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Abstract— Drowsy driving is one of the major causes that
lead to fatal accidents worldwide. For the past two decades,
many studies have explored the feasibility and practicality of
drowsiness detection using electroencephalogram (EEG)-
based brain-computer interface (BCI) systems. However,
on the pathway of transitioning laboratory-oriented BCI
into real-world environments, one chief challenge is to
obtain high-quality EEG with convenience and long-term
wearing comfort. Recently, acquiring EEG from non-hair-
bearing (NHB) scalp areas has been proposed as an alter-
native solution to avoid many of the technical limitations
resulted from the interference of hair between electrodes
and the skin. Furthermore, our pilot study has shown that
informative drowsiness-related EEG features are accessible
from the NHB areas. This study extends the previous work
to quantitatively evaluate the performance of drowsiness
detection using cross-session validation with widely stud-
ied machine-learning classifiers. The offline results showed
no significant difference between the accuracy of drowsi-
ness detection using the NHB EEG and the whole-scalp EEG
across all subjects (p = 0.31). The findings of this study
demonstrate the efficacy and practicality of the NHB EEG for
drowsiness detection and could catalyze explorations and
developments of many other real-world BCI applications.

Index  Terms—Brain-computer interfaces (BCI),
electroencephalogram (EEG), non-hair-bearing electrodes,
drowsiness.

I. INTRODUCTION
ROWSY driving is one of the major factors that lead to
collisions, injuries, or even fatalities [1]. Developing reli-
able approaches to detect drowsiness during driving is one of
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the high priority issues for life safety. For the past two decades,
many studies have explored the feasibility and practicality
of drowsiness detection using electroencephalogram (EEG),
the most practical non-invasive modality featuring high tem-
poral resolution and low cost among various types of brain
monitoring modalities [2]-[7]. In 1993, Makeig and Inlow [2]
have investigated and quantified the correlation between EEG
features and task performance (the error rate of detecting
above-threshold auditory target stimuli). Subsequent work by
Jung et al. [3] demonstrated the feasibility of estimating
alertness based solely on the variations of EEG spectral power
in an auditory monitoring task. They proposed to build a
predictive model using the EEG data collected in a training
session, and then applied the model to the EEG recorded in
a testing session from the same participant to continuously
estimate the alertness level.

Based on the correlation between EEG spectra and drowsi-
ness, several studies have contributed to developing algo-
rithms that can estimate the performance of sustained-attention
tasks [4]-[7], which have solidified the practicality of a
brain-computer interface (BCI) that tracks neurocognitive
drowsiness continuously. Although the aforementioned stud-
ies have demonstrated the detectability of drowsiness-related
EEG markers, their results were obtained with whole-scalp
EEG systems in well-controlled laboratory environments.
Whether or not the EEG-based drowsiness detection method
is practical in real-world environments remains unclear.
Applying EEG measurements for monitoring changes of brain
cognitive states has been known as one of the grand chal-
lenges because of various limitations existing in current EEG
recording modalities [8], [9]. In general, EEG acquisition for
real-world applications requires following features [10], [11]:
1) Portability, 2) Convenience and long-term wearing comfort,
and 3) Acceptable signal quality. The conventional laboratory-
oriented EEG recording methodology failed to meet afore-
mentioned requirements because of the use of wet electrodes
and conductive gels for reducing the impedance and tethered
wires for connecting the computer systems. Furthermore,
skin/scalp preparation and cleaning are both time-consuming
and inconvenient before and after each EEG recording ses-
sion. The recent advance in developing portable and wireless
EEG recording devices has made significant improvements
in terms of portability and convenience of EEG [12]-[14].
Nonetheless, dry-electrodes still face difficulty in achiev-
ing stable electrode-skin contact in hair-covered scalp areas
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without conductive gels. To reduce the interference from the
hair between electrodes and the skin, current dry electrodes
often used pins, either solid or flexible, to penetrate the
hair layer [12]-[14]. According to a previous study on user
experience of dry electrodes, even soft-pin-based electrodes
could cause erythema after long-term applications [15]. Over-
all, in terms of portability, convenience, long-term wearing
comfort, and acceptable signal quality, none of the existing
EEG recording devices has met all of the requirements for real-
world use. However, even though the EEG recording devices
might not have a satisfactory solution for real-world use
immediately, there might be a compromise solution. Lately,
a non-hair-bearing (NHB) montage that measures EEG signals
from frontal, ear, mastoid, and neck areas has been proposed
for measuring EEG signals in real-world BCI applications,
because it avoids the interference of electrode-skin contact
caused by the hair [16]-[20]. Generally speaking, the NHB
BCI uses only easily accessible areas of the scalp, and could be
realized with EEG recording devices featuring minimal weight
and size, which are necessary for portability, convenience of
use and long-term wearing comfort. Furthermore, without the
interference from the hair, the relatively stable skin-electrode
contact could improve the convenience of recording setup
without the use of conductive gels or pin-shaped electrodes.
Recently, steady-state visual evoked potential (SSVEP) detec-
tion based on the NHB EEG has been validated and applied
in a BCI speller [20]. The online performance of the NHB
SSVEP speller could reach 30 bit/min using solely the mastoid
areas. Another potential use of NHB EEG is drowsiness
detection. In our pilot study, we have demonstrated accessing
EEG features associated with neurocognitive drowsiness from
the NHB EEG, and those NHB EEG features could achieve
the comparable efficacy of discriminating trials with short vs.
long response time (RT) in response to lane-departure events
to the whole-scalp EEG [21].

