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Surrogate-Based Artifact Removal From
Single-Channel EEG

M. Chavez , F. Grosselin, A. Bussalb, F. De Vico Fallani, and X. Navarro-Sune

Abstract— Objective: the recent emergence and suc-
cess of electroencephalography (EEG) in low-cost portable
devices, has opened the door to a new generation of appli-
cations processing a small number of EEG channels for
health monitoring and brain-computer interfacing. These
recordings are, however, contaminated by many sources of
noise degrading the signals of interest, thus compromis-
ing the interpretation of the underlying brain state. In this
paper, we propose a new data-driven algorithm to effectively
remove ocular and muscular artifacts from single-channel
EEG: the surrogate-based artifact removal (SuBAR).
Methods: by means of the time-frequency analysis of sur-
rogate data, our approach is able to identify and filter
automatically ocular and muscular artifacts embedded in
single-channel EEG. Results: in a comparative study using
artificially contaminated EEG signals, the efficacy of the
algorithm in terms of noise removal and signal distortion
was superior to other traditionally-employedsingle-channel
EEG denoizing techniques: wavelet thresholding and the
canonical correlation analysis combined with an advanced
version of the empirical mode decomposition. Even in the
presence of mild and severe artifacts, our artifact removal
method provides a relative error 4 to 5 times lower than
traditional techniques.Significance: in view of these results,
the SuBAR method is a promising solution for mobile envi-
ronments, such as ambulatory healthcare systems, sleep
stage scoring, or anesthesia monitoring, where very few
EEG channels or even a single channel is available.

Index Terms— Artifact removal, electroencephalogra-
phy (EEG), single-channel EEG, surrogate data, wavelet
decomposition.
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I. INTRODUCTION

ELECTROENCEPHALOGRAM (EEG) is the standard
recording of electrophysiological activity of the brain.

Due to its temporal resolution (ms), technical simplicity
(portable and non-invasive) and low cost, EEG is nowa-
days extensively used for studying different cognitive and
pathological brain states. EEG recordings are, however, often
contaminated by non-neural physiological activities, as well as
other external or environmental noises, that seriously degrade
the signals of interest. Eye movement-related artifacts have a
strong detrimental effect on the quality of scalp EEG. During
eye movements, abrupt changes on the retina’s resting poten-
tial are primarily observed in the frontal EEG electrodes before
their widespread propagation over the scalp. The strength and
spatial distribution of the artifact strongly depends on the
position of EEG electrodes and on the direction of the eye
movement [1]–[3]. Eye blinks also contaminate EEG signals
but with an artifact whose amplitude is generally larger than
that produced by eye movements. Muscular artifacts originate
from the electrical activity elicited by contracting muscles.
Although electromyographic (EMG) activity can be observed
over the entire scalp, the amplitude and distribution of EMG
artifacts depend on the type of muscle contracted (e.g. jaw,
neck or face) and on the degree of tension [1]–[3]. Other
possible perturbations include breathing artifacts, electroder-
mal interferences produced by sweating, motion artifacts (e.g.
head or chest movements), as well as shifts of the electrical
properties of electrodes.

In clinical settings, visual inspection and manual removal of
contaminated EEG segments is a common practice prior to any
off-line signal analysis. Obviously, such manual methods are
not suitable for on-line applications. There is a number of gen-
eral techniques used for artifact removal from EEG recordings.
When the frequency bands of the signal and interferences do
not overlap, simple low pass, band pass or high pass filtering
are effective techniques for removing artifacts. Nevertheless,
some interferences (e.g. muscular activities) have a wide
spectral distribution that overlaps with that of EEG, making
difficult to remove them. In case of spectral overlap, more
refined techniques such as adaptive filtering, Wiener filtering,
as well as blind source separation (BSS) methods have been
effectively used to cancel EEG interferences. Other meth-
ods like wavelet decompositions (WT) and empirical mode
decomposition (EMD) have also been successfully applied
to remove EEG artifacts [10], [12]. For a review and dis-
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cussion of different approaches see [1]–[3] and references
therein.

Linear regressions (in time or frequency domain) and adap-
tive filtering have been successfully applied in EOG and ECG
correction procedures [1]. Their main disadvantage is, how-
ever, that they assume that one or more reference channels with
the artifacts waveforms are available. Independent component
analysis (ICA) is a blind signal separation (BSS) technique
that has been largely used for EEG artifact removal [4], [5].
Briefly, ICA separates multi-channel EEG signals into statis-
tically independent components which are assumed to rep-
resent the underlying sources of the observed EEG signals.
Clean EEG signals can be reconstructed by removing artifact-
related components from the original ICA decomposition.
ICA-based methods can effectively remove interferences from
a wide variety of artifactual sources in EEG recordings only
when the number of channels and the amount of data are
large enough [1]. Canonical correlation analysis (CCA) is a
more efficient BSS method for muscular artifact removal that
exploits the relative low autocorrelation of EMG artifacts in
comparison with EEG activity [7], [11].

Artifact removal by wavelet-based methods and other data-
driven decompositions (e.g. the EMD and its variants [1],
[31], [34]) relies on the assumption that EEG artifacts can
be represented by one or more levels or modes, which are
thresholded before reconstructing the signal from the fil-
tered representation. The success of these techniques depends
on the threshold selecting criteria. In recent studies, dif-
ferent combinations of algorithms to remove artifacts (e.g.
EMD-ICA, EMD-CCA) have provided significantly improved
results [6], [11], [13].

