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Abstract— Wearable inertial sensors have been widely
investigated for fall risk assessment and prediction in
older adults. However, heterogeneity in published stud-
ies in terms of sensor location, task assessed and fea-
tures extracted is high, making challenging evidence-based
design of new studies and/or real-life applications. We con-
ducted a systematic review and meta-analysis to appraise
the best available evidence in the field. Namely, we applied
established statistical methods for the analysis of cate-
gorical data to identify optimal combinations of sensor
locations, tasks, and feature categories. We also conducted
a meta-analysis on sensor-based features to identify a set
of significant features and their pivot values. The results
demonstrated that with a walking test, the most effective
feature to assess the risk of falling was the velocity with
the sensor placed on the shins. Conversely, during quite
standing, linear acceleration measured at the lower back
was the most effective combination of feature-placement.
Similarly, during the sit-to-stand and/or the stand-to-sit
tests, linear acceleration measured at the lower back seems
to be the most effective feature-placement combination.
The meta-analysis demonstrated that four features resulted
significantly higher in fallers: the root-mean-square acceler-
ation in the mediolateral direction during quiet standing with
eyes closed [Mean Difference (MD): 0.01 g; 95% Confidence
Interval (CI95%): 0.006 to 0.014]; the number of steps (MD:
1.638 steps; CI95%: 0.384 to 2.892) and total time (MD:
2.274 seconds; CI95%: 0.531 to 4.017) to complete the timed
up and go test; and the step time (MD: 0.053; CI95%: 0.012 to
0.095; p = 0.01) during walking.

Index Terms— Inertial sensors, accidental falls, fall
prediction, fall risk assessment, systematic literature
review, meta-analysis.
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I. INTRODUCTION

THE incidence of accidental falls among older adults,
along with their impact in terms of morbidity and mortal-

ity, have turned them into a public health concern worldwide.
It has been estimated that 28% to 45% of people aged 65 and
over fall each year [1]. These events represent 18% to 40% of
emergency department attendances and over 80% of all injury
admissions to hospitals among the same age group. Among
the most serious injuries resulting from falls are hip fracture
and traumatic brain injury; the latter accounts for 46% of fatal
falls among older adults [2].

Accidental falls have also a great impact in terms of costs
for healthcare systems and for the society. Only in the United
Kingdom, their annual cost to the National Health System has
been estimated in £2.3 billion per year [3]. Moreover, falls
lead to indirect costs, such as the loss of productivity of family
members and other caregivers. The average lost earnings due
to falls has been estimated in US$40,000 per year for the
UK [1].

Nowadays, clinical fall risk assessment relies mostly on
moderately to highly comprehensive medical, fall-risk specific
and functional mobility assessment tools in the form of ques-
tionnaires, physical tests, gait analysis, and physical activity
measurements [4]. Among the most popular assessment tests
and tools are the Timed Up and Go (TUG) test [5], the Tinetti
Assessment Tool [6], the STRATIFY score [7] and the Five-
Times-Sit-to-Stand (FTSS) test [8].

More recently, researchers have investigated the poten-
tial use of instrumented fall-risk assessment and predic-
tion tools based on features extracted from inertial sensors
(i.e. accelerometers and gyroscopes) attached to the subject’s
body during specific assessment tasks (e.g. walking, quiet
standing, sit-to-stand transitions) [9]–[11]. In those studies,
machine learning methods were used to automatically identify
fallers (F) and non-fallers (NF). Subjects were labelled as
F/NF using at least one of the following methods: a fall-risk
assessment test conducted in the clinical setting (e.g. TUG
test), self-reported fall occurrence within a follow-up period
from the assessment or fall history.

Howcroft et al. [9] and Shany et al. [11] have pre-
sented insightful accounts of features, classification models
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and validation strategies related to sensor-based fall-risk test-
ing (SFRT). In their investigations, these authors found large
heterogeneity in terms of sensor placement, tasks assessed,
and sensor-based features. Not surprisingly, they also found
disparate levels of reported sensitivity (55-100%), specificity
(15-100%) and accuracy (62-100%).

