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Gaussian Process Autoregression for
Simultaneous Proportional Multi-Modal

Prosthetic Control With Natural
Hand Kinematics

Michele Xiloyannis, Constantinos Gavriel, Andreas A. C. Thomik, and A. Aldo Faisal

Abstract— Matching the dexterity, versatility, and robust-
ness of the human hand is still an unachieved goal in
bionics, robotics, and neural engineering. A major limita-
tion for hand prosthetics lies in the challenges of reliably
decoding user intention from muscle signals when con-
trolling complex robotic hands. Most of the commercially
available prosthetic hands use muscle-related signals to
decode a finite number of predefined motions and some
offer proportional control of open/close movements of the
whole hand. Here, in contrast, we aim to offer users flexible
control of individual joints of their artificial hand. We pro-
pose a novel framework for decoding neural information
that enables a user to independently control 11 joints of the
hand in a continuous manner—much like we control our nat-
ural hands. Toward this end, we instructed six able-bodied
subjects to perform everyday object manipulation tasks
combining both dynamic, free movements (e.g., grasping)
and isometric force tasks (e.g., squeezing). We recorded
the electromyographic and mechanomyographic activities
of five extrinsic muscles of the hand in the forearm, while
simultaneously monitoring 11 joints of hand and fingers
using a sensorized data glove that tracked the joints of the
hand. Instead of learning just a direct mapping from current
muscle activity to intendedhand movement, we formulateda
novel autoregressive approach that combines the context of
previous hand movements with instantaneousmuscle activ-
ity to predict future hand movements. Specifically, we eval-
uated a linear vector autoregressive moving average model
with exogenous inputs and a novel Gaussian process (GP )
autoregressive framework to learn the continuous mapping
from hand joint dynamics and muscle activity to decode
intended hand movement. Our GP approach achieves high
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levels of performance (RMSE of 8°/s and ρ = 0.79). Crucially,
we use a small set of sensors that allows us to control a
larger set of independently actuated degrees of freedom
of a hand. This novel undersensored control is enabled
through the combination of nonlinear autoregressive con-
tinuous mapping between muscle activity and joint angles.
The system evaluates the muscle signals in the context
of previous natural hand movements. This enables us to
resolve ambiguities in situations, where muscle signals
alone cannot determine the correct action as we evalu-
ate the muscle signals in their context of natural hand
movements. GP autoregression is a particularly powerful
approach which makes not only a prediction based on
the context but also represents the associated uncertainty
of its predictions, thus enabling the novel notion of risk-
based control in neuroprosthetics. Our results suggest that
GP autoregressive approaches with exogenous inputs lend
themselves for natural, intuitive, and continuous control in
neurotechnology, with the particular focus on prosthetic
restoration of natural limb function, where high dexterity is
required for complex movements.

Index Terms— Neuroprosthetics, robotic hand, decoding,
autoregression, EMG, MMG, Gaussian process, propor-
tional control, neurotechnology.

I. INTRODUCTION

THE ability to dextrously control our hand is key to
our evolution and at the centre of almost all skilled

object interaction in daily life [1], [2]. It is thus not sur-
prising that loss of hand functionality is severely debilitating
and considered more serious than the loss of lower limb
function [3]. Currently available commercial devices are typi-
cally constrained by limited functionality in terms of degrees
of freedom, range of motion, sensory feedback and intuitive
control [4]–[6]. Despite the mechanical complexity of the
human hand, the bottleneck of modern prostheses lies not only
in improving mechatronic design [7], but also in the human-
machine interface required for robustly translating the user’s
intention into a suitable robotic action. This makes prosthetics
cumbersome and limits their perceived effectiveness in daily
life – limiting users’ ability to accept the prostheses as part of
their body vs using it as a tool [8]. This explains why despite
significant improvements of prosthesis acceptance achieved in
the last three decades [6], a main reason for their rejection and

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/



1786 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 25, NO. 10, OCTOBER 2017

low adoption involves dissatisfaction with functionality and
control [9]. Low adoption rates are the result of users switching
after initial use of bionic prosthetics to mechanical or even
cosmetic prostheses.

In upper arm prosthetics one typically uses sensors to
record muscle signals from the residual limb or nerve. These
signals are processed and translated into commands for a
set of independently controllable actuators. Originally [10],
prostheses were controlled using on-off control (or bang-bang
control) which is a simple, yet reliable way of actuating a
prosthetic device with elementary commands (open vs close
hand). With prosthetic mechatronics becoming more sophis-
ticated, and enabling us to actuate multiple individual joints
per finger, more sophisticated control approaches were sought.
A common compromise was to combine discrete selection of
one hand movement across multiple possible ones, with then
a direct proportional control of that motion.

We believe that the current challenges amputees face in
accepting and retaining use of robotic prostheses can be
greatly improved through interfaces that allow continuous,
simultaneous and intuitive control of the artificial hand at the
level of individual finger joints. Continuous prosthetic control,
also referred to as proportional control, does not imply that
the relationship between control input and controller output
is strictly proportional in the mathematical sense, only that it
must be essentially continuous – in fact we explore both linear
and nonlinear methods here. To be clear, the term proportional
relates to the decoders – the forward path of control, we do not
want to confuse it with the term “proportional” in the feedback
control system sense (e.g. the “P” in PID control).

Continuous control can allow nuanced movement of the
prosthetic hand, just as in the human hand and even enables
users to retain or develop their personal movement flourish.
To achieve proportional control, one must move away from
the typical discrete classification approach and try to map
residual muscle activity to joint movements in a continuous
fashion. This approach has been investigated in wrist kine-
matics [11], [12] and hand dynamics [13] in test conditions.
The rationale of these studies was to learn the physiolog-
ical mapping between EMG activity and joint dynamics/
kinematics [14] from a set of training signals. It has been
shown that modelling this mapping in a linear fashion can
yield good prediction accuracies, however, more sophisti-
cated non-parametric statistical methods were suggested to
outperform linear models (but incur a higher computational
cost) [12]. Despite this progress, inferring the intended move-
ment of the hand and fingers directly from these sensors in
the daily setting is still an open challenge. Continuous control
eliminates delays of having to switch between a series of
discrete grasps or poses. However, switching between multiple
discrete grasps or poses has been helpful to users, as it
allows them to explicitly configure the hand to the context.
This context functionality has to be replaced in some way –
we will demonstrate here a suitable approach that operates
automatically.