In last years, simplified EEG systems with few channels
have been developed with the aim to increase usability of
ambulatory neuroimaging technologies in clinical environ-
ments (e.g. in epilepsy and sleep diagnosis) and in custom-
designed settings for routine monitoring [14], [15]. For some
applications like neurofeedback, mental state classification,
emotion sensing, etc., artifact removal algorithms should per-
form reasonably well with short epochs of streaming EEG
data. Further, conventional multichannel techniques can not be
applied directly to isolate artifact sources in reduced channels
configurations. Hence, there is a growing need to develop
effective artifact removal techniques that can operate in short
segments of single channel EEG, especially in single-channel
settings [2], [6], [12], [13].

In this work, we propose a data-driven approach for arti-
fact removal from single-channel EEG: the Surrogates-Based
Artifact Removal (SuBAR) method. Our approach combines
wavelet decomposition and a resampling method called surro-
gate data. Under the hypothesis of stationary EEG segments,
muscular and ocular artifacts are considered as nonstationary
events that can be identified across different scales. The
obtained scales from the original recorded EEG are then
compared with those obtained from resampled data, which are
stationary by construction. Hence, instead of estimating the
filtering threshold from uncontaminated segments or theoreti-
cal functions, we obtain it directly from the WT of surrogate
data.

The proposed framework is validated on artifact-free EEG
data contaminated with simulated artifacts of several types
(EMG or EOG). The method is also illustrated on a real
EEG contaminated data collected from a healthy subject. The
reliability and performances of our method are also compared
with those obtained by an unsupervised wavelet-based artifact
removal [1], [6], [11], [12] and by those resulting from
the CCA in combination with an advanced version of the
EMD [6], [11], [34]. The remainder of the paper is organized
as follows: Section II describes the proposed framework,
as well as the WT and CCA-EMD approaches. Section III
presents the database and Section IV describes the procedure
to simulate EMG and EOG artifacts [4]. Section V provides
the experimental results and evaluation of the method. Finally,
we conclude the paper with a discussion in Section VI.

II. METHODS

In this section, we describe the various techniques employed
in this work. Firstly, we describe our surrogates-based EEG
technique, and then we outline two alternative methods for
artifact removal from EEG single-channels (used here for com-
parison): a wavelet thresholding method [1], [6], [11], [12],
and the artifact removal algorithm based on CCA combined
with the EMD [11].

A. Resampling-Based Artifact Removal

In this work, we assume that a recorded single-channel EEG
signal1 s = [s(1), . . . , s(N)]T is a linear combination of the
original desired stationary EEG signal x = [x(1), . . . , x(N)]T

contaminated with an artifact v = [v(1), . . . , v(N)]T plus
instrumental Gaussian white noise η. Although some nonlinear
filters have been proposed to remove multiplicative EMG
interferences [21], here we only consider additive artifacts of
the form s = x + v + η for the sake of simplicity.

The aim of our work is to filter v from the vector of
observations s, with minimal a priori knowledge on the artifact
signal, the EEG signal and the observational noise. To this
end, we have used wavelet transform as a tool to detect and
remove artifacts from single EEG channels. Wavelet-based
artifact removal aims at separating the artifact components
from the clean EEG components in the wavelet domain.
Once the artifact components have been identified and the
corresponding wavelet coefficients removed, the remaining
components are kept to reconstruct the cleaned EEG signal.
The thresholding criterion is traditionally based on statistical
properties of the wavelet spectrum obtained from unconta-
minated baselines or from theoretical thresholding functions.
The originality of our approach is that we propose to estimate
this threshold directly from the stationarized spectrum of the
observed data.

Figure 1 shows the general pipeline of the artifact removal
method proposed in this study. The key point of our method is
that the hypothesis of EEG stationarity (which corresponds to
time-invariance in the time-frequency spectrum) is statistically

1In this paper, scalars are denoted by italic letters, vectors by lowercase
bold-face letters and matrices by uppercase, bold-face leterrs. Superscript T

refers to the transpose operation.
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Fig. 1. Block diagram of the proposed artifact removal method.

characterized on the basis of a set of surrogates which all
share the same average stationary spectrum as the desired
EEG signal. In our approach, the recorded EEG signal is of
the form s = x + v + η, where the artifact v is assumed to
be a non-stationary event restricted to a finite time interval
shorter than the observed signal s. Since surrogates can be
viewed as distinct, independent stationary realizations of the
observed signal, the wavelet spectra obtained from surrogates
can define the learning set for stationarity. Wavelet thresh-
olding is therefore based on the statistical distribution of the
spectrum of surrogates (for each time-frequency bin). All the
components of the original wavelet decomposition higher than
a given threshold are set to zero, and the desired EEG signal
is reconstructed utilizing the remaining components only.

