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Using Inertial Sensors to Automatically Detect
and Segment Activities of Daily Living in

People With Parkinson’s Disease
Hung Nguyen, Karina Lebel, Sarah Bogard, Etienne Goubault, Patrick Boissy, and Christian Duval

Abstract— Wearable sensors such as inertial measure-
ment units (IMUs) have been widely used to measure the
quantity of physical activities during daily living in healthy
and people with movement disorders through activity clas-
sification. These sensors have the potential to provide valu-
able information to evaluate the quality of the movement
during the activities of daily living (ADL), such as walking,
sitting down, and standing up, which could help clinicians
to monitor rehabilitation and pharmaceutical interventions.
However, high accuracy in the detection and segmentation
of these activities is necessary for proper evaluation of the
quality of the performance within a given segment. This
paper presents algorithms to process IMU data, to detect
and segment unstructured ADL in people with Parkinson’s
disease (PD) in simulated free-living environment. The pro-
posed method enabled the detection of 1610 events of
ADL performed by nine community dwelling older adults
with PD under simulated free-living environment with 90%
accuracy (sensitivity = 90.8%, specificity = 97.8%) while
segmenting these activities within 350 ms of the "gold-
standard" manual segmentation.These results demonstrate
the robustness of the proposed method to eventually be
used to automatically detect and segment ADL in free-
living environment in people with PD. This could potentially
lead to a more expeditious evaluation of the quality of the
movement and administration of proper corrective care for
patients who are under physical rehabilitation and pharma-
ceutical intervention for movement disorders.
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I. INTRODUCTION

PARKINSON’s disease (PD) is a neuro-degenerative disor-
der that progressively deteriorates motor functions in the

affected person, which can affect the quality of life by hinder-
ing the ability to perform simple task in daily living. Symp-
toms of PD and the effects of its treatment can manifest in
form of tremor, bradykinesia, and dyskinesia. Effective patient-
care through real-time feedback of rehabilitation [1], [2]
and pharmaceutical intervention [3], [4] can help manage and
improve the quality of life by minimizing the effects of these
motor dysfunctions on daily living movement. Wireless body-
worn sensors provide a practical ambulatory system to capture
these movements in free-living environment that might be
difficult with laboratory-based optical motion capture system.
However, currently, the focus of these ambulatory systems has
been on analyzing the quantity of physical activity rather than
the quality of the movements behind the activity. This process
can be difficult without a system that could accurately identify
the movement (detection) as well as determine the beginning
and ending (segmentation) of each movement.

Inertial Measurement Unit (IMU), which comprises of a
3D accelerometer, a 3D gyroscope and a magnetometer, has
been used to measure physical activity through differentiation
between active and sedentary lifestyle in healthy popula-
tion [5]–[7] and people with PD [8] based on the quantity of
time spent performing certain activities in daily living (ADL)
such as lying, sitting, standing, and walking. More recently,
Moncada-Torres et al. [9] used a set of inertial and barometric
pressure sensor to classify additional ADL such as drink-
ing, writing, and brushing. However, the transitions between
these activities were often ignored, which are critical to the
evaluation of the quality of the movement. Some studies
have used inertial sensors to segment the transition of the
activity [10], [11]; however, they were often limited to
sit-to-stand transition perform in laboratory setting and under
controlled condition.

In clinical settings, many movement performance para-
meters calculated during activities such as sit-to-stand [12],
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walking [13], [14], and turning [15], [16] have been deter-
mined to be useful in identifying the altered functional capac-
ity in people with PD. Parameters such trunk angle [17],
freezing of gait [18]–[20], gait parameters during walk-
ing [21]–[23] (stride time, cadence, angle, etc.) and turn-
ing [24]–[26] (speed and number of steps) have been extracted
using inertial sensors to evaluate the movement quality of
people with PD. Within each segment, outcome measures
of movement performance associated with different activities
(e.g. stride time in gait) could be evaluated and quantified to
measure mobility in movement disorders. Furthermore, within
those activities, a proper detection of symptom could be done
in people with PD (e.g. tremor, bradykinesia, freezing, etc.).
However, before we can analyze the quality of the movement,
it is important to accurately detect and segment these activities,
especially during free-living environment.