To design effective interventions, it is crucial to identify
the optimal combination of three factors: where to place
the sensor, which task to be performed and which features
should be extracted and analyzed. The latter is particularly
relevant to overcome the limitations imposed by the curse of
dimensionality (i.e. the difficulty and risk of training learning
algorithms to discriminate between non-fallers and fallers in
a high-dimensional feature space on the basis of a small
pool of available data) [11]. Increasing the sample size would
seem to be the logical solution. Unfortunately, achieving large
sample sizes is one of the biggest challenges for this research
area. Consequently, Shany et al. propose, as a more realistic
solution, reducing the number of features prior to model
building as sensibly as possible [11].

The goal of this systematic review and meta-analysis was
to synthetize the empirical evidence regarding inertial sensor-
based fall risk assessment and prediction in order to identify
optimal combination of sensor placement, task and features
aiming to support evidence-based design of new studies and
real-life applications.

II. METHODS

A. Literature Search

Potentially relevant articles on the risk assessment or pre-
diction of falls based on features extracted from wearable
inertial sensors were identified through a literature search in
PubMed, EMBASE, IEEEXplore, Cochrane Central Regis-
ter of Controlled Trials (CENTRAL), ClinicalTrials.gov and
the World Health Organization International Clinical Trials
Registry Platform electronic databases.

Articles were searched using Boolean combinations of the
following keywords or equivalent Medical Subject Head-
ing (MeSH) terms: accidental falls AND (risk assessment
OR prediction) AND (sensor OR device OR wearable OR
technology). No filter was applied at this stage.

Additional papers were identified performing a linear search
along the references of relevant review articles previously
published [9]–[12].

B. Inclusion and Exclusion Criteria
Papers were considered suitable for this review if they

met all of the following criteria:
1) Original peer-reviewed journal articles published

between January 2006 and December 2016 in English,
Italian, Spanish or French languages (i.e. the languages
on which the authors are qualified to understand a
scientific text);

2) Studies in which the subjects were labelled as fallers and
non-fallers (alternatively, high and low fall-risk), based
on retrospective fall history, prospective fall occurrence,
clinical assessment (e.g. the TUG test) or a combination
of these methods;

3) A sample of at least 10 subjects with an average age
of 60 or over;

4) Body-worn inertial sensors were used to characterize
a physical task (e.g. walking or quiet standing) by
extracting features from their signals, and;

5) Group statistics, specifically mean and standard devi-
ation, for sensor-based features, as well as statistical
significance level for the difference between groups were
reported.

Papers were excluded if they included subjects with severe
cognitive or motor impairment (e.g. Parkinson’s disease,
dementia).

Two authors independently assessed the suitability and
methodological quality of the papers. A third author arbitrated
when necessary.

C. Paper Selection and Data Extraction
Following the search strategy described above, all the

records responding to the selected keywords were identified.
After excluding duplicates (i.e. titles indexed in more than
one database), studies were shortlisted according to inclu-
sions/exclusions criteria by screening titles, abstracts and
full-texts.

Subsequently, relevant data were extracted from the short-
listed studies; namely: first author and year of publi-
cation; number of participants and proportion of fallers;
subject labelling method with details (e.g. follow-up period
for prospective fall occurrence); type, quantity and placement
of inertial sensors; test or task characterized via sensor-based
features (e.g. the TUG test or quiet standing, respectively).

Finally, a listing of features reported in the shortlisted
studies was compiled to enable further statistical analysis. For
each feature the following items were included: name and
category (i.e. linear acceleration, angular velocity, temporal,
spatial, frequency, or non-linear features [9]), units, mean and
standard deviation for each group (i.e. fallers and non-fallers),
and trend over groups. A trend was represented with two
arrows, ↓↓ (or ↑↑), if the mean value of a feature significantly
(p < 0.05) decreased (increased) for fallers compared to the
mean value for non-fallers. Similarly, one arrow ↓ (or ↑) was
used if the mean value of a feature non-significantly (p > 0.05)
decreased (increased) for fallers compared to the mean value
for non-fallers. Sensor placement and assessed task for each
feature were also included in the listing.

D. Statistical Analysis of Inertial Sensor-Based Features

Standard methods for the analysis of categorical data were
applied on the feature listing with two objectives [13], [14]:
1) to investigate the level of association between trend sig-
nificance status (i.e. non-significant or significant) and feature
category, sensor placement and task, and; 2) to identify optimal
triads of feature category, sensor placement and task.

