subject unintentionally
generates the EOG movement at the wrong time (i.e., idle
state); therefore, the system selects the unintended character.
In the RC-VF system, the EOG detector was constantly
activated (i.e. asynchronous system). A type-one error should
be prevented as it would result in the selection of an undesired
letter. It could happen when the EOG threshold is too low– a
malfunction of EOG discrimination between eye-winking and
a normal eye-blink (or other body movements). However, type-
one errors were not observed in our experiment most likely

due to three reasons. Firstly, the winking task is a very distinct
eye movement; the task is not duplicated with normal eye
movements such as blinking or gazing. Secondly, the EOG
thresholds were carefully chosen by considering the averaged
EOG amplitude and the standard deviation for discriminating
the winking and natural eye blinking task (see figure 3).
Lastly, all participants had a practice session to get used to the
EOG detector and for fine-tuning the EOG threshold values.

In the proposed RC-VF system, the EOG detector was
active all the time using a sliding window (see Figure 3).
Such an asynchronous system has to secure a high level of
reliability for idle-state detection rate (i.e., preventing type-
one errors). One way is to allow only for the generation of
the EOG command at a certain time interval. For instance,
the EOG detector is active once after each end sequence.
This system concept would be a bit more time-consuming
compared to the fully asynchronous system; however, it could
successfully block unintentional EOG commands during the
idle-state.

The second type of EOG error would be that the EOG
signal amplitude does not exceed the threshold. This type of
error mostly occurs in the practice session (described in II-D);
the setting of a subject-specific threshold and the generation
of a uniform EOG signal are important. These errors rarely
occurred in the RC-VF spelling session, but in cases where
they do, the subject has to generate the wink with greater care
and concentration to exceed the threshold.

While the binary EOG tasks (i.e., winking and eye-up)
worked robustly throughout our experiment, a failure of the
EOG system could possibly occur from unintended/unexpected
movements of the eyes or body regardless of the system
complexity. In this study, we used a single EOG channel for
the user’s convenience; most EOG-based HCI systems have
used more than two channels for estimating the horizontal and
vertical information from the eyes [12], [46]. Therefore, one
solution to prevent the interference by some other movement’s
noise lies in using multi-channel EOG to acquire more specific
information about the eye’s movements. For instance, if the
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system uses two EOG channels for detecting the winking
task, the system could more robustly block the unintended
movement as the winking task has highly discriminant patterns
between the horizontal EOG channels.

While in this study, we have used a simple threshold-
based EOG detection method, similar to earlier approaches [7],
[8], [12], [46], a wide variety of other eye movement
algorithms and feature extraction methods are available.
Lv et al. [47] proposed an eye movement pattern matching
and spectral entropy algorithm to detect the endpoints of
EOG pulses, which can improve the performance in a noisy
background. Bulling et al. [48] devised 90 different features
and validated them to find optimal subsets using minimum
redundancy maximum relevance (mRMR) feature selection,
which can recognize more complex eye-movement patterns.
He and Li [13] proposed an EOG-based spelling system by
combining the support vector machine (SVM) classification
and waveform detection. These EOG detection algorithms
have been used for more complex classification problems;
therefore, these types of algorithms could be successfully
incorporated into our RC-VF system for a more robust detec-
tion of the EOG task.

For our spelling framework, we have chosen the
EOG detector as the confirmation for character selection.
However, it should be noted that, in principle, movement
features other than eye movements could be used to operate
the system. If a given user (or patient) prefers a different action
other than eye movements, our system can adapt to detect a
different body movement to fulfill the role of the EOG.

In principle, movement detection of any body part, such as
tongue [49], [50], hand [51], feet [52], etc. [21], is possible.
The detection of such movements is easily accomplished due
to the high SNR and will therefore maintain the advantage
and reliability of our system. In that regard, patients with
movement disabling conditions, such as ALS, paralysis, etc.,
can benefit greatly from our system, as the target muscle can
be chosen with considerable flexibility.