While some studies have concentrated on developing classi-
fication algorithms of physical activities in free-living environ-
ment of healthy population [13], [27], [28], few studies have
focused on PD population [8], [25], [26]. This is important
since the goal should be to equip these sensors on patients
with movement disorder and let them live their lives while
we detect what they are doing and how well they are doing
them in an automated fashion. Previously, we have developed
detection algorithms using healthy elderly during a Timed Up
and Go task [29] and a cleaning task in a simulated free-living
environment [30], [31]. Free-living environment poses a new
challenge to the detection and segmentation of these activities
due to its unrestricted nature as well as the movement difficulty
and variability in people with PD. The aim of this study was to
develop detection and segmentation algorithms based on IMUs
to isolate ADL in people with PD in a simulated free-living
environment.

II. METHODS

A. Participants

Participants were recruited through the Centre de Recherche
de l’Institut Universitaire de Gériatrie de Montréal (CRIUGM)
in collaboration with the Québec Parkinson Network (QPN).1

Nine community dwelling older adults who were diagnosed
with early stages of PD were recruited for the study to
form a homogenous motor symptom. In order to avoid
extreme fluctuation in motor symptoms often associated
with late stages of PD, one inclusion criterion required
participants to be diagnosed in the early stages of PD
by their neurologists and had a score of 2 or less on
the Hoehn & Yahr scale [32]. The sample included two
females (mean±std; age = 65.5±12.0 years old, height =
1.65±0.03 m, weight = 56.7±12.0 kg, years of diagnostic
= 4.5±1.5 years) and seven males (age = 66.1±2.7 years
old, height = 1.75±0.03 m, weight = 80.1±18.6 kg,

1Quebec Parkinson Network is a group of researchers, clinicians and
patients, all collaborating to fight against Parkinson’s disease. Currently
directed by Edward Fon, it was created in June 2013 and now counts
over 800 patients and over 150 members (including neurologists, researchers
and people working on Parkinson’s disease) who join forces to promote
multidisciplinary research. One of its main roles in research is the participant
registry and the bio-bank that facilitate access to valuable information on
patients for research team projects.

years of diagnostic = 4.8±5.6 years). Participants were
screened for cognitive deficits using the Montreal Cognitive
Assessment (MOCA) test (mean of 27±2 SD) [33]. One
participant was classified as a dependent in ADL using the
Nottingham Extended Activity of Daily Living Scale [34].
Participants did not exhibit any severe motor dysfunctions
that would hinder their ability to perform the task; however,
some participants displayed motor symptoms common in PD
such as rigidity, tremor, and bradykinesia. The institutional
ethics review board of the CRIUGM approved this research
and each participant read and signed an informed consent
form.

B. Experiment Protocol

A simulated free-living apartment (7m x 8m) was set
up to induce a daily living task of cleaning. A more
descriptive layout of the environment was described in these
studies [31]. In brief, color-coded objects were strategically
placed throughout the apartment at different locations and
heights. Participants were asked to navigate the apartment and
collect these objects and placed them in their corresponding
color-coded baskets located throughout the simulated apart-
ment. Objects were placed at three different height levels:
ground level, mid-level (60-120 cm from the ground), and
high-level (160-180 cm from the ground). Baskets were placed
at ground and mid-level only. Walls and corridors were con-
structed to prompt participants to walk along a specific path
and to induce turning in sharp angle (90°). Three plastic
armchairs were also included in the apartment to induce sit
down and stand up activities.