The main blocks of the proposed method are the following:
1) Pre-Processing: In most EEG systems, some procedures

are currently applied to prepare the EEG data for analysis.
These procedures include re-referencing of recorded signals,
down-sampling of original data for saving transmission power
and computational cost, or filtering for baseline and power-line
(50/60 Hz) interference removal. In our pre-processing step,
the sampled raw EEG signal is divided into epochs of size N .
Very short segments (< 1 s) may not represent some slow
artifacts properly (e.g. ocular or movement artifacts) whereas
in very large windows (e.g. > 5 s), the stationary assumption
of EEG may be no longer valid and there is a high chance that
clean EEG segments will be distorted by the artifact removal
procedure [30]. Here, we set N = 3.5 s.

2) Resampling: Bootstrap and other resampling methods
have been used extensively in the past to appropriately deter-
mine the properties of a time series before applying different
analysis and modeling techniques [22]. The aim of these
techniques is to capture a given structure of the original signal,
and construct additional realizations that can then be used
to test the original data for additional, unexplained structure.
Surrogate data techniques were proposed as non-parametric
methods for testing general hypotheses on data without making
assumptions on the underlying generating process. Surrogates
are time series created directly from the original dataset
through replication of the linear autocorrelation (or equiva-
lently, the power spectrum density) and amplitude distribution,
with all other higher-order quantities randomized [24].

In this work, surrogate time series s∗
k ; k = 1, . . . , K

were obtained by destroying the organized phase structure that
controls the nonstationarity of the original signal s [23]. In the
classical Fourier-transform surrogate algorithm (FT), the signal
is first Fourier transformed, and the magnitude of the spectrum

is then kept unchanged while its phases are replaced by a ran-
dom sequence, uniformly distributed over [−π, π] [23], [24].
This modified spectrum is then inverse Fourier transformed,
leading to a Gaussian stationary surrogate time series with
the same spectrum as the original signal [23], [24]. To deal
with non-Gaussian data, the algorithm of amplitude adjusted
Fourier transform (AAFT) first orders a Gaussian white noise
time series to match the rank order of the original data
and derives the FT surrogate of this time series [23]. The
final surrogate is scaled to the distribution of the original
data by sorting the original data according to the ranking of
the FT surrogate. [23]. The AAFT algorithm guarantees that
surrogate data s∗

k possesses the original distribution exactly
and the original power spectrum approximately [24]. In this
work, we have used the so-called Iterative Amplitude Adjusted
Fourier Transform (IAAFT), which is an iterative version of
AAFT [24], [26]. The steps are repeated until the autocorre-
lation function is sufficiently similar to the original, or until
there is no change in the amplitudes [24], [26].

In the context of nonlinear time series analysis, surrogate
data have been widely used for testing linearity and, more
recently, for testing stationarity [24], [25]. To this end, time-
frequency decompositions are used for determining whether
the spectral characteristics of a signal change significantly
over time, which is an indication of non-stationarity [25]. The
time-frequency localization properties of the wavelet transform
allow a comparison of the original signal with the stationarized
surrogates in the wavelet domain. We can therefore detect
the position, on the time-frequency plane, where the spec-
trum of the observed EEG differs from a stationary process.
In this study, values derived from K = 1000 surrogate
realizations were used to represent the spectrum of stationary
signals.

3) Wavelet Decomposition: Wavelet transform is a method
commonly used to remove artifacts from EEG signals [1],
[6], [10]–[12]. The wavelet transform is an useful analysis
tool for time-frequency representation of non-stationary sig-
nals, obtained by convolving the signal s with a scaled and
translated wavelet function,

ψa,b(n) = 1√
a
ψ

(
n − b

a

)
, (1)

with a and b, positive real numbers and n = 1, . . . , N . The
WT provides thus a decomposition of the signal in different
scales, where the obtained wavelet coefficients represent a
measure of similarity between the signal s and the correspond-
ing wavelet function ψa,b(n).
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In the discrete wavelet transform (DWT) both factors a
and b are integers and are chosen in a dyadic grid (a = 2 j

and b = k2 j with integers j and k playing roles of the
decomposition level and temporal localization at this level,
respectively). At the j th level of decomposition, a matrix
M j of size N × N can be appropriately built with the corre-
sponding orthonormal wavelet basis. The wavelet coefficients
w j = [

w j (1),w j (2), . . . , w j (N)
]T can be thus obtained by

w j = M j s. The DWT can be seen as a band-pass filter
bank: the decomposition starts by passing the signal through
a low-pass filter giving the approximation coefficients, and a
high-pass filter producing the detail coefficients. The resulting
two orthogonal sub-bands are afterwards down-sampled by
two. Then, the low-pass result can be recursively filtered by
the same pair of filters until the desired frequency range is
obtained.

In this paper, we used the Maximal Overlap Wavelet
Transform (MODWT) [28], instead of the orthogonal DWT,
to estimate wavelet decomposition. As the DWT, the MODWT
can also be utilized for multi-resolution analysis, with the
advantage that it can be applied to signals of any size, while
the DWT requires the sample size N to be an integer power
of two. In contrast with the usual DWT, the MODWT is
translation invariant, i.e. shifting circularly the signal by any
amount results into shifting the outputs of the low-pass and
high-pass filters by the same amount. This property does not
hold for the DWT because of the subsampling involved in the
filtering process [28].