Accurate performance in EOG detection is required in the
proposed RC-VF system. The simple threshold-based EOG
detector was used in this study, as we judged that the difficulty
level of EOG classification is low (i.e., binary class) and
this method has already shown remarkable performance in
more complex classification problems [7], [8], [46]. Never-
theless, we suggest some approaches to enhance the per-
formance of the EOG detector 1) by using multi-channel
EOG [12], [46], or 2) by using more complex classification
algorithms [47], [48], or even 3) by using the other available
body parts [21], [49], [51], [52]. These methods have trade-
off relationships between decoding accuracy, system com-
plexity, and user convenience. Therefore, all these settings
would be carefully designed according to the user/patient
conditions.

B. ERP Performance and System Flexibility

In our results, the conventional RC-based ERP speller has
a performance that is very similar to previously reported
findings [28]–[31], [36]–[38]. Incidentally, there have been
quite a number of approaches to enhance performance in

ERP spellers [27], [29], [33], [34], [53], [54]. In regard
to their methodological philosophy, these approaches follow
one of three routes: 1) boosting the ERP deflections by
altering target stimulus parameters, or 2) combining ERP
components with other brain signal components, or 3) applying
advanced feature selection methods. A prime example for
boosting the strength of the ERP response is a study by
Kaufmann et al. [33] where images of faces were used
as stimuli to evoke stronger ERP responses. Li et al. [34]
and Jin et al. [27] have also found significant performance
increases by altering the interface design, screen size, and
colors of the stimuli. The second method of combining differ-
ent components is termed hybrid-BCI. Previous studies have
shown performance increases from combinations of ERP and
other components, such as SSVEP [55]–[57], motor-imagery
(MI) [58], [59], error-related potentials (ERRP) [53], and
others [54]. The advanced feature extraction techniques, such
as kernel PCA (Principal Component Analysis) [60] and non-
linear machine learning techniques, such as logistic regres-
sion or support vector machines [61]–[63] would be considered
for further performance improvement. The advantage of our
proposed framework is that the novel concept of our feedback-
based switch can be applied to these approaches as an addi-
tional factor for performance improvement. Therefore, our
framework has the potential to yield additional performance
increases to previous speller systems.

C. RC-VF System

Table IV explains the operating principles of our framework
by examining the spelling results of one particular subject
(subject ‘F’). The left column depicts the target letters, and
P1, P2, P3 represent the top 3 rankings of the classifier outputs
from all 36 letters. In this study, we found high variability in
the number of sequences that were needed by the system to
properly identify a target character as the most likely candi-
date. For instance, the letter ‘K’ was identified as the most
likely candidate, even when only one sequence was averaged.
However, for the letter ‘A’ (row 5), four sequences needed
to be averaged, so that it was ranked as the most probable
letter. Therefore, predefining a fixed number of sequences as
the threshold [29], [64], [65] will inevitably lead to suboptimal
results.

Our proposed system creates a direct path to selecting a
target letter through active user feedback. This is a sure-
fire way to select the proper character in circumstances
where the system gives a rather unreliable choice. To see
a clear difference between our proposed framework and the
conventional threshold-based approach, we have employed a
pseudo-online technique [59], [66] to make grounds for equal
comparison. Offline data acquired from the RC experiment
(subject ‘F’) was fed to the pseudo-online emulator. In our
proposed approach, the 36 characters were ranked after every
sequence by the classifier output. If the target character was
assigned as rank one, we assume that it would be selected by
the user through the use of the EOG.

We compared our approach to a fixed threshold of 4 and
7 sequences. For these two thresholds, the average accuracy
for this particular subject resulted in 62.5% and 81.2%,
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TABLE IV
SELECTION PROCEDURE OF INDIVIDUAL LETTERS FOR RC (THRESHOLD-BASED) AND RC-VF (EOG-BASED) FOR SUBJECT F WITH DETAILED

RANKING OF INDIVIDUAL LETTERS. THE TABLE SHOWS THE RANKING OF LETTERS WITH RESPECT TO THE NUMBER OF SEQUENCES AVERAGED.
P1, P2 AND P3 ARE THE THREE HIGHEST RANKING SCORES. ACTUAL CLASSIFICATION OUTPUTS ARE GIVEN NEXT TO THE LETTER. THE

LAST 3 COLUMNS INDICATE IF THE TARGET WAS SELECTED, AND IN THE CASE OF EOG, THE SEQUENCE NUMBER IS INDICATED.
IN THE RC PARADIGMS, A CHECK DENOTES IF THE TARGET WAS DETECTED AFTER 4 OR 7 SEQUENCES.