While myoelectric, i.e. electromyography (EMG) based
control has long been established in prosthetic control for
70 years [10], simultaneous proportional myoelectric control

Fig. 1. Overview between different approaches of time series regression
as applied to the problem of predicting changes to finger joint angles (α)
from muscle activity (u). (A) Direct mapping takes input from present
and past muscle activity to decode joint action, (B) Autoregressive
relationship takes input from n past joint actions to decode joint action and
(C) the Autoregressive model with Exogenous Inputs integrates present
and past muscle activity and past joint movements to predict joint action.

systems are far more recent, with studies being reported only
in the last 5 years. Historically prosthesis control has moved
from mapping continuous myoelectric signals to discrete
on-off control, to more sophisticated multi-way classifiers,
to combining discrete classifiers of hand movement modes
and their simple linear control to the full joint mapping from
muscle activity to hand movement [15].

It is worth to structure existing strategies for prosthetic
control along the nature of the decoding problem, which
we can structure broadly into 3 approaches (see correspond-
ingly Fig. 1.A, B, C). Most simultaneous proportional control
approaches map some time window of neuromuscular data to
the output of a hand movement. This way of approaching the
decoding problem is exemplified by our overview graphic in
Fig. 1.A. One is predicting changes to finger joint angles (α)
at time t from muscle activity (u) by finding a direct map-
ping of the form f (u) = α, where u may involve a time
window or multiple time windows of muscle activity. Most
studies focus on “learning” such direct mapping functions
from data, typically using single [16] or hierarchically organ-
ised [17], [18] neural networks. Moreover, dimensionality
reduction and projection mapping methods have been used to
harness opportunities arising from high density EMG record-
ings with many sensors [19], [20], where low-dimensional
representations of the muscle signals are optimised for max-
imal discriminability between movements types. We note
that all these prosthetic control frameworks are normally
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oversensored, i.e. the ratio of independently controllable
robotic degrees of freedom to sensor readings is typically
smaller than one.

While the hand has many more independent degrees of
actuated freedom than current prosthetics, the question arises
if the natural hand uses these degrees of freedom in normal
daily life fully independently? In previous work, we showed
that both the dominant hand [21] (see also [22], [23]) and
the non-dominant hand [24] had joints that were highly
correlated – when captured in daily life activities. Thus, our
over 20 finger joints are controlled by our brains so as to be
effectively embedded on a lower dimensional manifold: four to
five dimensions (principal components) explained 80%-90% of
the variability in the movement data. Moreover, we have pre-
viously found that within the first 1000 ms of action initiation
(from a neutral pose) the hand shape configures itself towards
different tasks that occur many seconds away. This enabled
us to reliably predict the action intention from the initial
small changes in hand pose occurring in the first few hundred
milliseconds of movement [21]. We then demonstrated that
a probabilistic latent variable model can be used to infer
the movements of missing limbs from the movements of the
residual limbs to control, for example, a prosthetic half-hand in
real-time [21], [24]. This previous work thus demonstrated that
correlation patterns across joints, i.e. the spatial configuration
of the hand, is highly structured in natural tasks and can be
harnessed for prosthetic control.

If hand joint configurations are correlated across the hand,
what about the temporal correlation structure of natural
hand movements? We previously showed using 1. statistical
time series segmentation [25], 2. switching motion primitive
approaches [26], and 3. sparse coding (compressed sensing)
methods [24] that the recent past of ongoing hand movements
is highly predictive of the continuation of a movement. More-
over, these compact temporal representations of movement
coincided with fundamental grasps and we were able to
directly map these to control robotic hand grasps [27]. Thus,
natural hand movements enable prediction of future hand
movements from past hand movements alone without needing
neuromuscular data. We can mathematically interpret this sec-
ond approach as a problem of time series prediction, where
the history of the movements reflects the inherent dynamics of
the time series, i.e. the most likely motions of the hand in our
case. This inherent dynamics is mathematically captured by
continuous autoregressive models, i.e. f (αt−nτ , . . . , αt−τ ) =
αt (see Fig. 1.B). Crucially, the complex coordination of
multiple joints is simplified, as their correlated movement
is the result of the inherent dynamics of the current action.
This second approach is simultaneous and proportional by
design and can map the movement of a few joints to the
movements of the whole hand.

The challenge to the second approach is, of course, that
while ongoing hand movements (e.g. reaching for a cup) are
in themselves correlated and allow us to predict reasonably
well how a grasp is completed, there will always be events
within a series of actions where the user makes a decision
about a new action that cannot be predicted from the statistics
of the past (e.g. after grabbing a cup one may grab a tea

pot or a sandwich). This requires explicit control inputs from
the user to disambiguate the next action. These control inputs
are typically muscle activity patterns in the residual limb [10]
or result from retargeted residual nerves [28].

We explore here a combination of the traditional
first approach and the unconventional second approach –
a third way. We propose a novel framework (see Fig. 2)
for information extraction from muscle-related signals which
allows continuous, intuitive and naturalistic control of upper
limb prostheses. Our new approach combines the non-linear
spatio-temporal correlation structure of natural hand move-
ments with muscle-driven control signals to exploit the best
of both worlds. Our framework aims not only to learn
the relation between muscle activity and hand kinematics,
but should also exploit the natural autocorrelation of every-
day hand movements to achieve a higher performance than
pure control signal decoding strategies (first approach). Thus,
we are proposing implementing this framework using tractable
non-linear probabilistic models of autoregressive processes
with exogenous inputs u (muscle signals) of the nature:
f (αt−nτ , . . . , αt−τ , ut−nτ , . . . , ut−τ ) = αt (see Fig. 1.C).

We advance the hypothesis that, in contrast to previous
applications, with this approach we should be able to use
fewer sensors than independently actuated hand joints and yet
achieve high decoding performance across all these joints.
Specifically we will test if we are able to decode reliably
11 finger and thumb joint movements from 5 EMG sensors
on the forearm.

II. METHODS

A. Experimental Setup

Six healthy male subjects, aged 23-28, gave written
informed consent prior to participation in the study. Partici-
pants were seated on a chair fitted with a custom elbow rest
support. Their elbow rested on a flat surface, the forearm was
horizontal and the hand was positioned so that the axis of
abduction/adduction of the wrist was parallel to the surface.
In order to prevent activation of the extensor carpi radialis
longus (responsible for the abduction of the wrist) during the
experiment, the wrist was also rested on a customised support.

Subjects were instructed to grasp and manipulate 7 objects
(example hand postures are rendered in Fig. 4), each object
12 times during two different sessions involving 6 repetitions
each. The 7 object manipulations were: grasping a ball,
grabbing a book, drinking from a bottle, grasping a door
handle, operating a computer mouse, holding a mobile phone
and using a pen. To allow for comparison with other studies,
we used objects and interactions from a recent taxonomy of
hand postures [30].