Let {h j,l ; l = 0, . . . , L j } and {g j,l ; l = 0, . . . , L j } a j th
level wavelet and scaling filter, respectively. The correspond-
ing j th level MODWT wavelet and scaling filters are defined,
respectively, by {̃h j,l = h j,l/2 j/2} and {g̃ j,l = g j,l/2 j/2} with
the same common length L j [28]. The j th level MODWT
wavelet and scaling coefficients are N dimensional vectors
defined by

w j (n) =
L j −1∑
l=0

h̃ j,ls(n − l mod N) (2)

and

v j (n) =
L j −1∑
l=0

g̃ j,ls(n − l mod N), (3)

for n = 1, . . . , N − 1, respectively. The “mod” operator
denotes the modular arithmetic between two integers.

Inverse transforming the MODWT coefficients creates the
so-called details D j and smooths S j that form a multi-
resolution analysis of signal s [28]:

s = SJ +
J∑

j=1

D j , (4)

with J denoting the number of decomposition levels.
An interesting property of MODWT is that D j and S j are
associated with zero phase filters [28]. The frequency band
of detail coefficients associated to coefficients w j is given
by 2−( j+1) � f � 2− j with a width ω j = 2−( j+1) [28].
In contrast with DWT, there are always N coefficients at each

level. The MODWT is an energy preserving transform and the
total energy of s can be partitioned by the MODWT scaling
and wavelet coefficients: ‖s‖2 = ∑J

j=1 ‖w j‖2 + ‖v J ‖2 [28].
For all the wavelet-based methods studied in this paper,

we used the symlets wavelet and 5 levels of decompo-
sition. The symlets are orthogonal functions, nearly sym-
metrical wavelets with an oscillatory waveform and good
time-frequency localization properties [16]. This makes it
suitable wavelet choice for filtering and reconstructing EEG
signals [17], [18].

4) Signal Reconstruction: Comparison of the original signal
with the stationary surrogates in the wavelet domain can iden-
tify non-stationary events on the time-frequency plane. The
wavelet coefficients corresponding to artifacts are expected to
be of high amplitude and well localized in time and scales,
while the clean EEG coefficients are expected to be small and
homogeneously spread over the whole segment.

To detect artifact components, the wavelet transform of
surrogates are firstly averaged to produce a mean reference
spectrum of stationarity:

w∗
j = 1

K

K∑
k=1

wk
j , (5)

where K is the number of surrogates and wk
j denotes the

wavelet coefficients for surrogate k at the j th level. At each
time-point of the j th level of decomposition, the standard devi-
ation for the ensemble of surrogates can also be determined
as

σ ∗
j (n) =

√√√√ 1

K

K∑
k=1

(
wk

j (n)−w∗
j (n)

)2
. (6)

At each point of the wavelet domain, the significance of
wavelet coefficients at a given level was assessed by quan-
tifying its statistical deviation from values obtained for the
ensemble of surrogates. Thus, non-stationary components in
observed signals can be detected by comparing wk

j values to
a given threshold.

Distribution of wavelet coefficients from surrogates
can be fitted with an appropriate distribution, such as
Gaussian or Gamma distribution, and then setting a one-
sided confidence interval, for rejection of non-stationary com-
ponents. Here, the significance was obtained by the ratio
� j (n) = (w j (n) − w∗

j (n))/σ
∗
j (n) whose p-value is given by

the Chebyshev’s inequality: for any statistical distribution of
w j (n): p(|� j (n)| � � j (n)) � 1/�2

j (n) where � j (n) is the
chosen statistical threshold [27].

The threshold values are compared with the wavelet coeffi-
cients of the original signal in the following manner:

wfiltered
j (n) =

{
w∗

j (n) if w j (n) � � j (n)

w j (n) otherwise,
(7)

If the original wavelet coefficients are greater than the
threshold, they are set to the average value of the reference
spectrum (obtained from the surrogates). In this manner,
only the stationary components of the original spectrum are
retained. Here, the threshold � j (n) was set as the values
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greater than 95% of the values in the surrogate distrib-
ution. After non-stationary components have been filtered,
the cleaned signal can be recomposed from all levels using
the inverse MODWT [28] of the cleaned coefficients wfiltered

j .
The main steps of proposed SuBAR method for automatic

artifact removal are summarized in Algorithm 1.

Algorithm 1 Surrogate-Based Artifact Removal (SuBAR)
Algorithm for Single-Channel EEG
Input: Signal s, number of surrogates K (e.g. K = 1000),
threshold α (e.g. 5% of significance level obtained from the
surrogate distribution), number of decomposition levels J
Output: Filtered signal sfiltered

1: Estimate the wavelet coefficients (MODWT) w j from input
signal s

2: for each k = 0 . . . K do
3: Create a surrogate time series s∗

k from signal s
4: Estimate the wavelet coefficients (MOWDT) wk

j from
surrogate k

5: end for
6: Compare the wavelet coefficients of the original signal with

those obtained from surrogates
7: for each level of decomposition j = 1 . . . J do
8: Estimate the threshold � j (n) from the surrogate distri-

bution and the significance level α
9: if w j (n) � � j (n) then

10: wfiltered
j (n) = w∗

j (n)
11: else
12: wfiltered

j (n) = w j (n)
13: end if
14: end for
15: Use the cleaned coefficients wfiltered

j to reconstruct the
filtered signal sfiltered with the inverse MODWT

16: return sfiltered

B. Methods for Comparison

The proposed technique is compared with two other com-
monly used methods for artifact removal from single-channel
EEG signals: i) a wavelet-based artifact removal [1], [6], [11],
[12] which is based on the classical wavelet-thresholding and
ii) a single-channel method based on the combination of CCA
with the EMD [6], [11], [34].