respectively. Allowing a user-based confirmation through EOG
translates into a dynamic threshold, which leads to a significant
performance increase, as seen in Table IV. For instance,
the target letters ‘E’, ‘A’ and ‘_ ’ are robustly detected after a

few sequences (stable case). However, for some cases (letters
‘U’, ‘N’, ‘I’), two (or more) letters are competing for the
top rank position and may change position depending on the
number of sequences averaged (unstable case).
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In both these cases, our system provides an optimal solu-
tion with the help of user-based feedback. In the stable
case, the user can select the correct letter at an early stage,
which leads to increased ITR. Additionally, in the unsta-
ble case, the user can also speed things up by stopping
the selection process when the target letter is ranked in
first place after the first sequence while improving overall
accuracy.

The online spelling performance is highly dependent on
the classifier’s parameters derived from the calibration data.
In Figure 5, the black line indicates a strong positive rela-
tionship between the single-trial classification performance of
offline data and online spelling performance (accuracy and
ITRs). However, the proposed system shows that even with
relatively low single-trial classification accuracy for the offline
data, subjects are still able to reach high spelling accuracy
during the online spelling phase.

Low ITR, as well as performance variability between
the subjects, are the key obstacles currently preventing
BCI spellers from real-world applications. Our study shows
that the integration of EEG signals with EOG leads to signifi-
cant increases in accuracy. Furthermore, it also reduces perfor-
mance variability between subjects, particularly for subjects
who would normally exhibit low performance (please refer
to Figure 5).

D. Visual Feedback of the ERP Speller

Conventional ERP-based spellers typically only give visual
feedback to users once a letter has been selected by the system.
The visual feedback given to the user is generally a final
decision for that specific letter, which cannot be changed easily
(except if the user utilizes a delete option as the next letter).
In our approach, the user is given feedback at an early stage,
and the user is therefore able to participate in the decision
by confirming the proposed selection. This novel type of
interaction on the subject’s side not only increases the ITR and
robustness of the system, but it also helps the user maintain
concentration while spelling.

After completing the experiment, all subjects completed a
simple survey to evaluate their different impressions of the RC
and RC-VF spelling. The questionnaire includes the following
three questions:

1. preference: system preference level between RC and
RC-VF speller (1 point: very low, 5 points: very high).

2. concentration: level of concentration during spelling
(1 point: very low, 5 points: very high).

3. difficulty of generating a wink: level of diffi-
culty/discomfort during RC-VF system (1 point: very easy,
5 points: very hard).

Figure 7 shows the averaged rating scores corresponding
to preference, concentration, and difficulty. Eighty percent of
the participants preferred the RC-VF mode (four participants
gave the same rating scores to both spellers), with 90% finding
visual feedback helpful in concentrating on the spelling. The
participants reported that they felt interested in watching
their brain response as visual feedback, and it helped with
concentration on the spelling task. The averaged rating score

Fig. 6. Performance changes with respect to 6 types of channel
configurations (Mask 1: Cz (1 ch), Mask 2: Cz-CP1-CP2 (3 ch.), Mask 3:
Cz-CP1-CP2-O1-Oz-O2 (6 ch.), Mask 4: FC5-FC1-FC2-FC6-C2-Cz-C4-
CP1-CP2-O1-Oz-O2 (12 ch.), Mask 5: F3-Fz-F4-FC5-FC1-FC2-FC6-
C2-Cz-C4-CP1-CP2-P3-Pz-P4-O1-Oz-O2 (18 ch.), Mask 6: all 24 ch.).
The left y-axis depicts ITR (corresponding to blue bar) and right y-axis
depicts accuracy, corresponding to red bar.

for difficulty was 1.9 in which four subjects felt discomfort
(rating scores >2) for generating an EOG signal.

Please note that all participants in this study were in healthy
condition and the age spectrum is small (24-32). The rating
scores could be different for patients or larger age ranges.

E. Usability in Real-World Applications

To increase the usability of BCI systems so that they
become applicable in the real world, it is necessary to reduce
the required setup time. Reducing the number of channels
can minimize the setup time of an EEG-based BCI. Our
experiment was recorded and analyzed with 24 EEG channels;
however, we were interested to find out the minimum number
of channels that were required for stable system performance.