This study aims to comprehensively investigate and validate
the feasibility of using the NHB EEG as biomarkers for con-
tinuous tracking and detection of neurocognitive drowsiness.
First, we assessed the drowsiness-related information available
in the EEG by a comparison between the EEG correlates of
drowsiness from the whole-scalp and those from the NHB
channels. Next, we used the drowsiness-related NHB EEG
features to develop a framework for drowsiness detection, and
compare the performance of classification using the NHB EEG
with that of using the whole-scalp EEG. Finally, we validated
the performance of the proposed NHB montage for drowsiness
detection with cross-session validation on 10 subjects preform-
ing lane-keeping driving experiments.

Il. METHOD
A. Experiment

This study scrutinizes EEG correlates of drowsiness
during a lane-keeping driving experiment [22]. The experiment
took place in a realistic virtual-reality (VR) driving simulator
that created immersed driving experience for the participants.
The VR driving simulator was composed of an authentic
coupe car body mounted on a 6-degree-of-freedom motion

platform and surrounding projector screens playing driving
scene. During the experiment, a subject was sitting in the
driver seat while the car automatically cruised forward at
the speed of 100 km/h on a nighttime straight highway.
During the experiment, lane-departure events were repeatedly
introduced every 6-10 seconds, in which the car drifted
toward either left or right randomly, and the participant was
instructed to steer the car back to the course once he/she
was aware of the lane-departure events. The point in time
when the lane-departure event occurred, when the subject
responded to the lane-departure event, and when the subject
finished steering the car back to the course, were logged
as deviation onset, movement onset, and movement offset,
respectively. The experiment started after lunch and lasted
for ~90 min in order to maximize the chance of drowsy
driving by afternoon slump [23]. Ten subjects with normal or
corrected-to-normal vision participated in the experiment, and
each of them performed two sessions on different days. The
experiment was approved by the Institutional Review Board of
the Veterans General Hospital, Taipei, Taiwan. All participants
were asked to read and sign an informed consent form before
the EEG experiment. For the details of the participants and
the experiment, readers are referred to [7].

B. Evaluation of Neurocognitive Drowsiness

In the lane-departure event, the level of drowsiness in that
given moment was quantitatively estimated based on the RT,
which defined as the time between the deviation onset and
the wheel-steering onset. For each subject, the RT in each
lane-departure event was named local RT, which represents the
short-term level of drowsiness. On the other hand, the long-
term level of drowsiness was defined by global RT, which
was calculated by averaging the RTs across all trials within
a 90-second window before the onset of the deviation [5].
For each driving session, the ‘alert RT’ was measured as
the 5t percentile of local RTs across the entire session,
representing the RT that the subject could perform during
alertness. Trials with both local and global RT shorter than
1.5 times alert RT were categorized as ‘alert’ trials, whereas
those with both local and global RT longer than 2.5 times
alert RT were labeled as ‘drowsy’ trials. Such a categorization
excluded the transitioning trials that correspond to a moderate
performance of the driver, since intermediate RT might be
attributed to other unknown processes, e.g. mind-wandering,
and the exclusion of transitioning trials could benefit the
accuracy of discriminating drowsy trials [7], [21]. The total
numbers of alert, transitioning, and drowsy trials were 2,940,
4,506, and 1,512, respectively, across 10 subjects. This study
focuses on the detection of drowsiness (low performance)
where interventions are necessary by training our machine-
learning classifiers with well-defined alert vs. drowsy trials.

