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Abstract— On-going developments in myoelectric pros-
thesis control have provided prosthesis users with an
assortment of control strategies that vary in reliability and
performance. Many studies have focused on improving
performance by providing feedback to the user but have
overlooked the effect of this feedback on internal model
development, which is key to improve long-term perfor-
mance. In this paper, the strength of internal models devel-
oped for two commonly used myoelectric control strategies:
raw control with raw feedback (using a regression-based
approach) and filtered control with filtered feedback (using
a classifier-based approach), were evaluated using two
psychometric measures: trial-by-trial adaptation and just-
noticeable difference. The performance of both strategies
was also evaluated using Schmidt’s style target acquisition
task. Results obtained from 24 able-bodiedsubjects showed
that although filtered control with filtered feedback had
better short-term performance in path efficiency (p < 0.05),
raw control with raw feedback resulted in stronger internal
model development (p < 0.05), which may lead to better
long-term performance. Despite inherent noise in the con-
trol signals of the regression controller, these findings
suggest that rich feedback associated with regression con-
trol may be used to improve human understanding of the
myoelectric control system.

Index Terms— Prosthetics, electromyography, support
vector machines, internal model, learning, performance,
muscles, control systems, mathematical model, real-time
systems, testing.

I. INTRODUCTION

DECADES of advancements in myoelectric signal acqui-
sition and processing have made myoelectric controlled

prostheses a promising option for upper limb amputees [1].
Nevertheless, precise real-time decoding of movement intent
from highly variable myoelectric signals and adequate methods
of providing feedback to users remain a challenge [2]–[4].
Myoelectric signal variability can contribute to inconsistency
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in prosthesis control that results in unintended prosthesis
movements [5]. Many research studies have tackled this issue
by exploring feature extraction methods to obtain more useful
and robust information from noisy myoelectric signals [6].
Time domain and frequency domain features are some of
the most referenced of these features and are commonly
used in conjunction with pattern recognition algorithms imple-
mented in myoelectric control systems [7], [8]. The current
myoelectric control systems can be broadly categorized as
on/off control, proportional control, classifier-based control,
and regression-based control [9].

On/off control strategies are used for binary control of a
device, whereas proportional control strategies facilitate con-
trol over the speed of the prosthesis movement [10]. Although
these types of control strategies are considered robust and
have found clinical acceptance, the direct controllable number
of degrees-of-freedom is limited by the number of usable
independent control sites [11]. Classifier-based pattern recog-
nition approaches are able to overcome this limitation, but are
only capable of classifying movements sequentially [12], [13].
This drawback has more recently been overcome through
1) implementing various classifier “distributed topologies” by
using singular classifiers to compare different combinations of
classes and therefore enable simultaneous control [14], [15],
but at the expense of accuracy and with limited control
over speed and 2) use of regression-based myoelectric con-
trollers [6], which enable simultaneous and independent speed
control but at the expense of the robustness of single-class
classifier-based approaches to unintentional changes in con-
traction patterns.

Feedback has also been shown to be of importance for
robust control and in improving performance [16]. Feedback
can be used for real-time regulation of control signals, as well
as in the development of the user’s understanding of the
system, known as their internal model [17]. Many researchers
have explored the effect of feedback for real-time regulation
on performance, but little work has explored its effect on
internal model development (in part due to an inability to
evaluate or quantify internal model strength) [18].

Quantifying this internal model enables the development
of better control strategies by identifying which control
strategies promote better understanding of the system and
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may therefore lead to better long-term performance. In a
recent study [19], researchers investigated the effect of using
two different myoelectric control strategies on user adapta-
tion, which is one of the facets that can be used to esti-
mate the strength of an internal model [20], [21]. Their
results showed promising evidence that inherent feedback in
myoelectric control strategies influences adaptation, which
should in turn influence the user’s corresponding internal
model.