1) Wavelet Thresholding: The key point of the wavelet
thresholding is to separate, in the wavelet domain, the artifact
components from the uncontaminated EEG components. For
thresholding the wavelet coefficients we have used a level-
dependent threshold [19], [29], [30]: �wthr

j = σ j
√

2 ln N ,
where N is the length of signal and σ 2

j is the estimated noise
variance for the wavelet coefficients, w j , at the j th level of
decomposition, which is usually calculated by [29]: σ 2

j =
median

(|w j |/0.6745
)
. Such level-dependent thresholding is

more appropriate than a single universal threshold in case of
correlated and non-Gaussian data, as such that it characterizes
the underlying EEG activities [29]. Artifact removal is finally
obtained by removing wavelet coefficients whose absolute

values exceed the threshold [1], [12], [20] as follows:

wfiltered
j (n) =

{
0 if w j (n) � � j (n)wthr

w j (n) otherwise,
(8)

2) Canonical Correlation Analysis (CCA) Combined With
Empirical Mode Decomposition for Single Channels: CCA is
a BSS technique currently used for separating a number of
mixed or contaminated signals [7]. The recorded multichannel
EEG signals are considered as a mixture given by S = ASo,
where A is the unknown mixing matrix and the components
in So are the statistically independent and unknown source
signals, which include the artifacts. As other BSS techniques,
CCA estimates the mixing matrix and recovers the original
sources as Ŝo = VS, where V is the unmixing matrix, i.e.
the estimate of the inverse of A. Artifacts are removed by
computing X̂ = AcleanŜo, where Aclean is the mixing matrix
with the columns corresponding to artifact related sources, set
to zero.

Due to their relatively low autocorrelation, muscle artifacts
are generally well identified in the last components obtained by
the CCA algorithm [7]. Previous studies have shown that CCA
outperforms different ICA algorithms for artifact removal from
multichannel EEG and fMRI signals [7]–[9]. Other advantages
of the CCA include that, i) as CCA uses second order statistics,
it is a more computationally efficient algorithm than ICA
and, ii) contrary to ICA algorithms, the CCA method always
provides the same result for a given input.

As ICA, the original CCA is a multi-variate technique that
requires multi-channel recordings to perform the decompo-
sition. In some recent works, multi-dimensional time series
have been generated from a single-channel recording, using
popular data-driven methods such as the wavelet transform and
the empirical mode decomposition [1]–[3], [6], [11]. Artifact
removal is then performed by applying BSS techniques (e.g.
ICA or CCA) to the generated multi-channel signals. For our
single-channel artifact removal technique we have here com-
bined the CCA, as the best choice form multi-channel artifact
removal, with an improved version of the EMD as the best
choice for time series decomposition [11]. The combination
of these methods has been shown to be more reliable and
computationally more efficient than the EMD combined with
ICA [11].

The orignal EMD is an adaptive data-driven method, pro-
posed by [31], to decompose non-linear and non-stationary sig-
nals into a number of sub-components called intrinsic modal
functions (IMFs), with well defined instantaneous frequencies.
The original signal is thus decomposed as s = r + ∑

i ci ,
where r stands for a residual trend, and the intrinsic modes
ci ’s are nearly orthogonal to each other [31]. By construction,
the spectral supports are decreased when going from one resid-
ual to the next. Nevertheless their frequency discrimination
applies only locally (in time) and they cannot correspond
to a sub-band filtering [32]. Despite its several advantages
to decompose mixed signals, the EMD of noisy data may
result in a corruption of modes, i.e. very similar oscillations
appear in different IMFs [31]. Recently, the so-called com-
plete Ensemble EMD with adaptive noise (CEEMDAN) was
proposed to ameliorate the spectral separation of modes and
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to reduce computational time [33], [34]. The key idea on this
algorithm relies on averaging the modes obtained by EMD
applied to several realizations of Gaussian white noise added
to the original signal.

Here, we use this decomposition technique (CEEMDAN),
to convert the single-channel signal s into a multi-channel
signal S. By means of the CCA, the source signals associated
to artifacts can be then removed as described before. The
cleaned single-channel signal without the artifacts can be
finally reconstructed by adding the new IMFs components in
X̂ [11]. Hereafter, for the sake of simplicity, we denote this
technique CCA-EMD.

3) Criteria for Artifact Removal With the CCA-EMD Method:
Eye blinks artifacts display large slow waves and have large
autocorrelation compared to EEG sources. Here, EOG artifacts
were thus identified from the first canonical variates due to
their large autocorrelations (larger than 0.9) [11]. In contrast,
due to the frequency spectrum of the EMG artifacts, they
resemble high frequency activity. In this work, the CCA
components with spectral bandwidth larger to 15 Hz were
associated to muscle artifacts and removed from the recon-
struction [4], [7], [36]. Other filtering criteria can also be
applied, possibly providing better tuning of the algorithm to
the particularities of other EEG artifacts.