Participants were tested in the morning during their OFF
state or at least 10 hours after their last medication. Participants
performed one trial of 3-, 4-, and 5-minute duration.
Participants first performed the 5-minute trial. Then the
3- and 4-minute trials were completed with the order
randomized. Five 5-minute trials, randomly selected from the
nine participants using the same cohort, were used to train
and optimize the algorithms. The 3- and 4-minute trials from
all nine participants (18 total trials) were used to validate
the algorithms. Participants were required to satisfy certain
activity count to ensure that all the activities were performed
during each trial of the cleaning task. For example, they must
sit in each chair at least once and each basket must have at
least three items. The only strict restriction imposed on the
participants was that they could only carry one object at a
time.

Participants performed these activities while wearing the
IGS-180 motion capture suit (Synertial UK Ltd, Brighton,
UK). The IGS-180 is equipped with 17 IMUs (OS3D, Inertial
Labs, VA, USA) positioned on each limb, trunk, and head
segment to capture full-body 3D movement. Each module
contains a 3-axis accelerometer (linear acceleration), a 3-axis
gyroscope (angular velocity), and magnetometer (magnetic
north heading). Raw data (acceleration, angular velocity) and
3D orientation (estimated from a proprietary fusion algorithm
developed by Inertial Labs) from each IMU were acquired at
60 Hz. A local reference frame of each IMU was expressed
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Fig. 1. Schematic of the process to train and validate the algorithms to classify activities of daily living in free, living environment. Five 5-minutes
trials, randomly selected from the population, were used to train the algorithm to find the optimal set of sensor signals and parameters to accurately
detect and segment these activities during an unstructured cleaning task.

with the y-axis aligned along the length of the IMU and the
z-axis perpendicular to the width of the IMU. IMUs were
normally aligned so that the y-axis was positioned along the
limb segment, except for the head sensor, where head axial
rotation was aligned along the x-axis. Further detail of the
IMUs can be found here [29]. Since there was no a priori
expectation as to which sensors were suitable markers for
detection and segmentation, all 17 modules were active during
the recording.

An examiner also segmented the activities during the
cleaning task using a visual full-body avatar generated from
IGS-180 motion capture software (IGS-Bio v. 2.59). The
results from the manual identification and segmentation were
used to evaluate the accuracy of the algorithms. The examiner
was given general instruction on how to visually identify
the beginning and ending of different activities during the
cleaning task without imposing specific markers to account
for the variability in how patients perform these activities.
For example, the beginning of reach was marked by the
initiation of hand movement and the ending was noted when
the hand reached the object. Turn was identified when there
was a change in direction of the body. Turn could occur
gradually (during walking) or sharply during abrupt change
of direction (turn180°). Sit down was segmented when the
participants started to lower themselves onto the chair and
ended when they were completely stable in the chair. Stand
up was initiated when participants propelled their bodies
upward and terminated just before the initiation of gait.
Participants were instructed to perform the activities at their
own speed; therefore, the examiner must use his judgment to
account for the variability in how participants perform these
activities. For example, during stand up, some participants
transitioned directly into walking before completely reaching
upright.

C. Activity Detection
ADL such as sit down (on a chair), stand up (from a chair),

reach (ground, mid, high), walk, and turn were identified
for detection and segmentation. The algorithms developed
in this study were based on previously presented method
using nonlinear transform and adaptive threshold [30], [31]
to detect for peaks that correspond to different activities.
While the method was developed using a continuous Timed
Up and Go task, the fundamental processes of detecting and
segmenting these activities remained the same. In the cleaning
task, kinematics peaks were used to identify an activity and
the maximum/minimum to the left/right of these peaks were
used to estimate the duration (segmentation) of an activity. The
schematic of the process to train and validate the algorithms
is shown in Fig. 1. The algorithms were trained and optimized
by using five 5-minute trials that were randomly selected from
nine participants. In total, there were 473 events in the training
data set. The optimization process was used to determine
the cutoff frequency, the adaptive threshold parameters, and
the IMU signals needed to accurately detect and segment
each activity. The optimal parameters were found with respect
to the training data set. The algorithms were then validated
using the 3- and 4-minute trials from all nine participants
(1610 events).