In our work we sought to explicitly demonstrate that influ-
ence on a person’s internal models by measuring adaptation
rate along with along with other factors, such as sensory noise
and controller noise, which are necessary to calculate internal
model strength. We used a recently developed psychophysical
framework to assess the internal models developed using two
myoelectric control strategies that differed in the feedback
provided to the user during a multi degree-of-freedom (DOF)
target acquisition task. The underlying signal processing for
both control strategies was done using the same pattern
recognition algorithm to ensure that only the feedback effect
impacted the internal model strength. The first strategy imple-
mented feedback-rich but noisy (variable) regression-based
control, which we refer to here as raw controller with raw
feedback (RCRF). The other control strategy was analogous
to a classifier, which provided reduced (discretized) feedback
but more forgiving control, and is referred to here as filtered
controller with filtered feedback (FCFF). The psychometric
test results detailed below support the hypothesis that the
feedback-rich controller enables a low sensory uncertainty
and strong internal model leading to a high adaptation rate.
Conversely, performance test results indicate that the filtered
classification-based controller yielded better short-term path
efficiency and accuracy.

II. METHODS

A. Tested Control Strategies

Many machine learning algorithms have been proposed
to translate information in the myoelectric signals to either
sequential or simultaneous control. Linear Discriminant
Analysis (LDA) [22], Linear Regression (LR) [23], Support
Vector Regression (SVR) [24], [25], and Artificial Neural
Networks (ANN) [26] are some of the commonly used data-
driven approaches used to identify myoelectric signal patterns
for the purpose of control. SVR, in particular, is based in
support vector machine (SVM) theory and can be used for
either classification or regression control tasks. In both cases,
SVM/SVR has been shown to yield performance superior to
that of LDA/LR [6], [25], [27]. When employed as a regressor,
the output is a kernel-based weighted mixture of the inputs,
supporting simultaneous activation of more than one DOF
at a time. This strategy is referred to here as RCRF due to
the direct relationship between inputs and both control and
feedback outputs. To approximate a classification output, while
preserving the same decision space, the FCFF controller was
achieved by gating all RCRF activations other than that of the
DOF with highest level of activation (the classifier selected
only the single most active DOF) (Fig. 1).

Fig. 1. Example of control signals for 2 DOF task using Raw control and
Filtered control. Raw control allows simultaneous activations of more
than one DOF at a time. Filtered control selected only the single most
active DOF.

B. Experimental Setup
Subjects sat in a comfortable chair in an upright position

with their line of sight perpendicular to a computer display
screen. The height of the chair was adjusted to ensure a
comfortable posture and that the subjects’ right arm was fully
relaxed in a restrainer. This restrainer consisted of a fixed
foam-padded wrist support, an adjustable foam-padded elbow
support, and a foam-padded hand slot that provided resistance
to hand movements while providing a comfortable setting
during scheduled breaks between testing blocks. A UNB
Smart Electrode System [28] was placed on the subject’s
right forearm (Fig.2) and the real-time myoelectric signals
extracted from muscles contractions were monitored using
the Acquisition and Control Environment (ACE) software
package [29] developed using MATLAB (Release 2007, The
MathWorks, Inc., Natick, Massachusetts, United States).

Using isometric muscle contractions of the wrist extension/
flexion and abduction/adduction, subjects controlled a cursor
on the computer screen to acquire targets in a custom pro-
gram that we implemented within the ACE software package.
Targets consisted of cross-hairs that appeared at randomly
ordered pre-determined positions on the screen. Using a
Schmidt’s style test paradigm [30], a shrinking red circle
of 10 pixels radius surrounded each target. This circle shrank
for a pre-specified amount of time, which was determined by
the testing configuration, before disappearing to indicate the
end of a trial and the beginning of the next trial.

C. Subjects
Twenty-four right-handed subjects with either normal or

corrected-to-normal vision (13 male and 11 female, mean and
SD of age: 25 ± 5 years) provided written consent to partici-
pate in a three-hour experimental session. These subjects were
recruited primarily by word-of-mouth or the University of New
Brunswick (UNB) public news and notices. Participants were
informed of the overall purpose of the study, but were naive
to the specific purpose and outcomes of the built-in testing
blocks. The University of New Brunswick Research and Ethics
Board approved this study and no compensation was provided
for participation.

Eighteen of those subjects were randomly assigned to either
group 1 or group 2 (nine subjects each) and the remaining
subjects were assigned in a follow up study to group 3.
All subjects in this study completed the same testing blocks,
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Fig. 2. Experimental Setup. A subject performing the target familiariza-
tion block by controlling a cursor on the screen using myoelectric signals
sensed by the UNB Smart Electrode System, which is placed on the
subject’s forearm, to acquire a target.

but the order of the control strategy presentation depended on
which group a subject was assigned to. Group 1 subjects tested
the RCRF control strategy first and then the FCFF control
strategy, leaving group 2 subjects to start with testing the FCFF
control strategy and then the RCRF control strategy.