C. EEG Recording and Processing

In the experiment, the EEG activity of each subject
was recorded using a 32-channel Quik-Cap (Compumedics
NeuroScan Inc.) following the International 10-20 system
of electrode placement with Ag/AgCl gel-based electrodes.
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Fig. 1. (a) The partition of hair-covered areas and non-hair-bearing area
divided by a brown boundary. (b) The layout of electrode locations of the
32-channel recording system. Brown boundary separates the divisions
of hair-covered and non-hair-bearing area.

The raw EEG signals were sampled at 500 Hz with
16-bit quantization. Six electrodes, Fpl, Fp2, F7, F8, Al, and
A2 were placed on NHB areas (see Fig. 1). All EEG data were
re-referenced to the arithmetic average of Fpl and Fp2. F7,
F8, Al, and A2 were noted as the NHB channels for further
analysis. To be specific, F7 and F8 measured the brain activity
in the frontal area, while A1 and A2 recorded the brain activity
in the left and right mastoid areas, respectively. The EEG
signal of each channel underwent a 1-50 Hz band-pass finite
impulse response filter to remove low-frequency DC drifts and
power line noise at 60 Hz. The filtered EEG data were then
down-sampled to 250 Hz to reduce computational load. The
data were then cleaned by the procedure of artifact subspace
reconstruction (ASR) [24] provided in EEGLAB [25]. The
ASR detects high-variance signal components above a given
threshold and linearly reconstructed by the retained uncontam-
inated signal subspace based on principal component analysis
of 1-min calibration data [26].

D. EEG Feature Extraction and Assessment

The EEG features related to neurocognitive drowsiness have
been investigated in numbers of previous studies [2]-[6],
[27], [28], and have been extended into BCI applications for
predicting the human performance in a sustained attention
task [3], [5], [27], [28]. As suggested in the preliminary
study [21], we employed the EEG data prior to the onset of the
task event as features for building a predictive model that can
continuously estimates the performance index without relying
on any EEG activities induced by infrequent and unexpected
events. In this study, theta (4-8 Hz), alpha (8-13 Hz), and
beta (13-30 Hz) logarithmic powers of 3s-long pre-event EEG
before each lane-departure event were exploited for classify-
ing the ‘alert’ vs. ‘drowsy’ on the upcoming lane-departure
event [21]. For each trial, the logarithmic powers of the 3-s
pre-lane-departure sub-band-passed EEG segments were esti-
mated. Then, the sub-band logarithmic powers were smoothed
to eliminate unrelated spectral perturbations. Finally, both
the unsmoothed and smoothed pre-event logarithmic theta,
alpha and beta powers for all-channel (AC)/NHB channels
congregated a 180/24-dimensional feature set for drowsiness
detection. Essentially, the AC montage represents the conven-
tional whole-scalp BCI setting that includes EEG data acquired

from both the hair-covered and the NHB areas. A series of
analyses and classification experiments was performed in order
to quantitatively assess and compare the validity of drowsiness
detection based on the AC and the NHB montages.

E. Classifiers

Three classic classification methods, linear discriminant
analysis (LDA), k nearest neighbors (kNN) and support vector
machine (SVM) that have been widely used in EEG classifi-
cation were employed in this study to discriminate the EEG
activity of drowsy state from that of alert state.

1) Linear Discriminant Analysis: LDA aims to project data
onto hyperplanes for maximizing the separation between
data from different classes while minimizing the variance
of data within the same class [29]. According to statistics,
LDA is the most commonly used classification method in BCI
studies [30]. Because of its low computational requirement and
efficiency, LDA is an ideal simple tool to perform classification
for online BCI systems. Nonetheless, the simplicity of LDA
is also its drawback as it could fail in dealing with non-linear
EEG data [31]. We applied the conventional LDA combined
with maximal likelihood (ML) classification that has been used
in the preliminary study [21].

2) k Nearest Neighbors: The kNN classifier is a non-
parametric instance-based approach for classifying a sample
in the feature space [32]. In the KNN classification, the
class of a sample is determined by a majority vote of its k
neighboring samples. However, kNN algorithms are known
for their sensitivity to curse-of-dimensionality, and are not
as widely used in BCI researches as LDA or SVM [31].
We included kNN in this study for the sake of diversity
of classic classifiers, where k = 5 has been pre-optimized
empirically.