Firstly, Pearson’s chi-squared tests were performed in order
to prove the association between trend significance status
(dependent variable) and feature category, sensor placement
and task (covariates). In other words, we aimed to prove that
significant feature trends are dependent on feature category,
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sensor placement and/or task. A p-value < 0.05 was accepted
as statistically significant evidence of a nonrandom associa-
tion. Moreover, Pearson’s Contingency (C) and Cramer’s (V)
coefficients were computed in order to quantify the level
of association between each covariate and trend significance
status. A C (V) coefficient of 0.1 (0.1), 0.287 (0.3) and
0.447 (0.5) were considered as evidence of small, medium and
large level of association, respectively, as suggested in [15].

Secondly, significant triads of feature category, sensor place-
ment and task were identified as follows. A three-way con-
tingency table containing the abovementioned covariates was
created using the subset of features containing only significant
trends. Pearson residuals were computed for each triad in
the table and used to characterize the strength (value) and
nature (sign) of association for each triad. Large positive
residuals are obtained when the observed frequency of sig-
nificant features is substantially greater than the expected
frequency, which would suggest significant features were more
likely to arise from that specific triad. Conversely, large
negative residuals are obtained when the observed frequency
of significant features is substantially less than the expected,
which would suggest significant features were less likely to
arise from that specific triad. For interpretability, the follow-
ing representation was used to report the results (instead of
numerical values): two arrows, ↓↓ (or ↑↑), if the residuals
were smaller (or larger) than −4 (or +4), revealing strong
associations; one arrow, ↓ (or ↑), if the residuals were smaller
(or larger) than −2 (or +2), revealing medium-associations,
and; a dash, -, for residuals greater than or equal to −2 but
smaller than or equal to +2, revealing weak associations.
These thresholds are customarily used in the interpretation of
Pearson residuals as a measure of strength of association [14].
A Pearson’s chi-squared test of independence was performed
to confirm the statistical significance of those associations
(p-value < 0.05).

The software R version 3.2.3 was used to write the scripts
to run this analysis.

E. Meta-Analysis of Inertial Sensor-Based Features
A meta-analysis of the features extracted from the short-

listed studies was conducted to identify significant individual
features and their pivot values. Features were pooled for meta-
analysis if: [feature was reported in at least two studies] AND
[feature was computed for the same task/subtask] AND [sensor
placement and type was the same across studies OR feature
was independent of sensor placement and type (e.g. number
of steps or stride time)]. Standard methods for combining and
reporting continuous outcomes were employed to pool the
features [16]: pooled sample size, mean difference (MD) with
95% confidence intervals (95% CI) and statistical significance
level (p-value). MDs and 95% CIs were considered significant
if the p-value was found to be smaller than 0.05.

Random or fixed effect models were selected based on
heterogeneity across studies, assessed using the Q-statistic
(computed via a Chi-squared test) and the I2 statistic. A sig-
nificant Q-statistic is indicative of dissimilar effect sizes
across studies; a threshold significance level of 0.1 was
selected as statistically significant value as suggested in [16].

The I2 statistic indicates the percentage of the variability in
effect sizes due to heterogeneity across studies, and not due to
sampling error within studies. An I2 from 30% to 60%, 50%
to 90% and 75% to 100% represent moderate, substantial and
considerable heterogeneity, respectively [17].

The R package meta_4.8-4 was used to conduct the meta-
analysis [18]. The default options for both fixed and random
models were used; i.e. the inverse variance method for study
weighting and the DerSimonian-Laird estimate for the random
effects model [19].

F. Quality Appraisal of Shortlisted Studies

The methodological quality of the studies was assessed
using the checklist provided in the supplementary material
(Document S1). This checklist was adapted from Downs
and Black [20]. It contains 15 questions that are scored
“yes” or “no/unclear”. These questions are organized in
3 dimensions:

• Reporting (11 items) – which assessed whether the infor-
mation provided in the paper was clear and sufficient to
replicate the study and appraise its validity.

• External validity (2 items) –which addressed the extent
to which the findings of the study could be generalized
to a wider population and context.