Sit down and stand up was detected using several kinematic
data extracted from different IMUs (Fig.2a) and segmented
using the acceleration of the trunk (az,Tr) (Fig 2b). Other
IMUs were used to help detect and differentiate these activities
from other confounding activities within the cleaning task. The
sacrum acceleration (az,S) was added to ensure synchronicity
of movement of the trunk and the hip during these activities.
Similarly, the symmetry of the left and right hip flexion (θH)
was used to discriminate from other activities such as reach
ground, where PD participants often performed with one
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Fig. 2. Detection and segmentation of sit down and stand up using a set
of sensor signals that included the acceleration of the sacrum in the z,
direction (az,S) and the acceleration of the thigh in the y,direction (ay,Th),
and the flexion angle of the hip (θH ).

knee touching the ground. Lastly, the derivative of the thigh
acceleration (ȧy,T h) was used to distinguish between sit down
and stand up. This define as:

ay,T h(k)

{
if ȧy,T h ≥ 0 ⇒ sit down

if ȧy,T h < 0 ⇒ stand up
1 ≤ k ≤ n (1)

where nis size of the recorded signal during a trial
and k are the location of the detected peaks within the
signal.

Turn was detected using the angular velocity of the
trunk (ωy,Tr), sacrum (ωy,S), and thigh (ωy,Th) (Fig. 3a). These
IMUs were used to restrict turn to when the upper and lower
body both rotate in concert.

Walk was classified using the magnitude of the linear
acceleration of the left and right IMU on the shin in the
x and z direction (||axz,Shin||) (Fig. 3b). However, to inde-
pendently detect walk, other signals were used to reject non-
walking bouts thus reducing confusion with other activities.
For example, the linear acceleration of the trunk (az,Tr)
and sacrum (az,S) in the z direction were used to nullify
false positives detected during reaching and their angular
velocities about the y-direction (ωy,Tr,ωy,S) were used to
negate false positives detected during turn activity. Lastly,
the magnitude of the acceleration of the thighs (||axz,Th||)
was used to neutralize false positives detected during sit down
and stand up while providing a redundant check on walking
activity.

Reaching activities were detected using the normalized
angle of the trunk (θTr), hip (θH), knee (θK), and shoul-
der (θShld) (Fig 4a). These reaching angles were normalized in
each trial using the absolute maximum angle recorded during
the trial. Segmentation of reaching was achieved using the
shoulder angle (Fig. 4b-d). The trunk, knee, and hip angle
were used to refine the biomechanics of reaching to separate
sub-activity such as reach ground, reach mid, and reach
up. For example, during reach up, these angles were set to

Fig. 3. (a) Detection and segmentation of turning using a set of three
IMUs (angular velocity of trunk, Thigh, and Sacrum) that connect the
upper and lower limb rotation. (b) Walking was detected and segmented
using IMUs on the left and right shank.

θT = θH = θK ≈ 0 to define that the participant was upright
during reach up. This region is referred to as region of low
range of motion (low ROM) (Fig. 4a). During reach mid,
the condition was relaxed to θH = θK ≈ 0. In contrast, reach
ground was detected during segment of high ROM of these
angles. However, these requirements were not sufficient to iso-
late reach up and reach mid due to the variability in the height
of the participants and the fixed position of the objects at these
levels. Therefore, the shoulder angle was discretized using the
peak value (PV) and peak prominence (PP) of the activity
peak to separate these sub-reaching activities. The peak promi-
nence is defined as the vertical height of the activity peaks
to the lowest contour line (minimum) of lower neighboring
peaks.