To investigate any possible learning effect due to prolonged
use of the myoelectric system, group 3 subjects acted as a
control group for this study, testing the FCFF control strategy
twice.

D. Experiment Protocol
After obtaining consent from the subjects, they were asked,

on a scale from 0 to 2, to rate their myoelectric control experi-
ence between no experience and moderate experience. Before
placing the UNB Smart Electrode System on the subject’s
right hand, the skin over their forearm was cleaned using
an alcohol wipe. A couple of minutes were allowed for the
real-time myoelectric signal amplitudes to settle below

1 micro-volt after which the controller model training block
started. In this training, subjects were asked to follow the
position of a cursor on the screen using isometric muscle con-
tractions of the wrist for extension/flexion DOF and adduction/
abduction DOF, twice for each DOF, and their myoelectric
signals were recorded. An SVR pattern recognition algorithm
used time-domain features extracted from these recorded sig-
nals to form the base model of the controllers used in this
study. For each controller tested, subjects completed four
blocks in the following order:

1) Control Practice and Target Familiarization: This block
consisted of three mini tasks. For the first task, subjects were
asked to ‘paint the screen’ by controlling a brush on the
computer screen and trying to cover the maximum achievable
area on the screen in one minute. This task was used to
determine and optimize the cursor velocity mapping for each
subject (20 pixels/s). Afterwards, subjects were given time
to learn how to use the controller by instructing them to
freely control a cursor on an empty screen starting with mild
contractions in one DOF at a time and then exploring the
different muscle contraction combinations and their effect on
the controlled cursor for two minutes.

The last mini task consisted of three sets of 16 targets. Each
target in those sets appeared at a random position from 1 of
8 predetermined positions on the screen and subjects were
prompted to reach that target in 12 seconds or less. If a target
was acquired in less than the indicated time, a motivational
“Successful” green text appeared on the screen, the screen was
cleared, and a 3 seconds count down started before another
target appeared. Conversely, if the target was not acquired in
the indicated time, a red “Time Out” text appeared on the
screen, before beginning the countdown for the next target.
Subjects were allowed to proceed to test blocks when they
successfully acquired at least 75% of these targets.

2) Adaptation Rate Test: Subjects were instructed to acquire
a single target on the horizontal axis over a set of 80 trials.
A trial started when the target appeared on the screen and
ended after 2 seconds. Subjects were allowed 1 second to
relax the contracted muscles between trials. If the target was
acquired, the trial ended before the 2 seconds elapsed and
provided the subject with a motivational “Successful” text,
otherwise the trial terminated after the 2-second mark. Subjects
were instructed to hold the cursor within a shrinking target for
200 msec for this target to be rated as successfully acquired.

3) Just-Noticeable-Difference(JND) Test: The JND is a mea-
surement of sensory thresholds related to the estimation of
specific points of the psychometric function underlying the
perception of sensory stimuli [31]. In the experimental design
of the JND test, the subject was forced to select between
two alternative choices presented, with one of the choices
having a specific stimulus added. This method is known as
two-alternative forced-choice (2AFC) task, and the stimulus
used was computed using an adaptive staircase [31], [32]. This
adaptive staircase quickly converges to the JND by adapting
the stimulus amplitude of each trial according to the following
equation:

C(n+1) = Cn − S

nRev + 1
× (Zn − φ), (1)
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Fig. 3. Example of a stimulus added to control signal activating cursor
movement. The blue line shows actual control signal and the green line
shows the perturbed control signal.

where C is the stimulus, n is the trial number, S is the step
size, nRev is the number of reversals between the correct and
incorrect states, Z is a binary quantity that depends on the
response at the nth trial as follows: Z is equal to 1 in case
of success and 0 in case of failure, and φ is the accuracy
(set to 0.84) [33]. For this block, subjects were asked to reach
a single target twice in 2 seconds and then identify which of
the two trials had the added stimulus. Subjects were not given
feedback on their response.

