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Neuromagnetic Decoding of Simultaneous
Bilateral Hand Movements for

Multidimensional Brain–
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Abstract— To provide multidimensional control, we
describe the first reported decoding of bilateral hand
movements by using single-trial magnetoencephalography
signals as a new approach to enhance a user’s ability to
interact with a complex environment through a multidimen-
sional brain–machine interface. Ten healthy participants
performed or imagined four types of bilateral hand move-
ments during neuromagnetic measurements. By applying
a support vector machine (SVM) method to classify the
four movements regarding the sensor data obtained from
the sensorimotor area, we found the mean accuracy of a
two-class classification using the amplitudes of neuromag-
netic fields to be particularly suitable for real-time appli-
cations, with accuracies comparable to those obtained in
previous studies involving unilateral movement. The sensor
data from over the sensorimotor cortex showed discrim-
inative time-series waveforms and time-frequency maps
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in the bilateral hemispheres according to the four tasks.
Furthermore, we used four-class classification algorithms
based on the SVM method to decode all types of bilateral
movements. Our results provided further proof that the
slow components of neuromagnetic fields carry sufficient
neural information to classify even bilateral hand move-
ments and demonstrated the potential utility of decoding
bilateral movements for engineering purposes such as mul-
tidimensional motor control.

Index Terms— Android, bilateral movements, brain-
machine interface, magnetoencephalography, motor
imagery, SVM classification, voluntary motor control.

I. INTRODUCTION

ABRAIN-MACHINE interface (BMI) for motor control is
a system based on decoding brain activity data from the

motor cortex in the human forebrain to offer an alternative to
physiological motor pathways. Such a system is able to send
commands from the brain to a machine by using motor signals
generated via voluntary motor control or motor imagery tasks
in subjects performing certain body movements or imagining
these movements without using the brain’s normal output path-
ways of peripheral nerves and muscles, respectively. The brain
signals for BMIs are measured with either invasive or nonin-
vasive techniques.

For decades, most studies have focused on discriminating
unilateral actual/imagined movements such as right or left
hand/finger/toe grasping and tongue movement [1]–[3]. This
decoding of unilateral movements has been well studied and
used in controlling machines (computers and cursors [4]–[7],
robots and prostheses [8]–[10], etc.) to achieve a high relia-
bility in noninvasive BMIs on the basis of electroencephalog-
raphy (EEG) and magnetoencephalography (MEG) signals.
Regarding the cortical activation of unilateral movements, pre-
vious studies have shown that in both brain hemispheres there
are typical movement-related cortical potentials or fields as
well as certain oscillatory changes in the frequency bands, such
as the alpha (8-13 Hz), beta (13-30 Hz) and gamma (>30 Hz)
bands. Generally, a diffuse power decrease in the alpha
and beta bands has been observed in the sensorimotor area,
whereas a more focal power increase in the gamma band
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has been observed in the motor area. Furthermore, previous
noninvasive EEG or MEG studies have demonstrated that the
decoding accuracy of a 2-class classification for two types of
voluntary or imaginary body movements is significantly higher
than that expected by chance. The accuracy has been found
to vary from 60% to 80% using a sensor or source decoding
level [4]–[19]. In contrast, the mean multi-class classification
accuracy of movement decoding that has been achieved from
the same part of the body has been less than or approximately
equal to 60% in most BMI studies [20]–[23].