Reach up was defined when PV and PP of θShld satisfied
these conditions:

θShld,P P ≥ 0.7 · max
(
θShld,P P

)
30° ≤ θShld,PV ≤ 0.7 · max

(
θShld,PV

)
(2)

Reach mid was classified when the PV and PP satisfied these
conditions

θShld,P P ≤ 0.9 · max
(
θShld,P P

)
θShld,PV ≤ 0.9 · max

(
θShld,PV

)
(3)

D. Activity Segmentation

Segmentation of the activity was accomplished by finding
the first maximum or minimum to the left or right of these
activity peaks. This method was thoroughly presented in
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TABLE I
SENSOR SIGNALS TO DETECT AND SEGMENT ACTIVITIES

Fig. 4. Reaching activity. (a) The angle of the knee, hip, and trunk
were used to differentiate three levels of reaching: reach up, reach mid ,
and reach ground . (b) The shoulder angle was used to segment these
reaching activities.

previous study [29]. However, reaching was modified with
the ending of the activity corresponding to the peak of the
activity, denoting the ending of the reaching activity when the
hand reaches the objects.

In addition, segmentation of turn was calculated using
the average time marked using the angular velocity of the
sacrum (ωy,S), thigh (ωy,Th), and trunk (ωy,Tr). This redun-
dancy was needed to account for the unstructured nature
of the cleaning task and the variability in how participants
performed the turn activity. The complete sensor signals used
for detection and segmentation is tabulated in Table I.

E. Statistical Analysis

Sensitivity, specificity, and F-score were used to measure
the detection accuracy of these activities. Sensitivity measures
the proportion of true positive (TP) while specificity measures
the proportion of true negative (TN). The accuracy, F-scores,
was defined as:

F-score = 2 · TP

2 · TP + FN + FP
(4)

where FN is the numbers of false negative and FP denotes
the numbers of false positive. Segmentation accuracy was

evaluated using the absolute difference of the time (beginning
and ending) marked manually by the examiner and automat-
ically using the sensors for each activity (�T= |Tmanual-
Tsensor|). The Shapiro-Wilk test (α = 0.05) was used on
the �T of each activity to determine the normality of the
data distribution. Predictive confidence interval (α = 0.05)
was also used to evaluate the reliability and robustness of
the algorithms. The boxplot of the �T was generated using
a 95% confidence interval (CI) to demonstrate the predictive
reliability of using the sensor to segment these activities.

III. RESULTS

A. Activity Detection

Eighteen trials of the 3- and 4-minute were used to validate
the algorithms. In total, there were 1,610 events of seven
classified activities (sit down, stand up, reach up, reach mid,
reach ground, turn, and walk). Sit down (n = 50) and stand
up (n = 63) were detected with 100% sensitivity and 99.9%
specificity. For reaching, reach up (n = 51) was detected
with 80.4% sensitivity and 99.9% specificity while reach mid
(n = 223) was identified with 80.4% sensitivity and 96.0%
specificity. Reach ground (n = 174) was classified with
93.1% sensitivity and 98.9% specificity. Turn (n = 692)was
identified with 82.7% sensitivity and 92.6% specificity. Lastly,
walk (n = 357) was detected with 91.9% sensitivity and
99.4% specificity. Across all activities, classification using the
sensors signals was about 90% accurate (sensitivity = 89.8%,
specificity = 97.9%).

The confusion matrix of the ADL is shown in Table II. The
largest percentage of confusion was during reach up activity,
where the algorithms falsely detected reach mid (21.2%).
In contrast, confusion of reach up during reach mid was
only 8.4%.

B. Activity Segmentation
During sit down (N = 84), the median of the time dif-

ference (�T) between the manual and sensor segmentation
was 0.34s (Fig. 5). There were four outliers, which comprised
of 4.8% of sit down events (%n0). The maximum predictive CI
of the data was 1.16s. Stand up (N = 114) was segmented with
a median difference of 0.18s with six outliers (%n0 = 5.3)
and a predictive CI of 0.65s. The average median �T during
the three reaching activities (N = 587) was 0.2s (reach up:
N = 80, median = 0.23s; reach mid: N = 233, median =
0.18s; reach ground: N = 274, median = 0.20s). During
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TABLE II
ACTIVITY DETECTION CONFUSION MATRIX

reaching activities, the largest predictive CI was 0.95s, which
occurred during reach ground, while reach up and reach mid
has a maximum predictive CI of 0.78s and 0.75s respectively.
The median �T of the turn (N= 804) was 0.72s with 40 out-
liers (%n0 = 5.0) and a maximum predictive CI of 4.58s;
however, 75% of the �T was less than 1.60s. Walk (N = 500)
was segmented with a median difference time of 0.63s with
25 outliers (%n0 = 5.0) and a predictive CI of 1.71s. Across
all activities (N = 2089), the average �T was about 0.35s.