We adopted our low-cost system for MMG signal acquisi-
tion [29] and merged it with myoelectrical signals recorded
using a commercially available EMG amplifier [Brain
Vision LLC, Morrisville, NC]. We paired the signal recorded
from the muscle activity with kinematic measurements of
finger movements during everyday tasks. We used this data to
train a linear and a non-parametric regression model capable
of continuously predicting the angular velocity of 11 joints of
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Fig. 2. Illustration of the probabilistic framework (graphical model) used to model the dynamic integration of muscle-activity and hand-joint kinematics.
Continuous decoding of muscle signals to predict (prosthetic) hand joints velocities treats the joint velocities as a weakly stationary autoregressive
process (joint space). See Tab. II for the details of the system configuration.

the fingers of the hand given the muscle activity and an initial
condition.

At the beginning of each trial, the object name
and time stamp were sent to a serial port via the
ActiChamp amplifier, these were subsequently used for data
segmentation. Subjects were also asked to apply their max-
imum extension and flexion force of their fingers at the
beginning and at the end of the experiment. The root mean
square (RMS) value of these segments was used to esti-
mate the Maximum Voluntary Contraction (MVC), neces-
sary for normalisation of the signal in the pre-processing
phase.

We recorded muscle activity with 5 EMG and 4 MMG
channels positioned at the bellies of muscles (∗ denotes both
EMG and MMG measurements) from the posterior (1: Exten-
sor Digitorum Communis∗ (EDC), 2: Extensor Digiti Min-
imi∗ (EDM), 3: Extensor Carpi Radialis (ECR)) and anterior
(1: Flexor Digitorum Superficialis∗ (FDS), 2: Palmaris
Longus∗ (PL)) compartment of the forearm as shown in
Fig. 3.(a-b). The channel sites were located by palpating
the respective muscles. The MMG sound chambers were
positioned between the two electrodes of the same EMG
channel (see Fig. 3.(c-f)). A summary of the monitored mus-
cles is shown in Table I. Simultaneously, we measured finger
movements using a CyberGlove I [CyberGlove Systems LLC,
San Jose, CA]. This is a sensorised glove which measures
the angle of all joints within the hand from resistive changes
in stretch sensitive sensors placed over each joint. The hand

TABLE I
MONITORED MUSCLES

TABLE II
MONITORED HAND JOINTS

joints monitored for the purpose of this study are listed
in Table II.

B. Data Processing

Prior to further analysis, we preprocessed our data
in the following fashion using Matlab (MathWorks Inc.,
Natick, MA):
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Fig. 3. Monitored muscles in the anterior and posterior compartment of the forearm and sensor placement details. (a + c) Posterior compartment
of the forearm and positioning of the electrodes. Each MMG microphone was located between the two corresponding EMG electrodes (in a bipolar
configuration) of the same muscle. Channels on the muscles are numbered as in the text. (b+ d) Anterior compartment of the forearm and positioning
of the EMG and MMG channels. Channels on the muscles are numbered as in the text. (e) Printed circuit board for amplification, rectification and
filtering of the MMG signal generated by muscle during contraction. (f) The mechanical signal is transduced by a miniature microphone embodied in
a 3D printed resonance chamber). Details of the MMG sensor design are described in [29]. Illustration used in a + b adapted by anonymous author
from Wikimedia Commons.

1) Segmentation of the data of different tasks using the
time stamps. The resulting segments contained data from
different trials of the same task.

2) High-Pass filtering of the EMG ( fc = 10Hz) and of the
MMG signal ( fc = 8Hz) using a 5th order Butterworth
filter to remove movement artefacts.

3) Low-Pass filtering of the signals ( fc = 150Hz) using
a 5th order Butterworth filter to remove high frequency
noise.

4) A 50 Hz comb filter to remove power-line interference.
5) Normalisation by Maximum Voluntary Contrac-

tion (MVC). This constrains the input signals for the
regressor to the interval [0, 1].

6) Downsampling of EMG and MMG signals to the Cyber-
glove rate, i.e. 138Hz. This procedure was necessary to
align the glove data with the muscle-related signals.

The data acquired from the CyberGlove were smoothened
using a first-order Savitzky-Golay filter with a running win-
dow of 23 consecutive samples to remove the discontinuities
induced by the A/D converter. The window width was chosen
to lie within the peak of the hand movement autocorrelation
function width of half maximum (τ̄WHM = 362 ms, see also
Fig. 4). This ensures that smoothing only involved highly auto-
correlated samples and is little affecting the overall dynamical
changes of the system.

We then differentiated the position data to obtain angular
velocity (α̇) which is statistically more stationary in natural
hand movements, has a more Gaussian distribution and is
known to be closely related to motor commands [32] of each
joint’s flexion/extension movement.

Fig. 4. Example hand poses of subject hand configuration during
designated dynamic and static object-manipulation tasks involing objects
of different shapes and sizes. Example reconstruction of instantaneous
hand pose from top left to bottom right: grasping a ball, grabbing a book,
drinking from a bottle, grasping a door handle, operating a computer
mouse, holding a mobile phone and using a pen. Images created by
rendering the Cyberglove finger configuration joint configuration data
using the LibHand library [31].

C. Generalised Time Series Prediction
Model for Prosthetics

We implemented a model for continuous prediction of
the angular joint velocities of the flexion/extension joints of
the hand by expressing the angular velocity of the joints at
time t , α̇t , as a function of the angular velocity at time t − τ ,
α̇t−τ , and the current muscle-activation vector ut. We are thus
treating the joint angular velocity as a wide-sense stationary
autoregressive sequence that is influenced by external factors,
namely, in our case, the forearm muscle activation pattern.
The angular velocity of the joints at time t can thus be
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expressed as:

α̇t = f (α̇t−τ , ut) + ε (1)

We seek to learn the function f under the assumption of
Gaussian distributed noise ε ∼ N (0, σn).

To compare linear and non-linear approaches we can
rephrase the goal of decoding hand motion from muscle
activity as a probabilistic inference, as illustrated in Fig. 2.
The current hand configuration is modelled as a random vari-
able θt , a 11-dimensional state vector of the 11 independently
controlled finger joint angles. The variable θt is conditionally
dependent on the previous time steps t − τ (where τ is
the sample interval of the system), and the current muscle
activation pattern ut . The activation pattern ut is here a 5 + 4
dimensional vector of muscle activity recorded by EMG and
MMG sensors on the forearm (muscle space). We interpret this
in our graphical model as the sequence of finger joint motions
being caused by muscle activity patterns.