Following the (modified standard, standard) method design
discussed in [34], the stimulus used was restricted to a counter-
clock wise rotation of the control signal (Fig. 3). Data collected
from three subjects in a pilot study was used to obtain an
estimate of the initial stimulus to be used in this study.
Only the target lying on the positive x-axis was explored
and the test block terminated when the number of reversals
reached 23 [35].

4) Performance Test: To assess the performance of each
controller, subjects were asked to complete three challenging
target sets. Each target set consisted of 16 targets which
appeared at a random position drawn from 1 of 8 predeter-
mined positions on the screen. For the first set of targets, sub-
jects were instructed to acquire each target within 2 seconds.
This time constraint was further reduced to 1.7 seconds for
the second target set. The last challenge required subjects
to acquire targets in 1.4 seconds or less per target. A short
description of the tasks required in each block is listed in
Table I.

E. Outcome Measures
The main goal of this study was to assess the developed

internal model strength and the performance of two com-
monly used myoelectric controllers. To accomplish this goal,
a novel framework is used to assess internal model strength.
This framework models a positioning task as a function

TABLE I
SUMMARY OF THE TEST BLOCKS

of three variables: the sensory uncertainty (R), the control
uncertainty (Q), and the internal model uncertainty (Pparam).
For any experiment, these three variables interact to affect
performance and decision, but as we show in supplementary
material, their individual contributions may be extracted by
collecting data for a particular set of psychophysical exper-
iments, including 1) a trial-by-trial adaption rate test and
2) a two-alternative forced-choice test to evaluate JND. The
supplementary material explains the math behind this extrac-
tion. The particular parameter of interest in this study is
Pparam , which is a direct measure of the user’s confidence
in their internal model.

1) Trial-by-Trial Adaptation: Adaptation rate is a measure
of how much the nervous system changes or modifies an
internal model for a given task [36]. This rate is extracted
by quantifying the rate of feedforward modification of the
unfiltered control signal from one trial to the next based
on error feedback from the last trial [37]. Following the
same procedure used to compute the adaptation rate in [38],
the following equation was used to extract this rate

errorn+1 − errorn = β1 × errorn + β0, (2)

where error is the angle formed between the horizontal axis
and the initial cursor trajectory, n is the trial number, β0 is the
linear regression constant, and −β1 is the adaptation rate.

2) JND: This parameter is a measure of the minimum
perceivable stimulus in degrees identified by the subject when
using each control strategy and was identified after the ter-
mination condition for the JND test has been satisfied. This
parameter was used to quantify the amount of controller
noise and sensory noise for each controller on a per subject
basis [39].

3) Internal Model Uncertainty Pparam: We used a model of
adaptation [40], but with an important modification to quantify
uncertainties in the internal model parameters given con-
troller noise and sensory noise parameters (see supplementary
material). These uncertainties are represented in the Pparam

parameter. The lower the value of this parameter, the higher
the strength of the internal model developed.

4) Performance: An experimental protocol was designed
with which the short-term performance of the control strategies
could be objectively evaluated using the following indicators.
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a) Path efficiency: Paths taken to reach targets within a
given time constraint during the performance test block were
compared against the optimal paths [3] i.e., path optimizing
distance covered, to compute efficiency.

ηp =
(

1 − P − P∗

P∗

)
× 100, (3)

where ηp is the path efficiency in percent, P is the actual
path taken, and P∗ is the computed optimal path. To ensure
consistency of this measure, the optimal path for the RCRF,
which enables 2-DOF simultaneous control, was computed as
the shortest radial path between the cursor’s starting point and
the final point where the cursor landed when the trial was
terminated. For the FCFF, which allows for the activation of
only one DOF at a time, the optimal path was computed as
the L1 norm (Manhattan) distance (total distance travelled in
X axis added to the total distance travelled in Y axis) covered
to reach the final point where the cursor landed.

b) Accuracy: The accuracy was defined as how closely a
target is reached given the time constraint. As with the tech-
nique used to ensure consistency in assessing path efficiency,
the radial error was defined as the distance between the center
point of a target and the actual final point reached for RCRF
tests. This error was calculated as

RE =
√

(tx − cx)
2 + (

ty − cy
)2

, (4)

where RE is the radial error, t is the target Cartesian coordi-
nates and c is the final cursor position in Cartesian coordinates.
The distance error for the FCFF tests was computed as

C E = (|tx − cx |) + (|ty − cy|
)
. (5)

The ratio between RE and the shortest radial path from the
starting point to the center of a target was used to compute
the accuracy for the RCRF control strategy as

ηa =
(

1 − RE

P∗

)
× 100, (6)

and the ratio between C E and the L1 norm (Manhattan)
distance path from the starting point to the center of a target
was used to compute the accuracy for the FCFF control
strategy as

ηa =
(

1 − C E

P∗

)
× 100, (7)

where ηa is the accuracy in percent.