III. DATABASE

To assess the performance of the proposed artifact removal
technique, we employed two datasets recorded via sur-
face electrodes (Acticap, BrainProducts GmbH, Germany)
using Ne = 64 scalp positions according to the standard
10-10 montage. The first dataset consisted on a collection of
clean EEG signals from two subjects who were instructed to
remain quietly, but alert, with their eyes closed during two
minutes. The second dataset was composed by EEG signals
(two minutes) from one subject instructed to deliberately
produced artifacts by eye blinking and jaw clenching at short
intervals. To verify the correct realization of artifacts and
to detect their instances, we used four external EOG and
EMG channels (right and left frontalis and anterior temporalis
muscles). In all recordings, impedance between electrodes and
skin were set below 5 k	. According to the declaration of
Helsinki, written informed consent was obtained from subjects
after explanation of the study, which was approved by the
ethical committee CPP-IDF-VI of Paris (no 2016-A00626-45).

The EEG signals were amplified, digitized at a sampling
frequency of 1024 Hz, then down-sampled to 256 Hz and
segmented in 3.5 sec non-overlapped windows to reduce
computational cost in successive blocks. Clean signals from
the first dataset were artificially contaminated with muscle
artifacts and eye movements as in [4] and were used to
compare quantitatively the removal of artifacts by the different
methods. Trained experts at the EEG platform of the ICM
visually inspected all trials and selected different artifact-free
EEG segments from the first database. Finally, contaminated
signals (with vertical ocular blinks and other pronounced
muscular artifacts) were selected from the second dataset to
qualitatively illustrate the efficacy of the denoising process.

Fig. 2. Examples of original clean EEG signals (blue curves), with
superimposed artifacts (red curves) and removal results after the pro-
posed algorithm (black curves). The EEG signals are contaminated by:
simulated large (A) and small (B) muscular activities, superimposed
large (C) and small (D) ocular artifact. Gray boxes indicate the artifactual
regions.

Fig. 3. General comparison of artifact removal as a function of SNR.
The bars represent average of all signals and all EEG channels. Error
bars represent standard error. Good SNRs range from 0 to 5 dB, mild
SNRs range from −10 to 0 dB, and poor SNRs are those values less
than 0 dB. The algorithms are: Wavelet Thresholding(WT), the Canoni-
cal Correlation Analysis combined with Empirical Mode Decomposition
(CCA-EMD), and the proposed SuBAR method.

IV. EVALUATION

Artificially contaminated EEG signals were simulated using
clean segments from the first dataset (absence of ocular
and muscular activity and other artifacts due to body move-
ments or technical interferences). Artifacts, superimposed to
clean data, were generated in three steps:
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Fig. 4. Examples of RRMSE as a function of SNR on the EEG epochs containing simulated muscular artifacts. Red asterisks indicate
the scalp position of electrodes (from left to right: FC1, Cz and CP2). Solid curves indicate mean values and shadowed areas display the
5th and 95th percentiles.

A. Characterization of Spatial Distribution

Since artifacts of different origins have a specific distrib-
ution in the scalp, we first computed a weight vector aart
of dimensions Ne × 1 to scale the artifact patterns according
to the topographical information from the scalp electrodes.
To obtain the topographical information for each type of arti-
fact, we applied ICA decomposition to a selection of real EEG
segments containing the artifacts. Vector aart was the rescaled
column in the estimated mixing matrix A associated to the
artifactual component, found by inspecting some features such
as the autocorrelation and spatial position in the scalp [4]. The
components associated to eye movements and blinks (ao

art)
were detected as those yielding high amplitudes on the most
frontal electrodes, and muscular components (am

art) as those
having transient and fast activities localized most importantly
on temporal electrodes.

B. Generation of Artifact Patterns

The two different artifact patterns consisted on vector sig-
nals r of length N obtained as follows:

• Ocular artifacts, ro, were recorded from the original
electrooculogram signal (EOG).

• Muscular artifacts, rm, were generated using random
noise band-pass filtered between 20 and 60 Hz with a
random length between 0.3-0.8 s (equivalent to those
observed in real EEG data) [4].

From the above patterns, the matrix of simulated artifacts,
V of dimension Ne × N , was computed by performing the
product aartr for each pattern. Clean EEG signals (selected by
visual inspection) and simulated artifacts came from different
subjects to ensure that all segments (trials) of simulated and
real EEG data were independent of each other.

C. Setting of Signal to Noise Ratios

Synthetic artifacts V were superimposed on the clean EEG
segments b as follows: bartifacted = b+λv, where λ represents
the contribution of the artifact. For each trial and artifact type,
the signal to noise ratio (SNR) was adjusted by changing the
parameter λ as follows:

SNR = RMS(b)
RMS(v)

(9)

where RMS(b) corresponds to the root mean squared value
averaged over all channels, and RMS(v) denotes the root mean
squared value of the artifact. Following [4], prior to computing
SNR for the topographic artifacts, we scaled their amplitudes
by the highest channel gain in the applied scalp map. Here,
the artifact contribution was gradually decreased in a dB scale
(10 log10(RMS)) from −25 dB to 5dB.