• Internal validity (2 items) –which assessed whether the
evidence at hand suggests that the study was designed
and conducted to minimize bias and confounding.

A summary of the main findings is provided in this paper
in an attempt to reveal the methodological issues that future
studies in the field should address in order to produce more
valid scientific evidence.

III. RESULTS

According to the search strategy described above,
481 records were identified through database search and
18 through linear search. After removing 51 duplicates,
448 titles were screened by title and 257 were excluded as
they did not meet the inclusion/exclusion. From the remaining
191 titles, 127 were removed after screening the abstract
against inclusion/exclusion criteria, which left 64 papers to be
read in full-text. After reading the full-text, 51 were excluded
due to inclusion/exclusion criteria. Therefore, 13 studies were
shortlisted for this review [21]–[33]. A flowchart of the study
selection process is shown in Fig. 1.

Importantly, there were some papers among the excluded
ones which are noteworthy for the novelty of their approaches
to the problem, their methodological quality and their results,
but that failed to meet inclusion criterion 5. This is the case
of the papers by Toebes et al [34] and Riva et al [35],
who investigated the association between fall history and
gait dynamic stability non-linear features (e.g. the Maxi-
mum Lyaponuv exponent, Multiscale entropy and Recurrence
quantification analysis). Moreover, Rispens et al [36] and
van Schooten et al [37] investigated the association of fall
history and ambulatory (i.e. daily-life) gait measures. Finally,
van Schooten et al [38] used survival models to describe
the association of daily-life gait measures and prospective
falls.
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TABLE I
DESCRIPTION OF SHORTLISTED STUDIES

Fig. 1. Flowchart indicating the results of the systematic review with
inclusions and exclusions.

A. Characteristics of Shortlisted Studies

The 13 studies enrolled from 17 to 349 subjects each
(mean ± standard deviation: 93.15 ± 86.18 subjects), for a
cumulative population of 1,211. Overall, the studies included
565 fallers/high-risk subjects, i.e. 47% of the cumulative
population. However, this proportion ranged from 14 to 71%

across the 13 selected studies. The majority of studies (92%)
included both men and women, except for one study which
included only women [24]. Subjects were enrolled in a clinic
as part of a larger clinical research project in 4 studies [23],
[26], [27], [30], in a community center in 1 study [31],
in a hospital’s physiotherapy service in 1 study [22], and via
letter sent to members of the community in 1 study [24];
details about the recruitment process were not provided in
6 studies [21], [25], [28], [29], [32], [33].

Additional details about the shortlisted studies are reported
in Table I.

Subjects were labelled as (non-)fallers using retrospective
fall history in 10 studies, with a recall period of one year for
8 studies and 5 years for 2 studies; prospective fall occurrence
through a one-year follow-up period in 2 studies; and a clinical
assessment tool (the Tinetti scale) in one study.

Tri-axial accelerometers and gyroscopes were the only type
of inertial sensor used in 10 and 1 studies respectively;
a combination of sensors were used in 2 studies. In 7 studies,
only one sensor was used; in 5 studies two sensors were used;
and 1 study used four sensors.

The most common sensor placement was the lower back
(i.e. approximately on L3) with 10 studies, followed by shins
and feet with 2 studies each. Other placements were knee,
ankle, thigh, sternum and upper back (i.e. approximately
on C7), with one study each. If placements are grouped in
upper body (trunk) and lower body (lower limbs), there were
eleven (91.7%) and seven (58.3%) studies, respectively.

Inertial signals were acquired during the following tasks:
walking otherwise than a standardized test (7 studies), quiet
standing (3 studies), the TUG test (2 studies), the 10-Meters
Walking test (10MWT) (1 study), and the Five-Times Sit-to-
Stand (FTSS) test (1 study). A brief description of these tasks
is presented in Table II; for a more detailed description the
reader may refer to the referenced paper.
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TABLE II
DESCRIPTION OF TASKS CHARACTERIZED USING INERTIAL SENSORS

B. Inertial Sensor-Based Features and Their Trends

The full listing of features extracted from inertial sensors
that were reported in the 13 selected papers is provided as
supplementary material (Table S1). Green et al. [23] reported
features for all the subjects included in their analysis as well as
for some subgroups separately (i.e. males, females < 75 year
old and females ≥ 75 years old). However, only the results
for all the subjects were included in this review. Moreover,
Doheny et al. [26] performed an instrumented gait assessment
four times along the same day. However, only the results of
the first assessment (between 9:00 and 9:30 am) were included
in the review.