A dimension of control or degree of freedom is a critical
issue for achieving a high performance in motor BMIs in a
complex real-time interaction in a more realistic environment.
In this case, decoding bilateral hand movements or hand
gestures may be an initial step toward increasing dimensional-
ity and achieving a continuous and multidimensional control
of multiple devices (e.g., wheelchair and robotic arm). This
type of multidimensional BMI system would require higher
dimensional control and naturalistic BMI tasks. In addition,
unilateral and bilateral movements activate different parts
of the brain [24]–[28]. When patients perform or imagine
bilateral movements during rehabilitation exercise sessions,
patients activate more areas of the brain and therefore maxi-
mize the neuroplastic benefits [29]. Furthermore, simultaneous
bilateral movements (e.g., contralateral and ipsilateral hand
movements) require a greater overall activation of muscle
contraction and therefore probably require the firing of a
greater number of cortical cells [24], [25]. Because the topog-
raphy of brain activity is well known regarding unilateral
movements [30], [31], it is of interest to clarify the spa-
tiotemporal frequency distribution of neural activity during
simultaneous bilateral hand movements. In addition, people
simultaneously use their hands bilaterally for doing different
tasks in daily life. However, to date, analyzing human brain
activity during simultaneous bilateral hand movements has not
been reported in detail. This type of analysis may offer a better
understanding of the neural correlates of bilateral hand move-
ments, which remain unclear. Only a few studies based on
functional magnetic resonance imaging (fMRI) measurements
have offered a better understanding of the neural correlates of
uni- and bi-manual finger presses [32] and bimanual anti-phase
and in-phase movements [33]. Furthermore, decoding bilateral
movements would also provide multidimensional control
in multifunctional augmentative and alternative communi-
cation systems. Regarding unilateral movements, previous
BMI studies based on sensorimotor amplitudes and rhythms
have used electroencephalograms (EEGs), magnetoencephalo-
grams (MEGs), or electrocoticograms (ECoGs) to distinguish
between the actual/imagined movement and the rest state
(e.g., right hand grasping vs. relaxing position of the left
hand (no motion), and left hand grasping vs. relaxing position
of the right hand). Only a few studies have added a case of
bilateral movements, such as closing (grasping) bilateral hands
or simultaneously moving bilateral fingers [21], [23]–[26].
None of these studies have attempted to decode four types
of simultaneous bilateral hand movements (e.g., R-Close
vs. L-Open: closing a right hand vs. opening a left hand,
R-Open vs. L-Close: opening a right hand vs. closing a left

Fig. 1. The characteristic R2 distribution of a subject’s uni- and bi-lateral
hand movements, on the basis of a time series and event-related
desynchronization around the sensorimotor cortex. (a) Experimental par-
adigm of performing and imagining uni- and bi-lateral hand movements.
(b) Brain activation associated with bilateral movements, according to
our hypothesis. (c) Brain activation associated with unilateral movements,
according to previous studies showing strong contralateral activation and
minimal ipsilateral activation.

hand, R/L-Close: closing both hands, and R/L-Open: opening
both hands). In addition, the bilateral hand movement is one
of the simplest paradigms to achieve using a multidimensional
BMI system. In this study, to investigate the feasibility of
extending the dimensionality of BMI commands, we utilized
neuromagnetic oscillatory modulation to analyze and decode
the brain activity associated with four types of real and
imagined bilateral hand movements.

In this paper, we describe a novel multidimensional
MEG-based BMI approach, focusing on decoding and explor-
ing the similarities and differences in sensorimotor activity
during motor execution and motor imagery of bilateral hand
movements by using a noninvasive measurement. We chose
to decode both real and imagined movements in this BMI
study because the brain activity involved in imagined move-
ments (i.e., motor imagery-related activity) observed in healthy
people is quite different from the brain activity observed in
paralyzed people. In particular, patients who have undergone
a hand amputation (i.e., phantom movement-related activity)
demonstrate brain activity during imagined movements that
is similar to that during real movements [34]. In addition,
we used MEG in the present study because this technique has
several advantages in analyzing neurophysiological signals,
compared with EEG and fMRI. MEG is the noninvasive
measurement of the magnetic fields outside the head, which
provides direct information about the activity of the cortical
neurons; MEG has a higher spatial resolution than EEG
and has a broader spatial coverage than an ECoG. MEG
can directly record neural activity with a higher temporal
resolution than fMRI. Several previous MEG studies have
demonstrated that magnetic fields preceding movement fre-
quently show bilateral patterns of activation even for unilateral
movements [35]–[38]. In addition, brain areas with similar
activity patterns, such as time series, are likely to communicate
and sharing information, especially if the time series of the two
brain areas are highly correlated. Therefore, we hypothesized
that the brain activation could be clarified on the basis of a
time series analysis and certain time-frequency analyses by
using MEG measurements while the subjects’ perform tasks or
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Fig. 2. Experimental bilateral hand movement paradigm. (a) Subjects performed real and imagined bilateral hand movements in the same sequence.
First, one of the movement types, i.e., grasping or opening, was presented on the screen in front of the subject. Then, the subject moved the right
hand as instructed upon the presentation of the execution cue. Each movement type was repeated four times. Each trial consisted of the following
four phases; the rest phase, instruction phase, preparation phase, and execution phase. During the rest phase, a white fixation cross “+” was
presented for 3 s. During the instruction phase, an image of a bilateral hand movement was presented for 1 s. Then, during the preparation phase,
two timing cues (“> <” and “><”) were presented one at a time, each for 1 s, to aid the subjects in preparing for the execution of the real or
imagined movements. During the execution phase, the subjects performed the real or imagined movement as requested during the instruction phase
after the appearance of the execution cue “×.” (b) MEG setup used during the real and imagined bilateral movements.

imagine bilateral movements (see Fig. 1). In this study, when
subjects performed or imagined bilateral movements, the mag-
nitude of neuromagnetic fields and the frequency power of sen-
sorimotor activities were either increased or decreased in both
brain hemispheres; these phenomena are termed event-related
magnetic field (ERF) for the magnetic fields, event-related
power increase (i.e., event-related synchronization, ERS) and
event-related power decrease (i.e., event-related desynchro-
nization, ERD) for the frequency power. Using these event-
related activity characteristics, support vector machine (SVM)
decoders were able to distinguish among the four bilateral
movements.