The time-lag τ plays a fundamental role in determining the
accuracy and the computational demand of the algorithm. Its
value is strictly related to the dynamics of the process that we
are trying to describe. In order to identify a reasonable range of
time-lags to use in our model, we analysed the autocorrelation
function of the angular velocity α̇ on the data collected using
the Cyberglove:

Rα̇α̇(τ ) =
∑

∀n∈N

α̇(n)α̇(n − τ ). (2)

We found an average, over joints and subjects, Width of
Half-Maximum (WHM) of the autocorrelation function at
τ̄WHM = 362 ms, as shown in Fig. 5. To estimate the impact
of the time–lag on the model’s performance, we trained a
Gaussian Process (GP) and a Vector Auto–Regressive Moving
Average model with Exogenous Inputs (VARMAX) with time-
lags τ = 87 ms, 175 ms, 350 ms, 500 ms. Both models were
trained and tested using a Leave-One-Out cross-validation on
the 6 tasks shown in Fig. 4.

D. VARMAX Model

We used a VARMAX model to learn a linear version of the
function f in Equation 1. This model makes the assumption
of linearity between the Auto–Regressive (AR) terms, a Mov-
ing Average (MA) term describing the contributions of the
innovations εi and the exogenous inputs u:

α̇t = c + but

︸︷︷︸
EX Inputs

+εt +
p∑

i=1

ϕi α̇t−i

︸ ︷︷ ︸
AR Contribution

+
q∑

j=1

θiεt−i

︸ ︷︷ ︸
Innovations

. (3)

We used the Dickey-Fuller test [33] to characterise the
stationarity of the time-series and verified that the MA and
AR parts of the model were invertible and stable, respectively.
The parameters � = (c, b, ϕ, θ) were fitted to the training data
using Maximum Likelihood (ML) estimate.

We performed the forecasting stage by iteratively predicting
the state at a time-lag τ ahead and using it as a new input for
the next iteration. The starting point was set to α̇|t=0 = 0 for
each joint.

Fig. 5. Human hand movements while performing everyday grasping
tasks have a strong spatio-temporal correlation structure as revealed by
autocorrelation analysis. The plot shows the grand-average computed
over subjects and joints of the hand of the autocorrelation functionRα̇α̇(τ )
of angular joint velocities, with one standard deviation σ (grey area)
around the mean μ. The mean autocorrelation function shows a width of
half maximum at τWHM = 362ms.

E. Gaussian Process Autoregression
With Exogenous Inputs

The VARMAX approach learned a linear approximation to
the function f in Equation 1 and we therefore investigate next
a non-linear version, which may perform better. To this end,
we used a Gaussian Process or GP model, which is formally
equivalent to an artificial neural network with infinitely many
neurons in the hidden layer [34]. One can think of a Gaussian
Process as defining a distribution over functions: instead
of producing single prediction values of f , the GP model
produces a full predictive distribution p( f ). Thus, we can not
only choose how to evaluate p( f ), e.g. as mean, mode or peak
of the probability distribution of possible outcomes, but also
obtain an implicitly measure of uncertainty that the model
has about its own prediction. We can therefore define a loss
function over the predictive distribution, and use Bayesian
decision theory to perform decoding in an optimal way – so as
to minimise the risk of wrongly decoding a hand movement,
for example when the signal is ambiguous as to the intended
motion.

In GPs, the function f is treated as a latent variable, again
under the assumption of normally distributed noise ε, and the
model returns a process, i.e. a distributions over functions of
the form:

f (x) ∼ GP(m(x), k(x, x′)) (4)

fully defined by a mean m(x) and a covariance func-
tion k(x, x′), where x is the input vector, which we defined as
x = {α̇t−τ , ut} (see also Fig. 6).

This Bayesian approach to regression yields to a poste-
rior distribution over the non-linear regression function f .
We computed the posterior by combining the likelihood
function P(Dα̇ | f, θ) (with θ being a vector of hyperpara-
meters) of the sensory observations x and our prior over
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Fig. 6. Probabilistic graphical model of our Gaussian Process decoder.
Grey circles indicate observable variables and empty circles represent
variables that have to be inferred. In our study x are muscle signals and y
joint angles.

possible regression functions P( f ). Assuming that the noise
of our observations is independent and identically distributed,
the posterior distribution over the regression functions has the
form:

P( f |Dα̇ , θ) ∝ P( f |0, K (X, X|θ))

︸ ︷︷ ︸
Prior

N∏

n=1

p(yn| fn, θ)

︸ ︷︷ ︸
Likelihood

(5)

where the GP prior has zero mean and a covariance matrix
K (X, X|θ)) derived from the covariance function, k(x, x ′|θ).

We encoded the assumption of linearity in the covariance
function, using a composite linear kernel with additive noise
of the form:

k(x, x′|	) = σ f exp

(
1

2

(x − x′)2


2

)

︸ ︷︷ ︸
Noise

+
D∑

d=1

σ 2
l xx′

︸ ︷︷ ︸
Linearity

(6)

with D the dimensionality of the input vector and 	 =
{σ f , 
, σl} a vector of parameters which defines the properties
of the covariance function. The mean function was chosen to
be a constant zero function. Fitting of the hyperparameters 	
was done by minimizing the negative log-marginal likelihood
by means of a conjugate gradient numerical method [35].

The forecasting stage was done by initialising the state at
time zero, α̇|t=0 = 0 and iteratively predicting the state at
a time-lag τ ahead, using a value drawn from the returned
Gaussian distribution as an input for the next iteration. A com-
putational limitation of GP is that their computational demand
and memory requirements grow with as O(n3) and O(n2)
respectively, being n the number of training cases, mak-
ing their actual implementation feasible only for small data
sets. Because of the high computational demand of GPs,
we used the Fully Independent Training Conditional (FITC)
approximation [36] to solve the inference phase. In brief:
To overcome the computational limitations we can introduce
new latent variables, known as pseudo-inputs, which do not
appear in the predictive distribution, but do significantly affect
the goodness of fit. Using these methods, the relation between
the training latent function values f and the test-cases f∗ can be

Fig. 7. Graphical model of the relation between the pseudo-inputs �,
the training latent functions values f = [f1, . . . , fn]T and the test function
value f∗.

Fig. 8. Direct mapping evaluation: Performance of a direct linear decoder
and the GP model in a muscle-to-joint mapping without autoregressive
components, i.e. not taking into account history joint movements. The
bar graph shows the average, over joints and subject, of the correlation
coefficient ρ (black bar in left axis) and RMSE (blue bar on right
axis), between the actual and predicted angular joint velocities. This
configuration was evaluated to allow comparison with previous studies
that do not use autoregressive approaches (see Table III).

thus formalised:

p(f, f∗) =
∫

p(f, f∗|u)p(p)dp ≈
∫

p(f |p)p(f∗|p)p(p)dp.