In summary, 93 distinct features were identified in the
selected studies and categorized similarly to [9]: linear accel-
eration (15 features, 16.1%), angular velocity (28 features,
30.1%), spatial (4 features, 4.3%), temporal (24 features,
25.8%), frequency (21 features, 22.6%) and non-linear
(1 feature, 1.1%).

These features were reported 175 times in the selected stud-
ies out of which 84 times (48%) they exhibited a significant
trend. Table III summarizes the frequency of features per
feature category, task and sensor placement for the complete
listing of features (column A) and for the subset of features
showing significant trends (column B).

C. Statistical Analysis of Inertial Sensor-Based Features
The results from the Pearson’s chi-squared tests and the

measures of association revealed statistically significant asso-
ciations between feature significance and feature category,
sensor placement and task (Table IV).

Furthermore, the computed Pearson residuals for the three-
way table containing feature category, task and sensor place-
ment as covariates revealed strong to very strong associations
for 9 triads. Table V summarizes these results. As an example,
the double arrow, ‘↑↑’, for the triad ‘angular velocity-walking-
shins’ means that significant features are much more likely to
arise from this combination. Conversely, the single arrow, ‘↓’,
for the triad ‘angular velocity-walking-lower back’ means

TABLE III
FREQUENCY TABLES FOR FEATURES BY TASK, SENSOR

PLACEMENT AND FEATURE CATEGORY

that significant features are less likely to arise from this
combination. The ‘-’ symbol indicated that the significance
of a feature is not particularly affected by its category, sensor
placement or task.

D. Meta-Analysis of Inertial Sensor-Based Features
Based on the selection criteria for the meta-analysis,

20 features were pooled using the methods described above.
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TABLE IV
MEASURES OF ASSOCIATION BETWEEN FEATURE

SIGNIFICANCE STATUS AND COVARIATES

TABLE V
ASSOCIATION TREND AND STRENGTH FOR ALL POSSIBLE TRIADS

OF FEATURE CATEGORY, TASK AND SENSOR PLACEMENT

Table VI shows the trend and values for those features, as well
as the number of subjects in each group. It also shows the task
and the sensor placement for each feature.

Linear acceleration features included in the meta-analysis
were: Root Mean Square (RMS) value (expressed in g-force
units) of acceleration signal in the mediolateral (ML) direction
assessed at the lower back during quiet standing with both eyes
open and eyes closed (ML RMS of acceleration). This feature
is related to postural stability during standing.

Spatial features included in the meta-analysis were: number
of steps during the Timed Up and Go (TUG) test, and step
length as estimated from inertial signals measured during the
walking stage of the TUG test or other walking task.

Temporal features included in the meta-analysis were:
cadence (i.e. steps per minute); gait speed; step time; stance
time; swing time; stride time; total time to complete the TUG
test; single and double support time, i.e. the time during
which only one foot and both feet are in contact with the
walking surface, respectively, expressed as a percentage of
a gait cycle; and the Coefficient of Variation (CV) for step,
stance, swing, stride, single and double support times. The
CV is the ratio of the standard deviation and mean for a given
feature, expressed as a percentage; hence, it is a standardized
measure of dispersion of the distribution of feature values.

All the spatial and temporal features included in the meta-
analysis are widely used in clinical gait analysis [39].

One frequency feature was included in the meta-analysis:
the Harmonic Ratio (HR) of trunk acceleration in the verti-
cal (VT) direction. The HR has been defined as the ratio of
even to odd signal harmonics extracted from the spectrum of
the acceleration signal and has been suggested as a measure
of the stability and smoothness of trunk movement during
gait [31].

Neither angular velocity nor non-linear features were
included in the meta-analysis, as none of them met the criteria
to be pooled; i.e. either they were reported only in one
study or they were measured during different tasks or at
different sensor body placements.

The relative pooling weight of each study is reported in
Table VI. The results of the pooling are reported in Table VII,
where also the trend of the pooled features is shown.