II. MATERIALS AND METHODS

A. Participants

Ten healthy volunteers (3 males and 7 females,
22-45 years of age) participated in the present study.
Clear written informed consent was obtained from all the
participants, who were informed in detail about the purpose
and possible consequences of the experiment. The present
study was approved by the Ethics Committee at Osaka
University Hospital (No. 15123), and the experimental
protocol was carried out in accordance with the latest version
of the Declaration of Helsinki.

B. Experimental Paradigm and Protocol

MEG recording and MRI were performed at the Center
for Information and Neural Networks (CiNet, Osaka, Japan).

Neuromagnetic brain activity was measured with an aug-
mented 360 high-density MEG scanner with 360 SQUID
detectors surrounding the head housed in a magnetically
shielded room (Elekta Neuromag TRIUX system; Elekta
Oy, Helsinki, Finland). This 360-channel MEG system was
composed of 306 planar sensors (204 gradiometers and
102 magnetometers) and 54 additional vertical sensors. The
planar gradiometers provided sensitivity to sources close to the
sensor array, whereas the magnetometers provided sensitivity
to distant sources, including sources originating from a small
head.

The participant was in a sitting position (see Fig. 2(b)), and a
projection screen was fixed in front of the eyes. Visual stimuli
were shown on the screen with a visual stimulus presentation
system (Presentation, Neurobehavioral Systems, Albany, CA,
USA) and a projector (12.5 × 16 × 20��) outside the shielded
room. The participants were instructed to grasp or open both
the right and left hands once according to the execution
cues given visually and aurally. Regarding the experimental
paradigm, four classes of bilateral movements (both grasping,
both opening, right grasping/left opening, right opening/left
grasping) were presented on the screen, and 10 MEG recording
sessions were conducted. Each session included 20 movements
for each class. Based on [11] and [12], the same class of
movement was repeated 4 times during both the real and imag-
ined sessions to allow the participants to easily perform the
imagined movements (i.e., while performing the tasks, the par-
ticipants were asked to quickly move both hands once-only
at the same time, after the execution cue). The presentation
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order of the movement types was randomized. The participants
were instructed to perform the imagined or actual movements
without moving any other body parts, to avoid both muscle and
head motion artifacts. In addition, the experimental paradigm
and protocol were designed to enable the participants to kines-
thetically perform the indicated motor imagery task rather than
relying on visual imagery, while avoiding any motion during
the imagery task. To reduce fatigue, we asked participants to
take 10-min to 20-min breaks between the first five random
sessions and the rest sessions. The schematic of the overall
experimental paradigm is shown in Fig. 2(a).

Furthermore, a 3 T structural MRI scan was performed
to more clearly obtain detailed images of the head and
brain structures in slices for each subject. During the MEG
recording and MRI scanning, we measured certain reference
points. These reference points were used to co-register the
MEG sensor positions to voxel coordinates of the anatomical
data. An iterative closest points (ICP) algorithm was used
to refine this sensor/anatomy registration. The recorded MRI
data were converted using FreeSurfer software (Martinos
Center software, http://surfer.nmr.mgh.harvard.edu/) into a
format suitable for uploading on the Brainstorm software
(http://neuroimage.usc.edu/brainstorm), and we then aligned
the MEG data with the individual anatomical data. The acqui-
sition of individual anatomical MRIs of participants in this
study is desirable because the source localization is part of
the planned analysis.