(7)

This equation is represented in the graphical model in
Fig. 7. The computational demand of the model now scales
with O(nm2).

We chose the number of pseudo-inputs to be N/150,
where N is the number of training inputs. The hyperparameters
	 where initialised randomly. K-means clustering of the
training input space was used to initialise the position of
pseudo-inputs. We then optimised both values by minimising
the negative log-marginal likelihood.

F. Evaluation

Using data-driven methods to machine learn a control
framework from experimental data, e.g. during calibration of
the prosthetic to the end-user, requires a number of caveats to
ensure a fair and clean comparison of methods, and to predict
how well a given technology will generalise to individual
patients that are not part of the research and development
process. We highlight here a number of challenges and caveats
that we encountered in the field and how we addressed them.
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Fig. 9. Evaluation of the performance of the purely linear (a) and non-linear (b) autoregressive model for varying time-lag τ . These models do not
consider muscle activity, and predict the intended hand movement from the context of past hand dynamics. All plots display the average, over joints
and subject, of the correlation coefficient ρ (black bars, left y-axis) and RMSE (blue bars, right y-axis), between the actual and predicted angular joint
velocities, obtained performing a Leave-One-Out cross-validation over tasks. (a) Performance of the VARMAX model, for varying time-lags τ , with
no exogenous inputs. In this case the hand configuration is inferred, at each step, only from its previous state and the muscle activity is ignored. The
performance is, as expected, very poor (note the scale) as no muscle activity is used. (b) Performance of the GP model in the same configuration
for varying time-lags τ . Error bars show mean ± standard deviation (SD).

Fig. 10. Comparison of the performance of the linear (black bars) and GP (non-linear, blue bars) (b) autoregressive models that incorporate muscle
activity as exogenous inputs. The VARMAX (linear) and GP (non-linear) model use the combined EMG and MMG signals as exogenous inputs as
a function of time-lag τ . All plots display the average, over joints and subject, of the correlation coefficient (a) and RMSE (b) between the actual
and predicted angular joint velocities. Obtained performing a Leave-One-Out cross-validation over tasks. The performance is about one order of
magnitude better in correlation and almost two order of magnitude lower than the purely autoregressive dynamics (see previous figure). No significant
difference was found between the VARMAX and GP (p-value of a two-sample t-test > 0.05). Bars show mean ± standard deviation (SD).

1) Target Quantities of the Decoder: In prosthetics, a number
of target quantities to have been used to determine what the
decoder should control. This includes the configuration of the
hand, i.e. joint angles of the prosthetic, or torques produced by
the motor. The challenge with joint angles is that it is difficult
to generalise results obtained from joint angle data using
isometric and dynamic movements of the hand, e.g. EMG
patterns will look very different for isometric contractions (e.g.
holding an object) versus an unrestricted closing motion of the
hand where there is no resistance. Torque-based approaches
are difficult to implement, because it is complicated to measure
force-related data (e.g. end-point forces) in the hand during
natural tasks. Therefore, we used the angular joint velocity,

which mechanically speaking captures the impulse of the
fingers, and operates both across isometric and dynamic move-
ments. This, combined with the autoregressive approach, gives
the system also flexibility to learn whether to tune itself to
more force-like signals (by setting the autoregressive weights
with different signs, so as to approximate differentiation
by finite differences) or position-like signals (by setting the
autoregressive weight to positive weights, so as to approximate
integration by finite sums).

2) Separation of Training and Test Data: There are a number
of methods that can be used to evaluate, train and test the
performance of prosthetic controllers that are machine learned
from experimental data. Normally, each controller is “fitted”
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Fig. 11. GP autoregression with exogenous inputs performance on
the thumb (3 joints). Pearson correlation coefficient ρ (black bars and
left axis) and RMSE [°/s] (blue bars and right axis) between actual and
predicted finger movement. Bar show mean ± standard deviation (SD).

to an individual user based on one part of the (training) data
from that one user, and then evaluated using another part of the
(testing) data from the same user. This is an essential process
in any regression or classification setting, otherwise one will
risk overfitting and not be able to observe how well a system
operates under novel conditions.

Surprisingly, it is often unclear in the existing literature,
how this separation of training and test data is implemented.
Three general scenarios are possible with very different con-
sequences for prediction quality and performance. Typically
some form of EMG and hand kinematic data is collected
across a set of tasks or movements. The first approach is to
randomly select a subset of samples from the data to build
up a training and test data set. This is however problematic,
as in this case the time-series and the correlations within a
task make training and test data dependent. An improvement
would be to divide the data into long chunks of contiguous
time (e.g. the first half and the second half of the recording).
Alternatively, the subject performs some set of defined tasks,
which are often repeated to increase the amount of data
collected. Therefore, a second approach is used in several
studies where the same task or movement is repeated multiple
times, and some repetitions are used for training and others
for testing data. We consider this problematic, because these
data share the same statistical cause (the same task), and
training and test data are thus only conditionally independent.
Thus, the consequence will be that most likely both correlation
measures and Root Mean Square Error (RMSE) will appear
much better than they are. A statistically more sound approach
is to randomly select data from a set of tasks designated
training tasks, and a different set of tasks designated as
source of testing data. We thus do not mix training and
testing across repetitions of the same task. This approach
enables us to appropriately judge if a decoder well operates
in unknown conditions without overfitting. This last method
is the one we have applied throughout the results reported
here.

3) Cross-Validation: We tested the robustness of our results
using cross-validation, which is a model validation technique
for assessing how the results of our analysis will generalise

Fig. 12. Prediction performance on test data (correlation ρ between
actual and predicted data) for our GP autoregressive model with exoge-
nous inputs, when training and testing from same task were allowed.
Average performance is highlighted as dotted line as average correlation
of 0.79. Bar show mean ± standard deviation (SD). This elsewhere
common procedure was not used for our other reported results due to the
concerns of overfitting and reflecting an apparently better performance
on test data than is warranted (see main text for details).

to other data. We used this method because our goal is pre-
diction, and we want to estimate how accurately a predictive
model will perform in practice. One round of cross-validation
involves partitioning a sample of data into complementary
subsets, performing the analysis on one subset (called the
training set), and validating the analysis on the other subset
(called the validation set or testing set). To reduce variability,
multiple rounds of cross-validation were performed using
different partitions, and the validation results were averaged
over the rounds. This enabled us to assess how well the
same control framework performs across all tasks. Moreover,
it gave us estimates of the uncertainty we have about the value
performance measures for a given control framework.