Four out of twenty pooled features showed a statistically
significant trend associated to fallers. A significantly higher
RMS value for the ML acceleration signal (MD: 0.01 g;
CI95%: 0.006 to 0.014; p < 0.01) during quiet standing with
eyes closed. Additionally, a significantly higher number of
steps (MD: 1.638 steps; CI95%: 0.384 to 2.892; p = 0.01)
and a significantly higher total time to complete the TUG
test (MD: 2.274 seconds; CI95%: 0.531 to 4.017; p < 0.01).
Finally, a significantly higher step time (MD: 0.053; CI95%:
0.012 to 0.095; p = 0.01).

E. Quality Appraisal of Shortlisted Studies

All the studies reported aim of the study; experimental
protocol (i.e. task, sensor quantity and placement); technical
specifications of the sensor; methods for signal processing,
feature extraction and statistical analysis; and features’ sum-
mary statistics per group (non-fallers and fallers). However,
only 7 studies reported actual p-values (e.g. 0.035 rather than
<0.05) for the feature values’ differences between groups [22],
[25], [29]–[33].

Moreover, only 7 studies reported inclusion/exclusion
criteria of participants and distribution of potential con-
founders per group (e.g. age and comorbidities) [24], [25],
[27], [29], [31]–[33]. Therefore, the internal validity of 6
studies remains unclear, as unreported (or unobserved) vari-
ables could explain feature differences between fallers and
non-fallers.

Finally, external validity was found for all shortlisted stud-
ies, as their samples were representative of the population
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TABLE VI
INERTIAL SENSOR-BASED FEATURES INCLUDED IN META-ANALYSIS

under investigation and the task was representative of clinical
fall-risk assessment protocols or daily-life activities.

IV. DISCUSSION

This systematic review analyzed the scientific literature
focusing on the use of wearable inertial sensors for risk of
fall assessment and prediction, exploring the sensitivity sensor-
based features to sensor placement, task and feature category.

The statistical analysis of features reported in the 13 short-
listed studies revealed significant, very strong, positive associ-
ations in 3 different triads of feature category, task, and sensor
placement:

• Angular velocity – Walking – Shins

• Linear acceleration – Quiet standing – Lower back
• Linear acceleration – Stand to sit/Sit to stand – Lower

back
These results suggested that these are optimal combinations
when using inertial sensors to discriminate between fallers and
non-fallers. Other potentially good combinations, given their
strong, positive associations are:

• Frequency – Walking - Lower back
• Frequency – Walking - Upper back
• Temporal - TUG - Shins

Conversely, our findings suggested that the use of following
combinations should be avoided as they are less discriminative
of fall status:
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TABLE VII
POOLED INERTIAL SENSOR-BASED FEATURES

• Angular velocity – Walking - Lower back
• Frequency – Walking - Shins
• Linear acceleration – Walking - Shins

As for the meta-analysis, the results demonstrated that 4 fea-
tures significantly increased (p < 0.05) among fallers: the
RMS acceleration in the mediolateral direction during quiet
standing with eyes closed (MD: 0.01 g; CI95%: 0.006 to
0.014); the number of steps (MD: 1.638 steps; CI95%:
0.384 to 2.892) and total time (MD: 2.274 seconds; CI95%:
0.531 to 4.017) to complete the Timed Up and Go test; and
the step time (MD: 0.053; CI95%: 0.012 to 0.095; p=0.01)
during walking. These results suggest that these combinations
of task and features may be useful more effective for fall risk
assessment.

Additionally, 5 features exhibited a consistent trend across
the selected studies. These features were: step time, CV for
step time, CV for stride time and CV for single support
time, which showed a higher value for fallers when compared
to non-fallers; and double support time, which showed a
lower value for the same group. However, these trends were
not found statistically significant when pooled in the meta-
analysis. It may be explained by the high values of standard
deviation reported by Green et al [23], which was included
in the pooling for these features. No clear explanation for
such variability within that study can be inferred from the
paper.