The performances of the considered algorithms for artifact
removal were evaluated both in terms of the amount of artifact
reduction and the amount of distortion they bring into clean
EEG signals. Performances were expressed in terms of the
relative root mean square error (RRMSE) [37]:

RRMSE = RMS(̂x − x)
RMS(x)

(10)

where x̂ is the signal after artifact removal. To assess whether
our technique preserves the frequency spectrum of clean
EEG, or it introduces any phase shift in denoised signals,
we have also measured the spectral coherence and phase delay
between the corrected data and the clean EEG segments.

V. RESULTS AND DISCUSSION

The proposed algorithm is applied to EEG data contam-
inated by simulated muscular activities and ocular artifacts.
Figure 2 shows some examples of added artifacts and their
removal by the SuBAR algorithm. Results suggest a good
removal of both types of artifacts without distorting the
background EEG signals outside the artifactual regions. Low-
or band-pass filters were not capable of removing muscular
artifacts without altering the underlying brain activity because
the overlap of the frequency spectrum of artifacts and that of
clean EEG signals.

We examined the reliability of the SuBAR method at
different SNR values in terms of the RRMSE as mentioned
in Section IV. We also applied two alternative methods –
wavelet thresholding and CCA combined with the advanced
version of the EMD – to the contaminated EEG channels,
and performed a comparison through 20 independent simu-
lations. In our simulations, the amplitude of artifacts were
scaled by their spatial distribution and a prescribed SNR.
Here, we present the performances of different methods for
a reduced number of EEG channels which spatial positions
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Fig. 5. The RRMSE as a function of SNR on the EEG epochs contaminated with ocular artifacts. Red asterisks indicate the scalp position of
electrodes (from left to right: FC1, Cz and CP2). Same stipulations as in the caption of Fig. 4.

Fig. 6. The RRMSE of different methods when applied to artifact free
EEG epochs (averaged over all segments for each channel). SuBAR is
the proposed method, WT stands for wavelet thresholding, CCA-EMD
muscular and ocular denote the criteria for the corresponding artifacts
removal.

are relevant for different practical applications of ambula-
tory clinical neuroimaging, in reduced settings for routine
monitoring [14], [15] or for practical BCI systems based on
motor imagery. EEG electrodes included are: FC1, FC2, FCz,
CP1, CP2, CPz, C1,C2 and Cz.

Figure 3 shows a systematic comparison of different algo-
rithms, expressed in terms of the RRMSE for different SNR
and both muscular and ocular artifacts. Bar plots display
averaged values estimated over all channels and segments.
Results clearly indicate that, even with severe artifacts, our
SuBAR method yields better performances than traditional
artifact removal techniques.

1) Muscular Artifacts: The performances of different meth-
ods to remove simulated muscular artifacts are shown
in Figure 4. It is clearly seen that the SuBAR method outper-
formed its competitors for all SNRs. Although wavelet thresh-
olding performances are stable for all SNRs, this technique is
not able to recover the original EEG signals. On the other
hand, as the contamination level increases in frontal and pos-
terior regions, the performances of the data-driven CCA-EMD
method are considerably degraded. Filtering modes from the
CCA-EMD method is insufficient to remove large muscular
artifacts without altering the underlying brain activity since

Fig. 7. Distortion produced by the SuBAR method on EEG epochs
contaminated with muscular artifacts: The coherence (top plots) and
phase delay (bottom plots) between original clean and denoised data as
a function of SNR. Red asterisks indicate the scalp position of electrodes.

Fig. 8. Distortion produced by the SuBAR method on EEG epochs
contaminated with ocular artifacts: Same stipulations as in the caption of
Figure 7.

the frequency spectrum of the muscle artifacts overlaps with
that of the brain signals.

Results support the hypothesis that, thanks to the time-
frequency localization properties of the wavelet transform,
a comparison of the contaminated EEG signal with the sur-
rogates in the wavelet domain can identify artifacts as non-
stationary events embedded on a stationary signal. Long and
persistant muscular artifacts could not be detected as the
spectrum of the contaminated EEG will not differ from a
stationary process.

2) Ocular Artifacts: Figure 5 shows the RRMSE for the
different ocular artifact removal algorithms as a function
of SNR. It can be observed that both the surrogate-based
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Fig. 9. Original EEG epochs contaminated with eye blinks and jaw clenching and the corresponding denoised signals: (A) Epoch with mixed artifacts,
(B) EEG segment containing muscular artifacts and (C) EEG epoch contaminated with eye movements. For illustration purposes only channels FC1,
Cz and CP2 are shown as in Figs 4-5. Boxes in the top of the plots indicate the instances of jaw clenching and eye blinks.

algorithm and the CCA-EMD methods are not able to remove
large artifacts without distorting the true signals, whereas
the wavelet thresholding is an algorithm that provides better
performances. This indicates that surrogates of EEG signals
with large ocular artifacts cannot be distinguished in the
wavelet domain from the decomposition of contaminated sig-
nals. Nevertheless, for mild and weak artifacts, our surrogate-
based technique outperforms other methods and can better
remove the artifacts and recover the underlying EEG signals.