C. Data Acquisition and Preprocessing
Neuromagnetic activity was sampled at 1000 Hz, after

which the temporal extension of the signal space separa-
tion method (tSSS) was used to suppress noise and artifacts
generated by the sensors and sources of interference located
very close to the MEG sensors. Because the spatial filtering
used in this study was based directly on Maxwell’s equations,
the operation can be called Maxwell filtering; hence, we used
MaxFilter 2.2 software to calculate the tSSS. A bandpass
filter from 0.5 to 100 Hz and a 60-Hz notch filter were
applied using Brainstorm software [39] to reduce some DC
and high frequency noises and eliminate AC line noise.
In addition, muscular activities were recorded using 8 elec-
tromyogram (EMG) electrodes positioned on the flexor and
extensor pollicis longus to measure hand flexion and extension
during the performance of bilateral movements. Thus, to obtain
the exact onset of the execution of real movement, we used
EMG signals as a trigger instead of using the onset time, on
the basis of the execution of the visual stimulus “×”. After
the presentation of the execution cue, robust EMG amplitudes
were observed during the real movement but not during the
imagined movement (see Supplementary Fig. 2). For voluntary
movements, 100 epochs per task were extracted in reference
to the MEG onsets. Each epoch had duration of 2 s, including
1 s of pre-onset and 1 s of post-onset. We performed the
same protocol for the imagined movements in reference to
the onsets of the visual and auditory stimuli. We calculated
the average of 100 epochs for each bilateral movement type
by using Brainstorm software. To clarify the brain activation
associated with bilateral hand movements, we applied the

continuous wavelet transform (Morlet wavelet) to plot the
2D time-frequency spectrogram of the average of each type
of hand movement over the sensorimotor cortex area. Then,
we analyzed the spatiotemporal frequency patterns over the
head (not only over the sensorimotor area) by calculating the
2D time-frequency representation by using all the MEG sen-
sors. The event-related power decreases/increases in the MEG
signals were calculated after computing the 2D time-frequency
spectrogram using Brainstorm functions during physical motor
execution and mental motor imagery, which is a widely used
technique in BMI studies. The frequency power of the event
periods was averaged across 100 trials before calculating the
ERD/ERS using a Morlet wavelet transform. For the SVM
classification, we used a single-trial for the binary and multi-
class decoding of bilateral movements using MATLAB 2016a
software (Mathworks, Natick, MA, USA), which was extended
to distinguish among the four classes using a multi-SVM.

D. Classification of Bilateral Hand Movements

In this study, the sensor-based BMI analysis took advan-
tage of the event-related phenomenon observed at spe-
cific MEG sensors located over the sensorimotor cortex
during real or imagined bilateral movements. To calculate
the classification accuracy over all the subjects, we used
binary SVM classifiers with the data from 114 MEG
sensors (see Supplementary Fig. 1) after the preprocessing
phase. For feature extraction, we used the MEG amplitudes
of the movement-related cortical fields from single trials
of 0 to 500 ms (i.e., from the EMG onset for real movements
and from the presentation of the execution cue for imagined
movements) for each MEG sensor around the sensorimotor
cortex for each bilateral hand movement. To reduce the feature
vector dimension, mean amplitude of single trial for each MEG
sensor around the sensorimotor was used instead of using the
whole time series which means the feature vector was the
amplitude-averaged activity within the temporal segment of
[0 500] ms. Thus, we calculated the average of the ampli-
tudes in each trial during a 500-ms interval for 114 MEG
sensors (the sensors were determined empirically according to
the time-frequency analysis within/across subjects). A feature
selection algorithm (sequential forward feature selection)
was applied to avoid the high multicollinearity between the
114 values of the feature vector (see Fig. 3). We randomly split
the MEG data (100 trials for each bilateral movement type)
to 75% training data and 25% testing data so that the testing
dataset was independent of the training dataset. Then we run
5-fold cross-validation approach in 75% of the trials in order to
get the best features which refer to the most informative MEG
sensors. Finally, we tested SVM model with the rest of 25% of
trials. For the multi-class classification, we used two different
algorithms: the hierarchical SVM algorithm [40], a decision
tree with an SVM classifier at each node, and the multi-SVM
(one against all [41]). We specified a Gaussian RBF kernel for
the decision function of the SVM classifiers.

For the statistical analysis, two-sample t-tests were con-
ducted to determine whether the classification accuracy
significantly exceeded chance levels (50% for the 2-class
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Fig. 3. Topography of the number of times a MEG sensor is selected
as significant feature using sequential feature selection method for
SVM classification across the cohort (114-MEG-selsected sensors sur-
rounded by black borders were empirically selected in this study from
both hemispheres above the sensorimotor cortex). See Supplemen-
tary Figure 1 for more details about MEG sensors’ labels. The color-
map (blue-red) is based on the number of subjects.

classification and 25% for the 4-class classification) with a
threshold of p < 0.05. Non-parametric statistical tests, such
as t-tests or two-way analysis of variance (ANOVA), and a
multiple comparisons test of means using Tukey’s method
were used not only to confirm that the decoding performance
significantly exceeded chance level but also to examine the
similarities and differences in decoding between the bilateral
movement types and participants and between the real and
imagined movements.