In contrast, 7 features showed an opposite trend across the
selected studies: step length, cadence, gait speed, harmonic
ratio in the vertical direction, CV for stance time, CV for
swing time, and CV double support time. Importantly, for 4 of
these features the methods used to classify subjects as (non-)
fallers were also inconsistent between studies: step length
and cadence were pooled from [25] and [29], in which the
classification methods were retrospective fall history and fall
risk assessment tool (Tinetti scale), respectively. Gait speed
was pooled from [25], [28] and [31], the latter adding prospec-
tive fall occurrence to the diversity of classification methods.
Finally, harmonic ratio on the vertical direction was pooled
from [29] and [31], combining subjects classified as fallers
via two different methods as well. This fact may represent an
important source of between-study heterogeneity, as reflected
by the high values of I2 (>95%) and low significance
levels (p < 0.01) obtained in the heterogeneity test for these
features. Unfortunately, the low number of studies report-
ing on the same feature made unfeasible to explore possi-
ble sources of heterogeneity using quantitative approaches
(e.g. via subgroup analysis stratified by study and/or patient
characteristics).

Moreover, 5 features showed an ambiguous trend across the
selected studies, as they were reported with no mean difference
between non-fallers and fallers in one study, while exhibiting a
trend (significant or not) in another study. These features were:
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the RMS value of acceleration in the mediolateral direction
with eyes open, and stance time, swing time, stride time, and
single support time during walking.

All in all, the evidence gathered in this review suggests
that assessing the Timed Up and Go test using wearable
sensors located on the shins through angular velocity, temporal
(e.g. total time and step time) and spatial (e.g. number of steps)
features may represent an optimal combination to discrimi-
nate fallers from non-fallers. Additionally, the triad “linear
acceleration-quiet standing-lower back” seems to be a sensible
choice as well.

Nevertheless, it should be stressed that these results are
limited, as they are based only on features reported in the
13 papers included in the review. Hence, they are unable to
provide a representative inference of all features used and all
studies published, but not included in the review. It means
that there might be some other sensor-based features that
are discriminant between non-fallers and fallers but were not
included in this systematic review as they were not reported
as required by the inclusion criteria. This may be the case of
some features reported in [34]–[38].

Finally, a comment regarding heterogeneity in “hit rate”
(i.e. the ratio of all features to significant features expressed as
a percentage) reported in the shortlisted studies is deemed rel-
evant to this review. In some studies reporting a relatively high
number of features (i.e. 28 or more) a hit rate ranging from
25 to 66% was achieved [23], [26], [27]. In contrast, some
studies reporting a low number of features (i.e. 7 or less)
achieved hit rates above 85%, with two studies reporting a
surprising 100% [29], [31], [33]. From these studies, it was not
clear if the authors investigated a low number of features or if
they investigated a large number of features but only reported
the most significant ones. Even if reporting bias (a.k.a. selec-
tive reporting) should not be concluded from this finding,
it should at least make us aware of the potential presence of
this practice in our field. This practice could undermine the
findings of future studies, making more difficult to converge
to meaningful conclusions.

V. CONCLUSION

In conclusion, this paper demonstrated that there are high
and significant interactions among sensor placement, task and
feature category to assess the risk of falling. This system-
atic review provided a framework for future study design,
highlighting dependences among those factors. In addition,
the review generated a comprehensive inventory of the features
reported so far from inertial sensors for fall risk assessment
in older adults, summarizing their trends and whether these
were found statistically significant or not in each study.
The statistical analysis of those features demonstrated that
the triad ‘angular velocity-walking-shins’ has shown more
discriminative power between non-fallers and fallers than
others. Finally, the meta-analysis demonstrated that 4 features
resulted significantly different between non-fallers and fallers.
However, most features were not included in the meta-analysis
because they were not reported with sufficient homogeneity in
at least 2 studies, suggesting that future studies are required
to produce more evidence that allows to conduct a more

comprehensive meta-analysis. Future studies should consider
the evidence resulting from our review, in particular for:
1) the selection of the features to be further explored; 2) the
sensor placement; and 3) the task used to assess the risk of
falling. Those studies could also benefit from the adoption of
some practices more common in clinical research, such as the
definition of participant inclusion/exclusion criteria, inclusion
of potential confounders in the analysis and ultimately the
ex-ante publication of the full study protocol prior to the study
conduction. These practices aim to reduce the risk of bias and
confounding, thus giving more validity to the study.
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