3) Support Vector Machine: SVM is the second most used
classifier in BCI studies [30]. Analogous to LDA, SVM also
maps data upon a hyperplane, whereas it selects the hyperplane
that maximizes the margin between different classes [33].
One advantage of SVM is the generalizability resulted from
margin maximization that prevents over-fitting and curse of
dimensionality [31], which is crucial for classifying EEG
data. The flexibility of kernel selection allows SVM to handle
complex data, but optimizing the parameters could be a time-
consuming task. In this study, we used LIBSVM [34] with
a linear kernel and grid-search optimization on 5-fold cross
validation. The SVM classifier has been used in previous BCI
applications for real-time EEG classification [35], [36].

I1l. RESULTS

Fig. 2 shows the topographical distribution of Pearson
correlation coefficients between normalized RT [35] and the
pre-event EEG power at different frequency bands. In par-
ticular, strong EEG correlates of RTs could be found in the
frontal theta (negative correlation) and parietal-occipital alpha
(positive correlation). The broad distribution of strong EEG
correlates (red and blue on the scalp topography) suggests
that the informative drowsiness-related EEG dynamics could
be extracted from both the hair-covered and the NHB areas.
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Fig. 2. The scalp topography of correlation distributions that exhibits
the correlation coefficients (p) between normalized RT and pre-event
EEG power features of theta, alpha, and beta band at different channel
locations across subjects. Strong drowsiness-correlated EEG dynamics,
particularly at frontal theta and parietal-occipital alpha, disperse across
whole scalp, including both hair-cover and NHB areas.
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Fig. 3. EEG spectral changes from alertness to drowsiness at different
representative channels and frequency bands. Bar plots illustrate the
average increments across subjects of band power from the alert state
to the drowsy state, and error bars mark standard deviations. The spectral
increment for each band is calculated by averaging the logarithmic band
powers of the 3-s pre-lane-departure EEG across all trials from the
drowsy state, and subtracted by the mean logarithmic band power of alert
trials. The gray scale filled in each bar indicates the p-value of two-sample
ttest for the significance of the difference between the average log-
powers of alert and drowsy states. In the left column, Fz, Cz, Pz, and Oz
are four representative channels selected from the hair-covered areas,
while in the right column, F7, F8, A1, and A2 are four NHB channels
utilized for drowsiness detection. Although the increments of powers are
larger at the hair-covered channels than those at the NHB channels,
both hair-covered and NHB channels exhibited highly significant power
increases in the alpha band.

To validate the significance of drowsiness-related EEG
features in the NHB areas, the spectral changes of pre-
event EEG between short-RT and long-RT trials at the NHB
channels were compared with those at the selected hair-
covered channels in Fig. 3. The statistical analysis indicates
strong discriminative features, in particular at the alpha band
in both the hair-covered and NHB areas. Table [ summarizes
the spectral differences in pre-event EEG between alert and
drowsy state. Though the spectral differences of the NHB
EEG between short- and long-RT trials were slightly weaker
than those of hair-covered EEG (at Oz), the NHB EEG
features are comparable to hair-cover EEG features in the
statistical strength of discriminating drowsy state from alert
state, which supports the feasibility of using NHB EEG to
detect drowsiness.

TABLE |
POWER DIFFERENCE OF EEG FEATURES BETWEEN
ALERT AND DROWSY STATE

APower (dB)
Channel Theta Alpha Beta
Fz 0.8242.30 7.3313.61 1.54%1.37
Hair- Cz -0.7411.45 6.6013.67 1.08%1.03
covered Pz -0.01+1.78 9.71+4.82 2.05+1.51
Oz 0.87+1.88 12.8815.56 2.50+1.48
F7 2.79+2.36 4.47+1.77 1.33+1.77
NHB F8 1.5911.66 4.24+2.21 1.33+2.21
Al 1.1911.68 6.8713.88 1.8710.82
A2 0.7313.88 8.98+4.07 2.10+1.29
Bold: p<0.001, two-sample ¢ test.
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Fig. 4. (a) The change of global RT across an entire session of

subject 9. Gray line shows the interpolated global RT using the global
RT of neighboring trials. Red cross indicates the events that are labeled
as ‘drowsy’. (b) The classification results of drowsiness detection using
three types of classifier (SVM, LDA, and kNN) with NHB and AC EEG
for the same session as in (a). Hits, false alarms, and misses were
marked as red, blue, and green dots, respectively. Note that drowsiness
detection was performed only at the time right before a lane-departure
event presents. The non-drowsy outcome was denoted as a gray belt,
which includes the ‘alert’ predictions and other non-drowsy intervals,
such as cruise driving and wheel-steering.