III. RESULTS

A. Time-Frequency Spectrograms of Bilateral Hand
Movements by Using a Wavelet Method

To better understand brain activation related to bilateral
movements, we analyzed the spatiotemporal frequency pat-
terns by calculating the time-frequency spectrograms by using
a Morlet wavelet transform at each of the MEG sensors over
the sensorimotor area.

Fig. 3 shows the average of a time series of 100 trials
and the corresponding time-frequency representation in a
representative subject, which represents a typical waveform
for a hand grasping movement using an invasive measure-
ment (i.e., ECoG). This typical waveform was observed with
most MEG sensors over the sensorimotor area while the sub-
jects performed or imagined contralateral and ipsilateral hand
movements. From the MEG time-frequency distribution (see
Fig. 4), we observed clear movement-related magnetic fields,
movement-related power decreases in the alpha/beta band from
0 to 0.5 s and power increases in the beta band (a clear post-
movement beta rebound was observed between 0.5 and 1 s),
but we did not observe any clear movement-related power
increase near the high gamma band (50-100 Hz) in a single-
trail level.

Fig. 4. An averaged waveform of a time series of 100 trials (shown
in red) surrounding the motor cortex (gradiometer sensor: MEG1623)
and the corresponding time-frequency representation of the movement-
related oscillatory changes in a representative subject. The time window
is between -800 and 1000 ms, the movement onset is at 0 ms, and the
frequency band ranges from 0.5 Hz to 100 Hz. The red area in the time-
frequency map indicates increases in the beta/gamma power (ERS), and
the blue areas indicate decreases in the alpha power (ERD).

In addition, the movement-related power increases and
decreases in the alpha and beta bands were distributed over
the sensorimotor areas in both cerebral hemispheres 136 ms
after the presentation of the execution cue in both bilateral
voluntary hand movements and motor imagery (see Fig. 5 and
Supplementary Fig. 3). Therefore, we used the spatiotemporal
patterns of the low-frequencies (8–30 Hz) of MEG sensors
surrounding the sensorimotor cortex to decode the type of
bilateral movement.

Regarding brain activation, we observed that the frequency
power did not always increase in the high gamma band
while the subjects executed the predefined tasks in this MEG
study, which is inconsistent with the ECoG results, in which
the power of the high gamma band has been reported to
increase [42]. Fig. 5 displays representative topological maps
of the alpha and beta bands in four bilateral hand move-
ments based on sensor-level analyses during motor execution.
We observed clear bilateral activation surrounding the sen-
sorimotor area during the four movement types of real and
imagined movements (i.e., in the real movement, a power
decrease can be observed after 136 ms and a power increase
can be observed after 409 ms). The F-values of the multiple
comparison tests were calculated for the representative sensor-
based time-frequency map of the four classes of bilateral
voluntary hand movements (see Fig. 6). Then, we calcu-
lated the group average of the sensor-based time-frequency
map of the four bilateral hand classes across subjects (see
Supplementary Figs. 4-11). A clear power increase/decrease
was observed in the MEG sensors surrounding the sensorimo-
tor area in all four bilateral hand classes across subjects in both
real and imagined movements. Based on these observations,
we selected the most relevant MEG sensors for the decoding
phase.
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Fig. 5. A representative sensor-based time-frequency map of four classes of bilateral voluntary hand movements based on a wavelet transformation
in a representative subject. The time window is between −500 and 500 ms; the movement onset is at 0 ms, and the frequency interval (alpha and
beta bands) ranges from 8 Hz to 30 Hz.

Notably, the frequency topography of the bilateral move-
ments exhibited bilateral patterns, such as an overlap between
the activation of both brain hemispheres, owing to the mag-
netic field characteristics caused by the resulting opposite field
direction in the case of opposite bilateral hand movements
and the partial cancelation of the magnetic field in the case
of the same bilateral movements with the presence of some
hemispheric dominance due to the right- or left-handedness of
the participants.

B. Single-Trial Binary Classification of Real and
Imagined Bilateral Hand Movements

The average amplitudes of single-trial movement-related
cortical fields from each sensor over the sensorimotor area
with time windows of 0-500 ms in 8 subjects and 0-300 ms
in 2 subjects were used as decoding features for classifying
the four bilateral hand movements [43]. The 500-ms time
window was used for subjects who showed a clear late latency
component (>200 ms) of the movement-related cortical fields

(see Fig. 3), while a window of 300 ms was used for
subjects who did not exhibit a clear final latency compo-
nent. We selected the 28 most informative MEG sensors
from 114 sensors over the sensorimotor area in both hemi-
spheres (see Fig. 3 and Supplementary Table 1).