To this end, we designed 6 types of channel configura-
tions (1 ch. in Mask 1: Cz, 3 ch. in Mask 2: Cz-CP1-CP2,
6 ch. in Mask 3: Cz-CP1-CP2-O1-Oz-O2, 12 ch. in Mask 4:
FC5-FC1-FC2-FC6-C2-Cz-C4-CP1-CP2-O1-Oz-O2, 18 ch. in
Mask 5: F3-Fz-F4-FC5-FC1-FC2-FC6-C2-Cz-C4-CP1-CP2-
P3-Pz-P4-O1-Oz-O2, all 24 ch. in Mask 6). The classification
accuracy validated along with the channel configurations in
offline condition. Figure 6 shows the channel configurations
as well as performance changes. For validation, offline data
from RC sessions were fed into a pseudo-online emulator.
As expected, the full channel setup showed the highest per-
formance and the lowest performance was obtained if only
one channel was used. However, our results indicate that two
channel configurations with 6 and 12 channels (Mask 3 and
Mask 4, respectively) also yielded reasonable performance
when compared to a full channel setup (Mask 6).

F. Enhancing the Performance of RC-VF Speller

We already discussed how our proposed system could
easily be combined with previous speller approaches for
additional performance improvements. In order to demonstrate
our system flexibility and its possible use as a real-world
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Fig. 7. The averaged rating scores from a questionnaire for all
participants (paired t-test, p). Preference (1 point: very low, 5 points: very
high), concentration (1 point: very low, 5 points: very high), and difficulty
(1 point: very easy, 5 points: very hard).

application, an extended experiment was designed to max-
imize both spelling performance and usability. Six factors
were manipulated from the basic RC-VF system: 1) The
stimulus-time interval (STI) was set to 150 ms, followed
by an inter-stimulus interval (ISI) of 50 ms. 2) In order
to enhance the ERP signal, random set-based representation
pattern (RASP) [29] with a face stimulus [33] was used.
3) In order to reduce set-up time, only five channels were
used in the experiment (Cz, CP3, CP4, Oz, and FP1 for
EOG detection). 4) Following participant feedback, instead of
presenting a ranking score (i.g 1/2/3/4) above the character,
only the highest ranked character (i.e. ‘1’) was highlighted
in a different color. 5) Following participant feedback for
greater comfort, the winking task for the selection of the
target character was replaced by eye movement (eye-up) [11].
6) The speller system was set to allow an unlimited number
of sequences and the weight parameter wp , (p = 1, . . . , 32)
was added to the classification procedure.

The decision to change factor four from a presentation of
the top four ranking candidates to just the top ranked candidate
was made due to user feedback and a lack of evidence that
this extra information improved performance. We had believed
that the dynamic changes of the visual feedback for scores
could increase (or adjust) the user’s concentration level so that
the user could focus more on the target stimuli in effort to
acquire a higher score, but there was little evidence to support
this. Therefore, we simply present the single most probable
candidate character with the highest classification score as a
different color.

Similarly to factor four, the eye winking task (factor five)
was reported to be uncomfortable by some participants. The
eye-up task is also a very distinct eye movement task. The user
was instructed to generate maximum eye movement from the
current position to the upper position when they wanted to

Fig. 8. Extended experimental setup. (A) Random set stimulus presen-
tation with famous face image (L. W. DiCaprio, Actor). (B) The target
character ‘B’ which had the highest classification score is highlighted as
a different color.

choose the target character. Also, the FP1 channel is used
for EOG detection to reduce the discomfort of attaching
the electrode near their eye. Figure 3-right plot shows the
EOG data for the eye-up task. In this figure, we calibrated
data for the two conditions of eye-up and natural eye-blink
tasks. The eye-up task showed a strong characteristic response
compared to the baseline interval (−500 to 0 ms) as well as to
natural eye-blinking. Thus, the eye-up task would be suitable
to use as the EOG task. Both the wink and eye-up movements
usually do not occur in normal routines and circumstances,
so their specificity to signify an intentional event is very
high. In summary, the system components such as the visual
feedback, EOG task, and the channel set highly depend on
user preference and the external environment (e.g. system
architecture, EEG device, etc.). The additional experiment
showed the extendibility of our proposed system; the system
components could be easily changed/modified to individual
needs.