4) Evaluation of Autoregressive Models That Use Past Data
to Predict Future Data: Finally, a key aspect of our approach is
to use (non-linear) autoregressive techniques with exogenous
inputs. This means that our model relates the current value of
the angular joint velocities to both past values of the angular
joint velocities and current and past values of the driving
exogenous muscle signals. Evaluating the performance of the
autoregressive component can be evaluated in two-different
ways with important consequences for the expected perfor-
mance. Two modes of evaluation arise because the system
uses past values of angular joint velocities. These can be either
the ones the system predicted in the past or the true angular
velocities of the joints as obtained from the training and testing
data. The former method, will use predictions to update predic-
tions and thus over time diverge more due to the accumulation
of noise in the prediction sequence. The latter method will
have tight error bounds as past inputs will be based on actual
data.
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TABLE III
OVERVIEW AND COMPARISON OF PREVIOUS WORK AND RESULTS PRESENTED HERE. ABBREVIATIONS: sEMG SURFACE ELECTROMYGRAPHY,

iEMG INTRAMUSCULAR ELECTROMYGOGRAPHY, MMG MECHANOMYOGRAPHY. “IDENTICAL TASKS” TRAINING AND TESTING DATA

WERE NOT SEPARATED ACROSS TASK TO EVALUATE PERFORMANCE. “DIFFERENT TASKS” TRAINING AND TESTING DATA

WAS SEPARATED BY TASKS TO EVALUATE PERFORMANCE. “DYN” EVALUATION USED MAINLY DYNAMIC MOTIONS

(FREE MOVEMENT, PASSIVE OBJECT HOLDING). “ISO” EVALUATION USED MAINLY ISOMETRIC FORCE TASKS

(e.g. PRESSING AN OBJECT). “DYN & ISO” EVALUATION USED BOTH

DYNAMIC MOTIONS AND ISOMETRIC FORCES

III. RESULTS

We present in the following section the results of our study
to evaluate novel ways of decoding intended hand movements
from hand kinematics and muscle activity. We measured the
desired changes to finger joint angles (α) as target quantities
that we wish to predict from muscle activity (u). We present
the results following the approaches displayed in Fig. 1: The
direct mapping approach learns a relationship between muscle
activity to changes in finger joint configuration (see Fig. 1.A)
and is equivalent to many existing approaches for continuous
regression of hand configuration from muscle signals. We eval-
uated the available information in the muscle-activity alone to
predict finger movements using both a linear decoder and a
GP decoder (see Fig. 8). The GP based approach performs
better than the linear decoder approach. These direct mapping
results set a benchmark for our autoregressive framework and
we compared these further below with a detailed comparison
with previous studies in Table III.

Next, we investigated to which extent hand movements are
predictable by themselves, e.g. one can intuitively predict how
a hand motion is going to continue. We captured this inherent
predictability of hand movements mathematically using the
autoregressive relationship between past finger joint configu-
ration and present finger joint configuration (see Fig. 1.B).
We found that human finger movements during daily life
hand use show a clear linear autocorrelation structure in time
(see Fig. 5) that extends over several seconds. This model
predicts future movements based on past finger movements,
as it captures the averaged natural dynamics of the hand. For
any autoregressive system we need to determine the degree of
lag (τ ) that the system should look into the past to predict
the future. To this end, we run the linear autoregressive model
(VARMA model), i.e. VARMAX with no exogenous inputs
(ut ∈ ∅) for varying lags (87 ms to 500 ms). These lags were
chosen so as to cover the area of support of the empirical
autocorrelation function main peak (Fig. 5). Fig. 9 shows the
results of the model run in the aforementioned configuration
in terms of Root Mean Square Error (RMSE) and Pearson’s
correlation coefficient (ρ) between the 11 actual and predicted
finger angular joint velocities. The values were averaged across
joints, subjects and trials to reflect the overall performance of

the models for varying τ . In Fig. 9 the RMSE (right axis) and
the correlation coefficient ρ (left axis) indicate, as expected,
a very low performance. The performance in terms of RMSE
decreases for increasing lags, while the correlation between
predicted and actual hand movements improves with lags size.
The results are similar for both the linear and non-linear
model. Evaluating the autoregressive approach enables us,
however, to set a lower limit to the performance any muscle-
driven decoder should achieve.

A. (Gaussian Process) Autoregression With
Exogenous Inputs

The third approach (see Fig. 1.C) is our proposed frame-
work which combines direction mapping and autoregressive
prediction – effectively placing ongoing muscle activity into
the context of ongoing hand movements. This autoregressive
model with exogenous inputs captures the natural dynam-
ics of the hand (autoregressive component) as “perturbed”
or driven by ongoing muscle activity (exogenous component).
We present in the following the evaluation and characterisation
of this approach. In analogy to our purely autoregressive
model, we measured the lag-dependent prediction perfor-
mance of the linear autoregressive model with exogenous
inputs and GP based version. Fig. 10 shows the perfor-
mance of both the VARMAX and the GP model with a
9-dimensional input space, comprising the 9 muscle-signals
from the EMG and MMG sensors (ut ∈ R

9). Both models
show an increase in the prediction accuracy for bigger τ values
even beyond the correlation length estimated from the data,
whilst no significant difference was found between the GP
and VARMAX performance.

The performance of both our models is better than the
linear or GP-based direct mapping by about 30%, and the
RMSE is about 50%-70% lower across lags. The performance
is for all lags and for both the VARMAX and the GP model
better than the purely autoregressive system, by an order of
magnitude, in terms of correlation and almost two orders of
magnitude in terms of RMSE. More importantly, the GP based
approach produces better correlated results than the linear
autoregression. Thus, the linear and GP-based autoregression
with exogenous inputs performs better than both direct and
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Fig. 13. Contribution of sensory modalities in the linear autoregressive model with exogenous inputs (a) and the GP framework (b). Both frameworks
yield to similar results: the lower-limit to decoder performance of the decoder is set by only the correlation of natural hand movements, as determined
by fitting the VARMA model (no exogenous inputs in the GP model), left-most bar in both figures. Including MMG signals as exogenous inputs, or just
EMG signals or both MMG and EMG yields large jumps improvements in performance. A significant difference was found between the case with
no-exogenous-inputs model and all other configurations, and between the MMG configuration and the EMG and EMG+MMG. ∗∗ denotes p < 0.001
and ∗∗∗ denotes p < 0.0001 of a two-sample t-test with α = 0.05. Bar show mean ± standard deviation (SD).

purely autoregressive methods. Both models are able to control
more independent degrees of freedom in the finger actua-
tors (11) than we have sensors to read out muscle activity (9).
The ratio of independent Degrees of Freedom (DoF) controlled
to sensors is 1.22.