The individual decoding accuracies for each subject on
the basis of a single-trial SVM classification indicated that
it was possible to discriminate the 4 types of simultaneous
bilateral hand movements by using the simple combination
set of 28 MEG sensors over the sensorimotor area, the given
time windows and the amplitudes of movement-related cor-
tical fields. The individual decoding accuracies varied from
60% to 85% by using all permutations of the four types of
bilateral movements (i.e., a 2-class classification of contralat-
eral and/or ipsilateral hand movements), whereas the mean
decoding accuracy averaging all 6 binary combinations of the
four bilateral movements across 10 participants was 74.56%
(SD: 1.9) for real movement; this classification accuracy sig-
nificantly exceeded the chance level of 50% with p < 0.001.
For imagined movement, the mean decoding accuracy was
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Fig. 6. F-values from multiple comparison tests of the representative sensor-based time-frequency map of four classes of bilateral voluntary
hand movements. The F-values shown in this figure are color-coded on 2D discs only for p-values <0.01 using the correction type of false
discovery rate (FDR). The power test was based on the magnitude, which is the square root of the frequency power. No brain activation was noticed
from −500 ms to 0 s.

Fig. 7. Classification rate (the means ± SD), determined by using an
SVM classifier, averaged across 10 participants for 6 classes of binary
permutations of bilateral hand movements (R/L-Open and/or R/L-Close,
R&L-Close, and R&L-Open) during performing and imagining tasks.
Error bars denote the standard deviation. The green dotted line denotes
a chance level of 50%. ∗ p < 0.005 using non-parametric permutation
tests. For each SVM classification method, the blue bars represent the
classification accuracy of the actual movement, and the red bars indicate
that of the imagined movement. Class 1: R-Open & L-Close vs. R-Close &
L-Open, class 2: R-Open & L-Close vs. R&L-Open, class 3: R-Open &
L-Close vs. R&L-Close, class 4: R-Close & L-Open vs. R&L-Open,
class 5: R-Close & L-Open vs. R&L-Close, class 6: R&L-Close vs.
R&L-Open.

70.41% (SD: 1.16), and this classification accuracy highly
significantly exceeded the chance level of 50%.

Fig. 7 illustrates the average mean of 6 binary com-
binations of the four bilateral movement classes averaged

across 10 participants. For class 1 (i.e., R-Open & L-Close
vs. R-Close & L-Open), we obtained a mean classification
of 72.51% (SD: 5.4%) and 70.23% (SD: 4.7%) for actual and
imagined movements, respectively. For class 2 (i.e., R-Open &
L-Close vs. R&L-Open), we obtained a mean classification
accuracy of 76.57% (SD: 4.5%) and 72.61% (SD: 3.38%)
for actual and imagined movements, respectively. For class 3
(i.e., R-Open & L-Close vs. R&L-Close), we obtained a
mean classification accuracy of 75.45% (SD: 5.6%) and
6962% (SD: 4.66%) for actual and imagined movements,
respectively. For class 4 (i.e., R-Close & L-Open vs.
R&L-Open), we obtained a mean classification accuracy of
76.02% (SD: 4.1%) and 69.91% (SD: 3.81%) for actual and
imagined movements, respectively. For class 5 (i.e., R-Close &
L-Open vs. R&L-Close), we obtained a mean classification
accuracy of 74.84% (SD: 5.1%) and 70.67% (SD: 6.12%)
for actual and imagined movements, respectively. For class 6
(i.e., R&L-Close vs. R&L-Open), we obtained a mean clas-
sification accuracy of 71.55% (SD: 3.1%) and 69.44%
(SD: 5.5%) for actual and imagined movements, respectively.

To examine the differences between real and imagined
bilateral hand movements, we used t-tests to calculate the
statistical significance of differences between the decoding
accuracies of the real and imagined movements for all subjects.
The results shown in Fig. 7 indicated significant differences
between mean classification accuracy of real and imagined
movements of all 6 classes (the value of the test statistic
“T(5) = 6.326”, p-value “p = 0.001”) and between the real
and imagined movements of class 4 (p = 0.002).
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We used a two-way ANOVA to evaluate the decoding
performance and to compare the classification results among
the six classes across 10 participants. For the real move-
ments, no significant differences were observed between par-
ticipants (F(9,59) = 1.27, p = 0.28), and no significant
differences were observed between classes (F(5,59) = 1.55,
p = 0.195). Using a multiple comparisons test of the means,
we observed that no classes had significantly different means,
except for classes 2 and 6, the means of which were signifi-
cantly different when using the Tukey-Kramer test for the type
of critical value. For the imagined movements, no significant
differences were observed using a two-way ANOVA between
classes (F(5,59) = 0.76, p = 0.583), but we observed
significant differences between participants (F(9,59) = 2.78,
p = 0.011). These significant differences may be related to the
performance of each participant on the imagery tasks. Using
a multiple comparisons test of means with the Tukey-Kramer
method, we observed that no classes had means that were
significantly different.