The final modification is the most noteworthy, and it is
important to understand its implementation. First, the wp is
initialized as 1.0 at the beginning of a sequence. This weight
parameter is updated when the user doesn’t select the currently
highlighted character as we assume that the character is not the
target character. For instance, if the character ‘K’ is visually
highlighted (=rank1) by the classifier output (Y) and the user
doesn’t select ‘K’ by generating an EOG signal, then we give
lesser weight to the wk . For the next sequence, the classifier
output is w · f (v) which means the character ‘K’ has a
relatively smaller probability to be chosen as a target feedback.
That makes the system more efficient by reducing feedback
redundancy.

The proposed classification strategy has two important
implications for enhancing spelling performance. First, all
candidate letters have an opportunity to be chosen as a
target character. If a user is able to generate an EOG com-
mand properly, the use of the weighted classifier will have
100 % accuracy with the unlimited number of sequences,
but necessarily the spelling speed will be slower. Second,
it makes the system more efficient by reducing feedback
redundancy. We have already shown that the primary reason
for low spelling performance comes from close competition
between the candidate characters which have a high probability
classifier score (see Table IV). For instance, in Table IV,
the selection of the characters of ‘_’, ‘U’, ‘I’(first), ‘E’, ‘T’



LEE et al.: HIGH PERFORMANCE SPELLING SYSTEM BASED ON EEG-EOG SIGNALS WITH VISUAL FEEDBACK 1457

TABLE V
SPELLING ACCURACY AND ITR OF RC-VF SYSTEM WITH ENHANCED

METHODS. SIX SUBJECTS (A, F, G, M, P, AND, S) ARE CHOSEN

FROM THE PREVIOUS EXPERIMENT (SEE TABLE II)

was delayed by its unreliable classifier output of the target
letter. If the high ranked non-target characters are eliminated
in the early stages, the spelling performance is fast and accu-
rate. Rather than eliminate the unselected character from the
candidate bin in cases where a user might miss choosing target
character in time, we applied a weighted classifier strategy
so that another selection opportunity would be possible. And
lastly, conventional speller systems require two steps for error
correction where the user must first negate the previous input
character and then next input the correct target letter. Our
system, on the other hand, eliminates the need for this error
correction procedure.

Six subjects (A, F, G, M, P and S) participated in
the extended experiment. The training and test procedures
were the same as in the previous RC-VF experiment. The
experimental results showed 100% spelling accuracy with
an averaged ITR of 57.8 (±23.6) [bits/min] (see Table V).
All participants showed significantly improved performance
compared to the basic RC-VF experiment.

G. Limitation of the Proposed RC-VF Speller

While we believe that our proposed RC-VF speller system
can be used by most patients in need of a BCI system, there
are limits to its appropriate application. In most cases of spinal
cord injury such as quadriplegia, motor function is preserved
above the neck. Additionally, our system can work in cases
of locked-in-syndrome (LIS), which is a condition where a
patient is aware but cannot move due to complete paralysis
of nearly all voluntary muscles in the body except for vertical
eye movement and blinking [67]. However, in cases such as
total locked-in syndrome or total immobility where the patient
is not able to control any voluntary movement including all
eye movements [67], our system is obviously not appropriate.
Given that eye based spellers (EOG or eye-tracker) and matrix-
type EEG spellers require voluntary eye movements as the
user needs to gaze at the targeting position, these systems,
like ours, are less useful for patients with severe oculo-motor
impairment. In these cases, like in total locked-in syndrome,
gaze-independent speller systems have been proposed, and
we would point your attention to Treder et al. [68] who
developed a two-stage visual speller based on covert spa-
tial attention and non-spatial feature attention. Additionally,
Acqualagna et al. [69] proposed a novel BCI paradigm con-
sisting of a central rapid serial visual presentation (RSVP)
of the stimuli that shows promising results. It is important

to be clear that our proposed RC-VF system belongs to the
gaze-dependent speller category and mainly focuses on the
target user who can control at least one part of their body’s
movement, including their eyes.