F. Data Analysis
Myoelectric signals, controller activation, and the cursor

path were recorded for each trial in the test blocks. For the
trial-by-trial adaptation rate, error angles were computed for
the first 300–500 msec of each trial to capture the subject’s
feedforward intent without incorporating feedback for real-
time regulation. Only the successfully acquired target trials in
the adaptation rate test were used to assess the path efficiency.
Subject responses and the stimuli used in the JND test were
recorded. All error bars shown in the figures were based on
the standard error of the mean (SEM) to reflect its dependency
on the sample size [41].

Fig. 4. Trial-by-trial adaptation to self-generated error results across
control strategies tested by subjects in groups 1 and 2. Horizontal bars
indicate significant difference.

G. Statistical Analysis
The outcome measures presented in the previous section

were analyzed using two sample t-tests (equal sample size)
in MATLAB and the Statistics Toolbox (Release 2014a, The
MathWorks, Inc., Natick, Massachusetts, United States) to
investigate the effect of controller type on each of these
outcome measures. The Statistical Package for the Social
Science software SPSS (IBM Corp, Released 2016, IBM SPSS
Statistics for Windows, Version 24.0. Armonk, NY: IBM Corp)
was used to conduct an ANOVA to investigate the effect of
controller testing order on the performance and the internal
model uncertainty Pparam . Finally, an ANOVA with repeated
measures was used to compute the intraclass correlation coeffi-
cient of the adaptation rates, JNDs, internal model uncertainty,
and path efficiency of group 3 subjects using a two-way mixed
effects model with absolute agreement at a 95% confidence
interval to investigate learning effects [42]. All analyses used
a significance criterion of α = 0.05 and Leven’s test in SPSS
was used to investigate homogeneity in variances of the data
being analyzed to ensure that parametric test assumptions
were satisfied. If they were not satisfied, nonparametric Mann-
Whitney U test was used.

III. RESULTS

The main goal in this study was to investigate the effect of
using two commonly used myoelectric control strategies on
the strength of the internal model developed for a reaching
task. The first control strategy, RCRF, represents a regression
control strategy that allows for simultaneous control in more
than 1 DOF at a time and is rich in feedback, but has compa-
rably noisy control signals. The other control strategy, FCFF,
has less variable control signals, but has reduced feedback
and only allows for activation of only 1 DOF at a time.
In this work the short-term performance and the strength of
the internal model developed were assessed when using these
control strategies. To further expand on this work, short-term
performance in a target acquisition task was also evaluated
when using both control strategies.

A. Adaptation Rate Test

From equation 2, −β1 = 1 indicates perfect adaptation;
lower values indicate lower adaptation; and a value higher
than 1 indicates overcompensation. All subjects achieved
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Fig. 5. Overall JND results across control strategies for groups 1 and 2.
Subjects using the RCRF control strategy were able to obtain lower
JND than subjects using FCFF control strategy. Horizontal bars indicate
significant difference.

high adaptation rates when using the feedback-rich RCRF
control strategy, regardless of the order of presentation of
the controllers (Fig. 4). In contrast, the order of presentation
had a significant effect on the adaptation rate of subjects
using FCFF after being exposed to RCRF and subjects using
FCFF before being exposed to RCRF (two-sample t-test,
p < 0.001). Upon performing t-tests on the adaptation rate
data for groups 1 and 2, a significant difference was found
between subjects testing RCRF in both groups 1 and 2 and
subjects testing FCFF in group 2, who were not exposed
to RCRF (two-sample t-test, p < 0.001). No significant
difference was found between adaptation rate data of subjects
using RCRF and subjects using FCFF after being exposed to
RCRF. Exposure to the RCRF control strategy enabled sub-
jects to adapt more when using the FCFF control strategy. This
effect could be a result of either a translation of the internal
model developed for RCRF to FCFF in group 1 subjects or a
ramification of prolonged use of the myoelectric system, which
was further investigated in more details using group 3 subjects’
results.