C. Multi-Class Decoding of Real and Imagined
Bilateral Hand Movements

Using single-trial multi-class decoding algorithms based
on an SVM classifier, we sought to distinguish between
the four types of bilateral hand movements. We found that
the individual decoding accuracy of real movements largely
exceeded the chance level (i.e., 25%), by using a hierarchical
SVM (p = 1.292e-10) and a multi-SVM (p = 9.296e-10).
For the imagined movements, we found that the individual
decoding accuracy also exceeded the chance level, by using
a hierarchical SVM (p = 9.204e-09) and a multi-SVM
(p = 1.237e-07). The average decoding accuracy for all
the subjects was approximately 50%, which is approximately
twice the chance level in both scenarios (performing and
imagining bilateral movements).

Fig. 8 shows the results of the multi-class classification of
bilateral hand movements during performing and imagining
tasks using two SVM algorithms. For the actual bilateral
hand movements, we obtained a mean classification accu-
racy of 49.12% (SD: 2.36%) and 48.02% (SD: 2.81%),
using the hierarchical SVM algorithm and multi-class SVM
(one against all) algorithm, respectively. For the imagined
bilateral hand movements, we obtained a mean classification
accuracy of 42.61% (SD: 2.79%) and 39.14% (SD: 2.92%),
using the hierarchical SVM algorithm and multi-class SVM
(one against all) algorithm, respectively. The multi-class clas-
sification results demonstrated that there was a significant
difference between the classification accuracies of the real and
imagined movements, as determined by using the hierarchical
SVM (p < 0.001) and multi-SVM (p < 0.001) algorithms.
These results were consistent with those in [44].

For decoding the real and imagined bilateral movements,
the Gaussian radial basis function (RBF) kernel SVM achieved
binary classification results near the real-time BMI require-
ment (i.e., a classification accuracy of 70%), whereas the
multi-class SVM algorithms achieved individual decoding
results with a classification accuracy approximately twice

Fig. 8. Mean accuracies averaged across 10 participants for the
multi-class classification of bilateral hand movements during performing
and imagining tasks when using two different SVM algorithms. Error
bars denote the standard deviation. The green dotted line denotes a
chance level of 25%. ∗∗p < 0.001 using non-parametric permutation
tests. For each SVM classification method, the blue bars represent
the classification accuracy of the actual movement, and the red bars
represent that of the imagined movement.

Fig. 9. Experiment setup of real-time decoding of bilateral hand
movements for MEG-based brain-Geminoid interface. We can see in this
picture, four screens from left to right: MEG data analysis (i.e., real-time
streaming, recording and processing of multi-channel MEG data), Gemi-
noid motion feedback using Skype, experimental paradigm interface, and
MEG room feedback.

the chance level. None of these results fell near or below
chance level.

D. Real Time Control of Humanlike Robot Hands

To demonstrate the efficacy of neuromagnetic decoding
of simultaneous bilateral hand movements in real world
applications, we controlled a human-like android robot
(Geminoid HI-2) by sending commands from Osaka city to
Kyoto city in Japan. The implementation of the control
application was divided into three modules, the MEG signal
acquisition, decoding module and the Geminoid control mod-
ule. MEG signals were recorded every 1 s using real-time
FieldTrip toolbox, the classification algorithm module was
implemented in MATLAB, and the Geminoid control mod-
ule (control’s logic) was implemented using Java language.
The last two modules interfaced with each other via TCP/IP
protocol (see Fig. 9).
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In these real-time tests, two subjects were asked to per-
form real-time control of humanlike robot hands with four
commands based on their four bilateral hand movements
(see Supplementary Video). For calibration phase, the par-
ticipants achieved an average accuracy of 73% for con-
tralateral hand movements and 77.75% for ipsilateral hand
movements. For real-time voluntary movements test, the
participants demonstrated reliable control of the humanlike
robot hands, achieving an average accuracy of 61.25% for
contralateral hand movements and 63.5% for ipsilateral hand
movements using 80 single-trials for each class for evaluation.
For motor imagery, a mean classification accuracy of 58.75%
and 59.5% were obtained for contralateral and ipsilateral hand
movements, respectively.