IV. DISCUSSION

There is an immense potential of using inertial sensors as
clinical tools to assist and improve patient-care during physical
rehabilitation and pharmaceutical intervention by analyzing the
movement and motor dysfunction under free-living condition.
However, for clinical application, such system must robustly
detect and segment these activities with high accuracy and
automation. This study demonstrated high efficacy of using
IMUs to accurately detect and segment common daily living
activities in a simulated free-living environment in participants
with early PD during an unstructured task.

While most studies on activity classification in free-
living environment have focused on healthy and elderly
adults [5], [9], [35], [36], few studies have applied
classification methods to a challenging population such as PD.
In a similar study, Jalloul et al. [37] used a set of six
sensors to measure daily living activities such as walking,
standing, and sitting in patients with PD. These activities
were detected with a sensitivity of 92.4%, 91.8%, and 88.6%,
respectively. However, it is noted that the results were based
on a very small sample size (n = 2). In this study, we could
detect these activities with comparable or higher sensitivity
and in a larger cohort with PD (n = 9). Salarian et al. [8]
used a set of three inertial sensors attached to the trunk

Fig. 5. Comparing the absolute time difference (ΔT) marked manually by
the examiner and automatically using the sensors. N denotes the sample
size in each activity while %no indicates the percentage of outliers outside
the 95% confidence interval within each activity.

and shanks to measures the sit-to-stand transition and ADL
such as walking, standing, and sitting. The study showed a
detection sensitivity of 98.5%, 83.6%, and 99.5%, respectively.
In addition, transition of sit-to-stand was segmented with
83.8% sensitivity. Here, we demonstrated great accuracy in
the detection of sit down and stand up, which could be used
to measure performance in PD population [38], [39]; they
were segmented with a median difference of 0.26s across
all participants. Furthermore, the algorithm used by Salarian
involved a set of fuzzy classification rules to sectionalize the
activities thus reducing the risk of false detections. Here, all
the activities were independently detected using an optimal set
of sensors; therefore, it did not depend on the classification of
other activities. This is important in the context of free-living,
where movements are unstructured. Lastly, this study provided
the first strategy to use inertial sensors to detect reach-
ing activities at different stratifications (reach ground, reach
mid, and reach high). These reaching activities are critical
components of independent living in people with movement
disorders.

Beyond activity classification, this study is unique in that it
presents the first experiment on the segmentation of activity
during free-living in a PD population. This is significant
because it could potentially lead to evaluation of the quality
of the movement rather than the quantity of the movement
using inertial sensors. Ultimately, the goal is to deploy these
sensors in a free-living environment on patients with move-
ment disorders and extract relevant clinical parameters within
each segment of activity to determine the progress of reha-
bilitation and pharmaceutical intervention. The results in this
study show that segmentation of these activities based on
IMUs can be comparable to manual segmentation, in addition
to requiring significantly less time. Manually segmenting these
activities can be a time consuming and tedious process. For
example, to manually classify and document the seven activi-
ties in one 3-minute trial required nearly four hours of work.
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Reaching activities were detected with almost 90% sensi-
tivity; however, the accuracy decreases when reaching tasks
are separated by levels. However, the decrease in the accuracy
of the sub-activity of reaching could be attributed to the fact
the heights of the mid- and high-level were not scaled to
the participants’ height. This led to a higher confusion of
reach mid as reach high (21%), especially in taller partici-
pants (height ≥1.8 m). The beginnings and endings of turn
were segmented with a median difference of 0.68s within the
manual segmentation even though it was the most challenging
activity to visually segment. Turn can occur abruptly during
sharp angle (turn 180° or 90° ) or more gradually during
walking. Yet, even with the largest variation (std = 1.09s),
turn was detected with almost 83% accuracy. Lastly, there
were over 350 bouts of walking classified manually by the
examiner and about 92% of it was detected using the sensors.
Within the detected walking bouts, the differences between
the manual and sensor segmentation was approximately 0.63s.
The high detection rate and low segmentation time differences
illustrate the potential of using IMUs in clinical setting to
quickly measure and analyze the quality of movement in PD
population.