B. JND Test
The perception threshold for each controller was measured

using the 2AFC procedure, in which an adaptive staircase was
used to determine the stimulus to be added. The lower the
threshold a subject was able to identify, the better ability to
detect and adjust for smaller changes in the control system
they had. In this test, subjects were able to identify a lower
threshold when using RCRF than when using FCFF, regardless
of the order of presentation (Fig. 5). Likewise, there was no
significant effect due to the order of controller presentation on
JND values when using FCFF. Results show that, on average,
subjects were able to identify a stimulus that was at least 15°
lower when using RCRF than when using FCFF (Fig. 6).
In fact, subjects using RCRF in group 2 had a significantly
lower JND value than subjects using FCFF in both groups
(two-sample t-test, p < 0.05). Even though subjects using
RCRF in group 1 obtained lower JND values than when using
FCFF in the same group, this difference was not significant
(two-sample t-test, p = 0.07). These JND values were, how-
ever, significantly lower than the values obtained by subjects
using FCFF before being exposed to RCRF (two-sample t-test,
p < 0.05). These results indicate that RCRF may enable users

Fig. 6. Sample data for a subject in group 1 showing the stimulus
amplitude adjusted according to an adaptive staircase with a termination
condition of 23 reversals and targeting 84% detection threshold.

Fig. 7. Internal model uncertainty results across control strategies for
groups 1 and 2. RCRF control strategy allows for the development of a
less uncertain internal model parameters than the FCFF control strategy.

to identify smaller perturbations or changes in the controller
by providing them with more detailed feedback.

C. Internal Model
Psychophysical parameters extracted from tests conducted

in this study were used to quantify uncertainty in the internal
model parameters developed in response to a control strategy.
Quantifying this uncertainty allows for the identification of
the control strategy that enables the development of a stronger
internal model by indicating the one that enables lower internal
model parameter uncertainty.

Fig. 7 shows results for internal model uncertainty for the
feedback-rich RCRF control strategy and the reduced feedback
FCFF control strategy. These results show that subjects who
used FCFF before being exposed to RCRF had significantly
higher internal model uncertainty than subjects who used
RCRF in group 1 (Mann-Whitney U test, p < 0.05) and RCRF
in group 2 (Mann-Whitney U test, p < 0.01), which suggest
that a feedback-rich control strategy may enable the formation
of a stronger internal model.

In addition, subjects who used FCFF before being exposed
to RCRF had significantly higher internal model uncertainty
than subjects who used FCFF in group 2 (Mann-Whitney
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Fig. 8. Results for accuracy normalized by the optimal distance between the starting point and the center of a target computed for each control
strategy. (a) On-axis targets accuracy results show that subjects testing RCRF in group 1 achieved the lowest accuracy, but subjects in group 2 testing
the same controller achieved the highest accuracy. (b) Off-axis targets accuracy results show a significant drop in the accuracy for subjects using
RCRF in group 2 and all other controllers.

Fig. 9. Results for path efficiency calculated with respect to the optimal path between the starting point and the final point reached computed for
each control strategy. Numbers on bars show average acquired targets (maximum 8). (a) On-axis targets path efficiency results show that subjects
testing RCRF in group 2 achieved the highest path efficiency and the highest success count for acquiring targets, but subjects in group 1 testing
the same controller acquired the lowest success count for acquiring targets. (b) Off-axis targets path efficiency results show a significant increase
in path efficiency for group 1 subjects testing FCFF after being exposed to RCRF.

U test, p < 0.05). This result suggests not only that using
a RCRF control strategy aids in the development of a less
uncertain internal model, but also the possibility of translation
of the internal model i.e., no significant difference between
internal model uncertainty for subjects using FCFF after
being exposed to RCRF and subjects using RCRF in both
groups 1 and 2.