We investigated the underlying mechanisms of this predic-
tion by analysing the optimised values of � = (c, b, ϕ, θ)
and 	 = {σ f , 
, σl } for various lags. For the VARMAX
model, it was found that with increasing lag τ , the contribution
from the autoregression term ϕ decreases while the opposite
happens for the moving average term θ . We found similar
results for the GP model with an increasing contribution of
EMG-MMG signals ut , and reduced contribution of previous
state αt−τ . This trend could be explained by the natural
smoothness of human movements [37], which causes conse-
quent values of angular velocity close in time to be highly
correlated. For small values of τ , the model thus relies nearly
entirely on the previous state.

Globally, the VARMAX and the GP models did not show
significant difference for a fixed time-lag (p-value of a two-
sample t-test > 0.05), and both methods proved to be stable
over time, with no significant change in prediction quality
during the ≈ 20 mins of the experiment.

Fig. 14 shows the predicted joint velocities of the hand for
three consecutive ball-grasping tasks, as estimated by the GP,
with focus on the index MCP joint during a single repetition.
GPs return, for each estimated point, a Gaussian distribution
whose standard deviation can be interpreted as a measure of
the uncertainty of the predicted value. This feature can be used
for risk-based control of neuroprosthetic devices (see below).

The best performing model of our framework is the use the
non-linear GPs to combine muscle activity and autoregressive
inputs of hand posture with large lags. This model produces a
good degree of correlation between actual and predicted hand
velocities ρ = 0.61 and very low RMSE (8◦/s).

The GP-based approach is, by design, predicting each indi-
vidual finger joint independently of the other joints. Crucially,
we find (see Fig. 11) that the thumb’s individual joints are
highly predictable in terms of correlation (ρ = 0.82) and
RMSE, which is important given the opposable thumb being
the most independently controlled finger of the hand [24].

1) Generalisation Performance: We have to be able to judge
how well a decoder will operate in unknown conditions when
the user wants to generate a novel set of movements. To assess
this generalisation performance we have separate training
data from testing data, this is done to avoid overfitting and
obtaining spuriously high performance reports. We found in
the literature that generalisation performance is assessed with
a problematic lack of separation between training and test
data (see Methods for details). This occurs when the same
task or movement are repeated multiple times and some repe-
titions are used for training and others for testing data. This is
problematic because these data share the same statistical cause
(the task or movement), and training and test data are thus only
conditionally independent. Hence, we pursued a statistically
more rigorous approach by randomly selecting data from a
set of tasks designated training tasks, and a different set of
tasks designated as source of testing data. We thus do not mix
training and testing across repetitions of the same task.

To illustrate the importance of this distinction we computed
the performance of our best performing GP autoregressive
model with exogenous inputs. We used two methods to sepa-
rate test and training data: 1. training using separate training
and test tasks (our recommended method), and 2. training
where we allowed data from different repetitions of the same
task to be used for training and testing (see Fig. 12). The
performance of the second training approach is considerably
higher (ρ = 0.79 vs ρ = 0.61), the level depending on
which task’s repetitions were used for training and testing.
In general, the test data performance is upward biased by
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Fig. 14. Towards risk-based control. Muscle signals and decoded joint
velocities of the GP model for three consecutive repetitions of grasping
and squeezing a ball. Bottom set of plots shows the 5 EMG and 4 MMG
signals as fraction of maximum voluntary contraction (MVC). Middle set of
plots shows the predictive distribution of the on-line decoded joint angular
velocity set to control 11 independent finger joints. The inset shows the
actual (black) versus predicted (blue) values of the thumb MCP joint.
We plot in the inset the uncertainty of the system in its belief of the
prediction, as the standard deviation of the GP framework’s predictive
distribution (blue area). ∗ denotes muscle signals from MMG sensors.
Refer to Tables II and I for muscles and joints acronyms.

30% when using the second method. These results highlight
how repetitions of specific tasks, here grasping a cylinder or a
ball, provide considerably upward bias to the test performance
values. We report the differences in test performance and
the degree of method of separating between training and test
data when comparing our results to previous work in the
literature (as these used this approach, see Tab. III, column
training/testing) and report the more rigorous method (which

results in overall lower performance values) throughout our
results otherwise. In addition, any rigorous approach for eval-
uation has to be complemented by cross-validation to estimate
the variability in performance reports. This enables us to
carry out statistical tests to compare different approaches and
highlights for example that performance differences between
our VARMAX and GP approach that appear when comparing
average performance values, can actually be small, when fac-
toring in the variability across reported performance measures.

2) Evaluating Multiple Sensor Modalities: In our multi-modal
approach, we combined directly both EMG and MMG data.
How important or relevant is each sensor modality for our
reconstruction error? We evaluated the relative contribution
of these two exogenous modalities. While the GP approach
forms a complex non-linear representation of the multiple
modalities, we can use the linear model to get a sense
of the individual contributions of the modalities. Fig. 13a
shows the results obtained from the VARMAX model, in terms
of the correlation coefficient between the actual and predicted
velocities, as a result of using MMG signals as exogenous
inputs (black bar), EMG signals as exogenous inputs (blue
bar) and both (red bar). A statistical analysis (two-sample
t-test with α = 0.05) revealed a significant improvement from
the autoregressive model with no exogenous inputs (VARMA)
to the ones with exogenous inputs (p<0.001). Including EMG
signals also proved to be significantly better than MMG in
improving the performance of the model. Similar results were
found for the GP model (Figure 13(b)).

3) Enabling Risk-Based Control: While standard approaches
in prosthetic control decode a specific action, our GP-based
approach computes the probability distribution of a whole
family of possible actions. We can interprete this distribution
of actions as a measure of uncertainty that we have in the
users intended action, e.g. whether they movement outputs are
tightly distributed around a specific joint configuration or more
widely spread around. This enables the controller to estimate
the uncertainty it has about exposing a specific action to
the user. In Fig. 14 we show the on-line muscle activity
received (bottom plots) and the predictions of the GP frame-
work (middle plots). The GP model computes a distribution
over possible predictions, the model’s predictive distribution.
I.e. the GP model returns here a mean value and a standard
deviation of the prediction for each instant in time (we show
the uncertainty as shaded area denoting one standard deviation
around the mean prediction). In the inset Fig. 14, one can see
how the uncertainty of the GP model about its own predictions
is larger where the predicted value is far from the actual one.
This is a desired outcome, potentially more important than
just predicting with a smaller error, because the prosthetic
controller is aware of the error it may be making. This enables
a prosthetic controller to have fewer unknown unknowns to
operate with and enables the notion of risk-based control.