While 17 IMUs were active during the experiment, only
10 IMUs were used in the final detection and segmentation
algorithms. This amount of IMUs was needed to account for
possible asymmetry in PD population as well as to provide
coverage for handedness. Participants were not restricted to
the use of the left or right hand; therefore, IMUs from both
hands were monitored to detect reaching activities. Similarly,
participant adopted varying strategies to reach for objects
on the ground level. Some participants bent both knees on
the ground during the execution of this activity while other
bent only one knee. IMUs on the left and right side of the
lower limbs were monitored to accurately detect these differ-
ences. In addition to outputting linear acceleration and angular
velocity, uses of fusion algorithm also generate orientation
data, which allows for the calculation of the range of motion
between two contiguous limb segments. The availability of
orientation data enables detection of similar movements like
reach up and reach mid that would have been difficult using
only accelerometric or gyroscopic information. The accu-
racy of these orientation data has been shown in previous
experiments [40].

The present study highlights the fact that for unscripted,
free-living movements, limiting the number of sensors could
be counterproductive, especially if detection, segmentation,
and assessment of movement are the goals. However, we also
recognize that deploying a 17-IMUs system might be cum-
bersome in the home environment; therefore, sensors opti-
mization is necessary before such system could practically
be deployed for patients to use at home. The present study
enabled us to identify key sensor locations for the detection
and segmentation, which in the long term may help us propose
a more reasonable number of sensors for real life recordings.
The strain on the patient could be further alleviated by taking
advantage of the modularity of these sensors and analyze
targeted movements to further miniaturize the system for
implementation in the home environment.

The results in this study showed the robustness of the
algorithms to classify and separate many different activities
over varying degrees of symptomology in the participants.
Yet, despite the variability, the algorithms could detect these
activities with high accuracy during a cleaning task and its
segmentation precision is comparable to manual segmentation.
This is an important first step in developing these sensors for
performance analysis. These sensors could also potentially be
used to measure and characterize symptoms of PD (tremor,
dyskinesia, bradykinesia, etc.) to betterunderstand the evolu-
tion of these symptoms during treatment using method such
as the signal-to-noise ratio (SNR) approach [41], where the
signal is the voluntary movement and the noise is the symptom
detected. If the SNR is high, then the symptom is irrelevant
to the performance of the person tested. Furthermore, these
wireless sensors are an ideal medium to be used for remote
monitoring [42]–[44] of patients in their natural environment.

We acknowledge that the present algorithms may not
respond as well for more advance cases of PD. Nonetheless,
it represents a significant leap forward; a proper detection and
segmentation of ADL in free-living environment is imperative
to develop fully automated evaluation tools that can be used to
monitor patients in their natural environment. The outcomes of
this study will prompt the analysis of PD patient during perfor-
mance of more natural activities in free-living environment to
better understand and evaluate the effect of rehabilitation and
pharmaceutical intervention. Accurate real-time assessment of
performance will greatly enhance the ability of clinicians to
administer corrective intervention to improve the quality of
life of people living with movement disorders.

V. CONCLUSION

IMUs could potentially be used to detect, segment, and
assess ADL during an unstructured task in a free-living
environment in PD population. This is a critical step in
developing and validating algorithms using inertial sensors
to accurately extract targeted activities during daily living to
assess movement and motor dysfunction.
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