D. Performance
The short-term performance of each control strategy was

evaluated by determining how accurately and efficiently the
task was achieved using endpoint accuracy and path efficiency.
In the performance test, subjects were asked to acquire targets
that were either on-axis, which optimally required the acti-
vation of 1 DOF, or off-axis, which optimally required the
activation of 2 DOF simultaneously.

Results for the on-axis targets accuracy show that there was
no significant difference between the control types, however
the exposure to any controller had a significant effect on
improving accuracy of the second controller tested. A con-
troller that was tested in the second block outperformed the
controller that was tested in the first block (two-sample t-test,
p < 0.01) (Fig. 8. a), regardless of controller.

Interestingly, subjects using RCRF after being exposed to
FCFF had significantly lower accuracy for off-axis targets than
subjects using FCFF in both groups 1 and 2 (two-sample
t-test, p < 0.01) and subjects using RCRF before being
exposed to FCFF (two-sample t-test, p < 0.01), which
suggests that subjects were influenced by the technique they
used to reach off-axis targets using the sequential FCFF control
strategy and therefore didn’t make use of the RCRF ability to
do simultaneous movements.

The second performance assessment tool used here was
path efficiency (fig. 9). Equation 3 was used to compute path
efficiency for the control strategies tested in the performance
test. On-axis targets path efficiency results show that for a
simple 1 DOF task there was no significant difference between
subjects who used RCRF first and FCFF first, however there
was a significant increase in the path efficiency when retesting
using any controller (two-sample t-test, p < 0.01). This
observation may be a result of subjects exploring effective
techniques that can be implemented using both control strate-
gies. It is also worth noting the increase in the successfully
acquired target count when retesting a controller. In particular,
the successfully acquired target count when using RCRF after
being exposed to FCFF was 5 times higher than the count for
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TABLE II
SUMMARY OF GROUP 3 TEST RESULTS

RCRF before being exposed to FCFF. This result suggests
that there is a possible improvement in achieving 1 DOF
tasks using the RCRF if the subject was exposed to a 1 DOF
sequential control strategy.

For the off-axis target path efficiency, results show a sig-
nificant improvement when using FCFF after being exposed
to RCRF (two-sample t-test, p < 0.05), which may support
the claim that using FCFF could be improved for a 2 DOF
task if the subject was first exposed to a simultaneous control
strategy like the RCRF. In addition, results show a drop in
the successfully acquired target count of about 3 times when
using RCRF after being exposed to FCFF.

E. Group 3 Results
For this group, a test-retest experiment was conducted using

only the FCFF control strategy. Table II summarizes the
statistical analysis for the results obtained from this group.
These results show that there was no significant difference in
internal model assessment parameters or performance mea-
sures when testing FCFF twice. In fact, test results for
adaptation rate, JND, and internal model uncertainty showed
no significant within-subject effect of retesting FCFF with
good reliability (ICC > 0.6). Similarly, performance measure
test results for both on-axis and off-axis targets indicated no
significant difference between block 1 and block 2.

IV. DISCUSSION

Research efforts in the field of myoelectric control have
provided many solutions to improve control and performance.
Classifiers, as represented here by FCFF, and regression con-
trol, as represented as RCRF, are two of the more commonly
used emerging solutions. Despite differences in feedback and
control signals, each of these control strategies has been
found to overcome the limitations of conventional myocon-
trol [5], [6], [11], however their effect on the developed
internal model strength, which affects user’s adaptation and

the long-term performance, had not been explored. In this
study, not only the short-term performance, but also the inter-
nal model strength were assessed using psychophysical and
performance tests for a multi-DOF virtual target acquisition
task.

Psychophysical test results showed that RCRF enabled
significantly higher adaptation to self-generated errors and
the achievement of significantly lower perception threshold
than FCFF. These parameters were reflected in the internal
model strength, where it was also found that subjects who
used RCRF developed an internal model that was significantly
less uncertain (more confident) than subjects using FCFF.
These results support our hypothesis that feedback-rich control
strategies like RCRF enable the development of a stronger
internal model than reduced-feedback control strategies like
FCFF. Conversely, performance test results show that subjects
had slightly better path efficiency and accuracy when using
FCFF than with RCRF, which prompts a question about how
much feedback is most useful for the development of a strong
internal model without sacrificing the short-term performance.