3) Distortion of Clean EEG Segments: Let us now quantify
the distortions –in terms of RRMSE– produced by each
method when applied to artifact free EEG epochs. Figure 6
shows that, although wavelet thresholding is able to remove
large ocular artifacts, it also produces an important amount
of distortion on clean EEG segments. Similarly, the automatic
correction of artifacts with CCA-EMD method altered clean
EEG signals substantially, although the algorithm to detect
ocular artifacts resulted in a larger distortion than the algorithm
for muscular artifact removal. These results indicate that for
single-EEG channels, the SuBAR method preserves better
the EEG signals than the other considered artifact removal
algorithms, which may remove true neural components from
clean brain signals.

4) Spectral Distortion Produced by the SuBAR Method:
To identify if the proposed algorithm preserves the natural
frequency spectrum in denoised signals, we computed the
spectral coherence and phase delays between the original
clean EEG signals and the corrected data. Figures 7-8 show
that, even in presence of severe artifacts (SNR < −10 dB),
the SuBAR method preserves the spectrum of EEG signals.
A small amount of distortion on EEG spectrum is observed
for frequencies larger than 15Hz. In this band of frequencies,
the correction of large artifacts introduced small absolute
values of phase delay of about 0.1 radians. Low frequencies
( f < 10 Hz) were practically undistorted by the filtering
method. Results clearly indicate that, in general, the proposed
method preserves well the spectral components from clean
brain signals and no significant phase delays are introduced
by the filtering.

5) Correction of Real Contaminated Data: For illustration
purposes, the SuBAR algorithm was applied on the EEG
epochs from the second dataset, i. e. contaminated with real
artifacts. Figure 9-(A) shows the performance of the SuBAR

method on an EEG epoch that contains both eye blinks and
muscular artifacts. Notice that, although different artifacts
were present in the same segment, they were relatively well
removed. In Figures 9-(B-C), we observe that, although small
amounts of muscular activities remain in the denoised signals,
our non-parametric algorithm corrects well the eye blinks from
the contaminated data. Error measures could not be used here
as we did not have a-priori information available of the clean
brain signals.

6) Computational Complexity: For a given level of decom-
position, the Maximal Overlap Wavelet Transform is compu-
tationally equivalent to other shift-invariant discrete wavelet
transforms, and may be calculated with O(n log n) compu-
tational complexity [38]. Although the wavelet thresholding
and the surrogate-based algorithm have similar algorithmic
complexity, the former remains highly advantageous from the
computational point of view as surrogates are not generated.
For the EEG segments analyzed here,2 CPU times required by
the WT method were, on average, hundred times faster than
those required by the SuBAR filtering (0.0075 s vs 1.37 s,
respectively). As expected, the CCA-EMD method requires
larger CPU times to provide poorer performances (14.48 s).

VI. CONCLUSION

In this work, a new data-driven method for automatic artifact
removal in single-channel EEG was presented. The novelty of
our proposal relies on the time-frequency analysis of surrogate
data to identify and filter ocular and muscular artifacts embed-
ded in single EEG channels. The efficacy of the algorithm
was compared to wavelet thresholding, and the CCA combined
with the EMD. Through artificially contaminated EEG signals,
we demonstrate that the surrogate-based removal (SuBAR)
algorithm outperforms the other techniques considered here for
removing muscle and ocular artifacts from single EEG signals.
Although large ocular artifacts are better removed by wavelet
thresholding, the SuBAR method yields, in general, a relative
error 4 to 5 times smaller than the other considered artifact
removal methods. Results show that the proposed algorithm
preserves well the frequency spectrum of EEG in denoised
signal (without phase delay). Furthermore, our method yields

2Using Matlab on a 2.8GHz dual-core Intel Core i7 processor, 16GB of
memory
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the smallest distortion of signals when applied to artifact-
free EEG segments. Though it is not the aim of this study,
we envisage that possible further optimizations can be obtained
with other families of wavelets.

Most artifact reduction techniques require multivariate EEG
data, or auxiliary referential signals (e.g. EOG or EMG) [1].
Common artifact removal algorithms generally requires
appropriate spectral and topographical parameters for the
detection of EEG artifacts (eye blinks, saccades, muscle
activity) [1], [6]. In contrast, results presented in this work
suggest that our single-channel technique can be a good non-
parametric filter for artifact removal in off-line environments
with a reduced number of sensors. Computational profiling
shows that the proposed method could be suitable for pseudo
real-time environments, such as the mobile monitoring of
cognitive or emotional states. The use of recent distributed
signal processing algorithms might speed-up the algorithm
for real-time implementations, or for the analysis of multi-
channel EEG datasets [39]. The proposed data-driven SuBAR
method could be used in combination with other temporal EEG
features (as those used in artifact detection [40]) to facilitate
further signal processing of single-channel EEGs.

Although the generation of surrogate time series and the
corresponding wavelet decomposition of large EEG segments
might be a bottleneck for the processing speed in on-line
applications, its technical simplicity (it is fully data-driven)
makes the SuBAR method highly operable in mobile envi-
ronments, such as ambulatory healthcare systems [41], where
there are only a few EEG channels, or even a single channel is
available (e.g. sleep stage scoring or anesthesia monitoring).
The practicality, accuracy and reliability of an adaptive filter
based on ou method remain, however, to be explored.
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