An ERP-based BCI system is a time-consuming process
that needs to collect enough EEG trials until the classification
output is clear. To reduce the consumption of time, previous
approaches have changed the experimental setting [27], [29],
[33], [34], [53], [54] to enhance the ERP components, or they
combined physiological signals such as EMG/EOG [19]–[22]
or another brain component such as SSVEP/MI [70].

Recently, dynamic stopping methods have been proposed
to enhance the speller’s performance. The dynamic stopping
approach updates the probabilities for all possible symbols
based on the classifier response and chooses the one char-
acter when the probability exceeds some stopping criterion
(i.e. a threshold value). Various stopping algorithms have been
proposed like ones that use a simple cumulated classification
score. Lenhardt et al. [71] proposed the P300 speller system
which dynamically limits the number of subtrial presenta-
tions according to the user’s current online performance. The
study defined two scoring functions namely sum-threshold
and ratio-threshold. The system selects a target symbol when
the overall classifier outputs for all candidate characters is
lower than the predefined threshold (sum-threshold) or the
score ratio between the highest scored and second highest
scored character is greater than the predefined threshold (ratio-
threshold). The results showed an accuracy of 87.5% and
transfer rate of a 29.3 bits/min. Furthermore, a Bayes classifier
with a threshold probability [72], or others that use language
models [31], [38] have also been proposed for increasing the
ITR. Such language models also showed significantly enhance
performance (90.36% accuracy with 54.42 bits/min [38] and
92.3% accuracy with 39.6 bits/min [31] accuracy).

The reason for low ITRs in spelling systems (as well as
in most other BCI systems) is primarily due to the com-
petition between high-ranked candidate characters (i.e. the
one true target vs. non-targets). Thereby, the adaptive and
the conventional method have the common characteristic that
the classifier should wait until the classification score for
the highest scored character is clear. This delay is basically
unavoidable in the conventional as well as the adaptive system
because the decision making is highly reliant on the classifier’s
output.

Our study also exhibits instances of this interfering com-
petition that leads to delay in classification (see Table IV,
character ‘_’) in the spelling procedure. This is particularly
problematic for lower performance users of a BCI. To enhance
performance, previous approaches only focused on eliciting a
stronger brain component or improving the system based clas-
sification strategy to discriminate between the target and non-
target data. The dynamic stopping method is an example of
this latter technique, and classification still remains dependent
upon achieving a certain threshold.

Our hybrid EEG-EOG spelling system, however, has an
entirely different approach for confirming the target compared
to these other methods. The main idea of the proposed system
is to share the decision process between the system and the
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user so that the user is more actively involved in the selection
procedure. Therefore, the RC-VF system can circumvent this
unnecessary competition between the high-ranked candidate
characters; the system doesn’t need to wait until the classifier’s
output is clear. Furthermore, the highest ranked non-target
character would be eliminated early when the user fails to
select it via an EOG command. This more interactive system
between the user and computer can effectively reduce the
number of trials by avoiding prolonged competition between
candidate target characters, so in cases of users who still retain
some mobility, application of our system’s technique would
certainly improve performance. In cases of total immobility,
the previous methods that improve signal processing and/or
enhanced the ERP component are still the best options to date.

VI. CONCLUSION

In this study, the outstanding online performance with an
accuracy of 97.6% and an ITR of 39.6 [bits/min] indicates
that the proposed RC-VF paradigm is a very promising
system as a real-world application. Our extended experiment
further showed real world applicability by reducing the number
of channels, changing the input EOG signal for easier use
(eye-up versus blinking), and modifying the stimulus presen-
tation for better ERP signal generation and comfort for the
user. The extended experiment also introduced the weighted
classifier paradigm that eliminates the need for two-step
error correction and enables 100% spelling accuracy.1 Not
only did the extended experiment achieve 100% accuracy,
but it also improved the ITR to 57.8[bits/min]. In both of
our experimental setups, the EEG-EOG hybrid design of the
RC-VF speller system improves the spelling speed and accu-
racy of a conventional BCI system, while only requiring one
EOG task. And most importantly we have demonstrated that
the concept of this system can be applied to most existing
gaze-dependent systems with the benefit of increased accuracy
and ITR. In our future work, we will focus on testing (and
possibly adapting) this system with the help of a clinical
subject population. We hope that it will be possible soon
to bring this technology from the test bench to the clinical
subjects for whom the design was intended.
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