The exposure to a feedback-rich control strategy enabled
subjects to adapt more when using a reduced-feedback con-
trol strategy afterwards. It was found that this effect was a
result of a translation of the internal model developed by the
feedback-rich controller to the reduced feedback one and not a
ramification of prolonged use of the myoelectric system. This
phenomenon has been observed in earlier studies as structural
learning [43], [44]. Test results from group 3 subjects who
tested the reduced feedback control strategy twice indicated
that the prolonged use of this controller did not improve
performance or internal model strength.

To be able to compare performance results of the 2 DOF
simultaneous RCRF control strategy with the 1 DOF sequen-
tial FCFF control strategy, the performance metrics for each
control strategy were defined differently. Manhattan distances
(L1 norm) were used to compute path efficiency and accuracy
for the FCFF control strategy and radial (L2 norm Euclidean)
distances were used to compute path efficiency and accuracy
for the RCRF control strategy. This approach was used to
reduce bias in the performance metrics.

Results from this study demonstrate that there was a signif-
icant improvement in the on-axis targets path efficiency and
accuracy when using FCFF after being exposed to RCRF.
Since the task of reaching on-axis targets only requires a
simple activation of 1 DOF, the improvement in both accuracy
and path efficiency may be a result of subjects using the
understanding of how to effectively control the cursor in
1 DOF when they were exposed to the 2 DOF feedback-
rich RCRF control strategy first and therefore informing their
choice of the technique to be used to acquire targets when
using FCFF. It should be noted that the exposure to any
controller had a significant effect on improving accuracy of
the second controller tested. From this, it may be surmised that
previous experience, i.e., effective control technique developed
and used for a control strategy, may be translated from one
control strategy to another.

In contrast to our findings, Hahne et al. [19] found
that classifier-based control yielded worse path efficiency
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TABLE III
SUMMARY OF STATISTICAL TEST RESULTS FOR SUBJECTS USING RAW

CONTROL RAW FEEDBACK IN GROUP 1 AND SUBJECTS USING

FILTERED CONTROL FILTERED FEEDBACK IN GROUP 2

than regression (they reported classifier path efficiencies
of 0.27±0.12). We found similarly poor results during a
preliminary investigation using LDA/LR approaches, and sub-
sequently transitioned to SVM/SVR approaches, which have
been shown to have superior performance and are equally
clinically viable [6], [25]. Also in contrast to [19], which
employed a position control paradigm, we used a velocity
control paradigm (EMG was mapped to cursor velocity rather
than position) as it is less noisy and much more commonly
used in clinical practice [45], [46]. These two differences
likely account for the difference in performance found between
the two studies. The substantially better performance seen in
this work, coupled with a more clinically relevant control
paradigm likely enabled us to more accurately isolate the
effects of feedback as they pertain to internal model strength.

For a grasp and lift task, researchers have investigated the
effect of feedback on performance and found that feedback
improved control signals [47] even after the feedback was
removed [48], which was credited to the use of internal
models [49]–[51]. However, these internal models were found
to be unstable over time [48]. We hypothesize that this
finding could be due to weakness (high uncertainty) of the
internal models developed for the myoelectric controller used.
Other researchers have employed psycho-physiological mea-
surements to assess cognitive effort with and without sensory
substitution methods when controlling a robot hand and found
that augmenting vision with other sensory feedback reduced
attentional demand [52]. We hypothesize that this reduction
in attention may be due to the use of augmented feedback
(feedback-rich) to build strong internal models, which are
used for feedforward control and therefore enabling users to
rely less on feedback for real-time regulation. The framework,
psychophysical tests, and outcome measures presented here
may be used to further investigate these hypotheses.

An obvious extension of this work could be using the
psychophysical tests and outcome measures implemented here
for a grasp-and-lift task [49] using a prosthetic hand. The

assessment tools used in this work could be used in the
development of new myoelectric control strategies that enable
strong internal model and better performance.

In conclusion, despite classifiers such as FCFF enabling
better short-term performance, regression approaches such as
RCRF enabled the development of a stronger internal model,
which may lead to better long-term performance [53]. With
this conclusion in mind, future contributions to training and
use of myoelectric prosthesis devices could be enabled by
allowing users to train using feedback-rich controllers to
develop a strong internal model and therefore improve long-
term performance when using other controllers.

APPENDIX

See Table III.
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