IV. DISCUSSION

All previous studies have decoded unilateral movements,
such as right or left hand/finger/toe grasping, and tongue
motions during real and imagined movements to achieve a
practical real-time BMI control [11]–[17]. These types of
unilateral BMI tasks are not suitable for the development
of multidimensional BMI systems that require higher dimen-
sional control and more naturalistic BMI tasks such as bilateral
arm/hand/finger movements [23]. The present study investi-
gated decoding the multi-class simultaneous bilateral hand
movements of a subject in the context of a noninvasive multidi-
mensional BMI for both voluntary control and motor imagery
situations. We analyzed and decoded the sensorimotor activ-
ity associated with four types of bilateral hand movements,
as determined using neuromagnetic event-related modulation,
to obtain proof-of-concept evidence for multidimensional BMI
applications. To our knowledge, no previous studies have
investigated the analysis and classification of 4 types of
bilateral hand movements by using noninvasive measurements.

Using sensor-based maps of magnetic fields and frequency
power, we found that the spatiotemporal distributions of neuro-
magnetic fields and oscillatory changes exhibited strong bilat-
eral activation with high ipsilateral activation at 136 ms around
the sensorimotor cortex (see Figs. 4 and 5). We observed
decreases in the frequency power in the beta and alpha bands
when the participant performs or imagines bilateral hand
movements. These results were consistent with those from pre-
vious studies that have reported the brain activation associated
with bilateral hand/finger movements [22], [24]–[26], [45].
Therefore, we were able to use single-trial amplitudes of the
28 MEG signals over the sensorimotor area as characteristics,
because these data carried sufficient spatiotemporal patterns to
distinguish all 4 types of bilateral hand movements.

In this study, for the binary classification of four types
of simultaneous contralateral and ipsilateral hand movements
that were performed during neuromagnetic measurements,
we achieved a mean classification accuracy of approximately
70% (i.e., the minimum accuracy requirement for reliable
BMI control [46]), by using single trials to decode real and
imagined bilateral hand movements. This decoding accuracy
demonstrated that the proposed multidimensional BMI para-
digm is promising for real-time continuous and multidimen-
sional control applications, in contrast to previous studies that

have classified unilateral movements, such as grasping, and the
rest state [11]–[19]. In addition, uni- and bi-lateral hand move-
ments can be combined to build a multidimensional BMI sys-
tem with more than seven commands, including the rest state.

In the present study, we also obtained a decoding accuracy
for a multi-class classification using two SVM algorithms
that was significantly higher than the chance level (25%).
The multi-class classification results in this paper are promis-
ing and are comparable to those of previous studies that
have reported different multi-class BMI paradigms [20]–[23].
In addition, use of advanced machine learning algorithms
such as deep learning methods or increasing the number
of trial repetitions (i.e., the decision rule based on a loop)
instead of using a single-trial SVM classification may increase
the classification accuracy. However, complex classification
algorithms are a drawback for a practical BMI, because these
approaches are generally slower than other classifiers. In most
cases, complex algorithms require a very large amount of
training data and are not sufficiently fast for real-time BMI
applications. A major limitation of the proposed BMI approach
is that it is subject-specific BMI, which requires individual data
calibration regularly and system training. It is still difficult
to overcome all of the limitations of BMI based on mental
motor imagery due to kinematic imagination variability and
the effects of practice. During physical motor execution, it is
desirable to use some compatible gloves to record precisely the
reaction times (RT) and movement kinematics (e.g. movement
velocity and range).

As noted above, the present MEG experiments sought
to provide a conceptual advancement and proof-of-concept.
Notably, being able to decode bilateral hand movements is an
important step toward understanding dual-task characteristics,
thereby leading to enhanced multidimensional BMI control
and performance. In summary, we used a single-trial SVM
classification to distinguish among four types of bilateral hand
movements by using MEG measurements in two scenarios:
motor execution and motor imagery. Regarding brain acti-
vation, the sensorimotor cortex showed discriminative time-
series signals and power frequency distributions in bilateral
hemispheres according to the four tasks. In addition, our
decoding results demonstrated the potential utility of bilateral
hand movement decoding for engineering purposes such as
multidimensional BMI control. Although further studies are
required, our decoding results suggested that our BMI protocol
may enhance human multitasking ability through the use of
multidimensional brain-controlled prosthetic devices.
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