Fig. 4 shows the performance of drowsiness detection for a
sample session (second session of subject 9, S9-2). Fig. 4(a)
illustrates the fluctuations of global RTs during the entire
driving session, where red crosses mark drowsy trials. The
driving performance of S9 in the session gradually declined
and entered a drowsy state ~70 minutes on the task. Fig. 4(b)
exhibits the prediction of alert/drowsy trials of this session.
In the first half of the session, NHB-SVM and AC-SVM have
successful classified the EEG spectra without any false alarm,
whereas LDA and kNN classifiers both made some erroneous
classifications. From ~70 minute onwards, all approaches
detected drowsiness at the transition point of the subject’s
neurocognitive state. In the later part of the session, as the
subject’s state shifted back and forth between drowsiness and
alertness, all these classifiers predicted drowsy trials correctly,
and erroneous predictions tend to occur during the transitions
between states. The ROC curves of drowsiness detection of
the sample session (S9-2) using the LDA and the SVM were
compared in Fig. 5.
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Fig. 5. ROC curves describing the relation between true positive rate
(sensitivity) and false positive rate (specificity) using NHB EEG and AC
EEG with different classifiers on subject 9. Note that positive refers to
drowsiness.

TABLE Il
OVERALL ACCURACY OF DROWSINESS DETECTION USING
WITHIN-SUBJECT CROSS-SESSION VALIDATION

Accuracy (%)
Montage SVM LDA kNN
NHB 80.0+8.6 79.4487 7734107
AC 833+74 78.1£11.9 753%12.6

Finally, the performances of alert/drowsy classification
obtained by three types of classifier using the NHB EEG
and the AC EEG were tested by within-subject cross-session
validation. Fig. 6 and Table II compare the averaged accuracies
across all subjects using different montages combined with
different classifiers. Two-way ANOVA was applied for analyz-
ing 1) the difference among classifiers and 2) the difference
between using the NHB and the AC EEG. The test results
show no significant difference in the accuracy between using
the NHB and the AC EEG, nor among the three classifiers
(Two-way ANOVA, p = (0.31, 0.16)). Furthermore, the area
under the ROC curve (AUC) is jointly employed to evaluate
the classification performance and summarized as in Table III.
Tested by two-way ANOVA, the overall AUC across sub-
jects presents significant difference between the classifiers
(p < 0.01) but no significant difference across between the
NHB and AC montages (p = 0.34).

V. DISCUSSION

In this study, we proposed using a novel EEG recording
montage in NHB areas for future BCI applications featuring
convenience, economy, and long-term sustainability. Although
the concept of drowsiness-related EEG features in the NHB
areas has been proposed in our preliminary study on a small
group of subjects, the efficacy of using the NHB EEG for
BCI applications remains unclear. We hereby comprehensively
validated the performance of drowsiness detection based on
the NHB EEG across sessions (days). Furthermore, several
widely studied BCI classifiers were employed and compared

100
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Fig. 6.  The bar plot compares the average accuracy of drowsi-
ness detection with standard deviation using different metrics across
subjects. No significant difference was found between the NHB and
the AC montages, nor among the three classifiers (Two-way ANOVA,
p=(0.31, 0.16)).

TABLE IlI
OVERALL AUC OF DROWSINESS DETECTION USING
WITHIN-SUBJECT CROSS-SESSION VALIDATION

Montage AUC
SVM LDA
NHB 0.857610.0753 0.731240.1412
AC 0.8759+0.0757 0.7758+0.1041

quantitatively in their performances of drowsiness detection
between using the NHB and the whole-scalp montage. Study
results suggested that the NHB EEG could provide comparable
performance in drowsiness detection to that of the AC EEG
regardless of the classifier being used.

A. EEG Correlates of Drowsiness in the NHB Areas

It has been shown that drowsiness-related EEG activ-
ities could be assessed from various areas over the
scalp [3]-[5], [39]. For instances, EEG correlates of drowsi-
ness have been identified and validated in frontal theta [39]
and parietal-occipital alpha [3]-[5]. The experimental results
of this study confirmed the topographical distribution of
drowsiness-related EEG features (Fig. 2), which plays a key
role in facilitating the design and use of the NHB EEG-based
drowsiness detection. According to the study results shown in
Fig. 3 and Table I, both the NHB and the AC EEG exhibited
highly significant spectral differences between alertness and
drowsiness. To make a fair comparison on the efficacy of the
EEG-based drowsiness detection, we used the same types of
electrodes to acquire the AC and NHB EEG simultaneously.
This study provides an objective evidence of the feasibility of
current and future implications of the NHB EEG.

B. Drowsiness Detection Using the NHB EEG

Although drowsiness-related features of the NHB EEG
showed slightly weaker significances in the spectral differ-
ences between alertness and drowsiness compared with those
of the hair-cover areas (Fig. 3 and Table I), the classification
accuracy of drowsiness detection obtained from the NHB
EEG is still comparable to that obtained from the AC EEG
(Fig. 6, Table II, and Table III). This could be explained
by the intrinsically low spatial specificity of EEG record-
ing, which leads to high signal similarity among different
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channels [40]. As mentioned above, drowsiness-related brain
activity is widely spread across a large scalp area, and thus
could be assessable from either the hair-covered areas or the
NHB areas. The promising findings could encourage further
explorations of BCIs based on the NHB EEG. For instance,
based on these experimental results, one could develop an
NHB BCI that continuously monitors a driver’s cognitive state,
and mitigates the driver’s drowsiness by delivering arousing
feedback or other stimulations during the transitioning from
alertness to drowsiness [41], [42]. This study exploited only
the pre-event EEG spectra to discriminate alertness vs. drowsi-
ness of the participants, because drowsiness is most likely
to occur during monotonous, uneventful driving in real life.
It is impractical to use and rely on EEG spectra following
lane-departure events, as they might not present frequently
in real driving. Therefore the data processing and analysis
for validating the performance of drowsiness detection in this
study was designed within a real-world scenario with online
applicability. Meanwhile, it is intriguing to investigate how
early the drowsiness can be detected in the future work. This
could be examined by inserting a varying gap between the
data being used for classification and the lane-departure event.
As the first attempt made for monitoring human cognitive
state related to driving performance using the NHB BCI, the
extensions of this study could emerge for other tasks that
require maintenance of continuous attention [43].

C. Advantages of NHB EEG for Real-World BCI

As the recording area is smaller than using the whole scalp,
the wearable device for NHB BClIs is expected to be lighter,
more portable, and easier to wear. In addition, the cost of
small number of electrodes required for an NHB BCI could is
lower than that of a high-density montage. In fact, consumer
wearable devices that acquire EEG signals from NHB areas,
such as Neurosky XWave [44] and InteraXon Muse [45], have
been commercially available, and their prices are consider-
ably lower than that of the commercial products featuring
whole-scalp recording such as Emotiv Epoc [46]. Another
advantage of using NHB EEG is that the NHB areas are
favorable for most dry or semi-dry EEG electrodes since it has
low impedance of skin-electrode contact. For instances, dry
Ag/AgCl electrodes, disposable paste ECG electrodes, or patch
sensors all prefer or require hairless surfaces. In particular,
the recent advance of epidermal sensor patches has made
long-term biometric measurements possible in the real world
with their softness and deformability [17], [47]. The epidermal
sensor patches could facilitate maximal comfort in long-term
signal acquisition, but are not applicable in the hair-covered
areas.

Still, there is a limitation of building a BCI based on the
NHB EEG, since most of the EEG activities that have been
studied were assessed from hair-covered areas. For certain
brain responses that are locally distributed in the central
area, the NHB EEG might have low signal-to-noise ratio.
Furthermore, as the spatial distributions of brain activities
vary across individuals [48], [49], the NHB BCI might face
severe challenges in maintaining robustness across individuals.
The efficacy of NHB EEG requires further investigations on

different types of brain activities. In view of these considerable
advantages of using the NHB EEG in real-world applications,
there is a need for further explorations on what information
are available from the NHB areas and what applications could
be facilitated using the NHB EEG.

V. CONCLUSION

The current study presented the efficacy of using EEG
features that are easily accessible from the NHB areas of
the scalp for assessing driving drowsiness. To explore the
amount of drowsiness-related information available in the
NHB EEG, we quantitatively showed that the spectral dif-
ferences between alertness and drowsiness in the pre-event
(lane-deviation) EEG obtained from the NHB areas are slightly
weaker than that obtained from the AC areas. Nonetheless,
the drowsiness-related information from the NHB EEG was
sufficient to provide comparable drowsiness detection accu-
racy to that of using the information from the whole-scalp
EEG. In general, replacing the whole-scalp recording with
the NHB montage is an important and practical step toward
real-world BClIs, as there are considerable advantages on the
efficiency of sensors, the flexibility of mechanical design,
and the improvement of user experience. We believe this
study will ignite many new real-world BCI applications that
can benefit from the convenience and informativeness of the
NHB EEG.
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