IV. DISCUSSION

The recent introduction of novel multifunction hands,
as well as new control paradigms, increase the demand for
advanced prosthetic control systems, leading us to present a
novel probabilistic framework. We follow the taxonomy of
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Fougner et al. [15] to place our prosthetic control approach
into the field’s context. In the context of this taxonomy,
we present here a proportional multi-modal simultaneous
multi-dimensional proportional control framework. Moreover,
we introduce novel aspects of risk-based control and under-
sensored control. Our control approach is proportional, as a
user can map a continuous sensory input interval by varying
his control input within a corresponding continuous interval.
We use a simultaneous multi-dimensional control approach,
in that we are controlling multiple independent degrees of
freedom (DoF) of the system (individual finger joints) at the
same time. This is in contrast to established approaches that
combine a classifier that selects which hand movement to
execute together with a mapping function (regression function)
that actuates that hand movement in a proportional way. To be
clear, controlling opening and closing of the hand as a whole
may affect multiple mechanical DoF of the hand mechanics,
but has only one independent degree of freedom in terms of
the user’s ability to control it.

We control more independent degrees of freedom than we
have independent sensors (11 actuated joints vs 9 sensors, ratio
11
9 = 1.22), while previous work typically has a ratios well

below 0.5. Thus, unlike most previous work, our approach
enables undersensored control, where we are controlling more
independent degrees of freedom than we have sensors. This
striking result is possible because we exploit the temporal
correlation structure of natural hand movements to provide a
context for the few muscle signal sources we use. This allows
our framework to disambiguate among possible motions.

Multi-modal control implies here that we combine
several sensory modalities together, i.e. joint angle configura-
tion of the prosthetic, surface/intramuscular electromyography
(s/iEMG) and mechanomyography (MMG). While EMG has
long been established in prosthetic control for 70 years [10],
mechanomyography has been only recently used before
for classification driven prosthetic control approaches [38].
We used our microphone-based surface MMG sensors [29]
that enable recording muscle activity without need for elec-
trical contact. This makes day-long recordings of muscle
activity feasible and with a signal-to-noise ratio comparable
to EMG [39]. We reported that MMG recordings are stable
enough to perform reliable muscle force prediction [40], [41].
Modern powered prostheses typically use surface electromyo-
graphy (sEMG) for neuromuscular monitoring and prosthetic
control. Alternatively, recent studies have proven the efficacy
of mechanomyography (MMG), EMG’s mechanical coun-
terpart [29], [39], which reflects both motor unit recruit-
ment [42] and global motor unit firing rate [43]. While
EMG has been successfully used for classification of indi-
vidual finger movement [44] and for fine actions robotic
control [45] in the laboratory environment, prosthetic control
mostly involves binary classification to decide whether to
open or close the hand. Recently, MMG studies have demon-
strated similar results [46], suggesting that MMG signals
are valuable alternatives or complements for neuroprosthetic
control. We evaluate how the combination of MMG and EMG
signals affects performance and find little benefit in including
MMG signals to the EMG signals. However, we showed

that using MMG signals alone provides a reasonable but
lower performance compared to EMG, but EMG signals alone
eclipsed the need for additional MMG signals. Considering
the MMG is typically factor 10-100 cheaper per channel than
EMG [29], we believe that current MMG sensors are probably
better suited for discrete control, rather than simultaneous,
proportional control of many degrees of freedom. Independent
of the specific outcome of MMG performance, the use of
a probabilistic inference model to infer joint kinematics for
prosthetic controls has a fundamental conceptual advantage –
namely that it allows to combine multiple physical modal-
ities (and physical units) of input signals in a principles
manner. This is because conventional approaches such as
neural networks and also our VARMAX method produce a
mapping between the values (irrespective of units) and so
change in units (e.g. microvolt range for EMG is very differ-
ent from centivolt range of MMG) produce scale-dependent
changes that normally have to be carefully normalised to
map across modalities (e.g. when combining joint angle and
voltage inputs). In contrast probabilistic approaches, such as
our GP, map values to a probability distribution of latent
variables and thereby establishes relationships between these
probability distributions. Thus, probabilities are mapped to
probabilities, thereby enabling physical scale-invariance and
invariance across physical modality (physical units).

A. Comparison to Previous Work

Placing our results in the context previous work requires
making comparisons across very different studies – in
absence of an established publicly accessible benchmark data
set or physical system for evaluating proportional control.
We therefore focussed on selected recent work that published
details of their data and their performance evaluation pro-
cedure (please refer to Tab. III throughout this section) to
compare our work to.

Careful selection of the performance evaluation measure
for control algorithms is important, as these use the perfor-
mance as the automatic optimisation criterion for the system.
We focussed on decoding joint velocities, which are highly
conserved across users [24] and are within users more sta-
tionary than other quantities [32], thus promise to gener-
alise better to novel users. Using joint velocities as a target
modality enables us to capture actuator impulse, enabling a
compromise between controlling hand pose (useful in dynamic
tasks, e.g. passively hold an apple) and hand force (useful in
isometric force tasks such as opening a bottle). This contrasts
with previous work that either only considered hand pose (joint
angles) [11], [12], [16]–[18], [25] or a grasp force [13].

The RMSE we report for GP autoregression is averaged
across all joints, the degree of error between actual and
predicted joint angular velocity is very small 8◦/s. This RMSE
is equivalent to the angular velocity of a watch hand that takes
45 seconds to complete a full 360◦ circle and comparable to
the natural drift velocity of the resting, passive hand. However,
the root mean square error (RMSE) is not necessarily a
good measure of performance for a prosthesis control system,
because one may confound a low RMSE with a poor ability
to follow the dynamics of the system (see [15] for review,
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see also [47], [48]). Moreover, as other proportional control
studies looked at different modalities e.g. force or joint angle
it is difficult for us to compare raw RMSE across different
physical units. Joint angles capture little about the dynamics
of the hand e.g. do not account well for the fact that pose-
based control induces transients as the hand moves from one
configuration to the intended configuration, which can make it
difficult to control hands fluidly in closed loop. We conclude
that we need to compare the instantaneous Pearson correlation
coefficient ρ = √

R2 of the predicted and actual signal,
which indicates how well the predictions perform and co-vary
with the data (see column “Perf”). ρ is unit-less and thus
allows a somewhat better comparison across systems. Our
correlation coefficient for predicting 11 finger joint movements
is within 10% to 15% of current state-of-the art approaches
focussing on wrist control [12], [16], [18]. We consider finger
decoding the harder problem as the hand has more degrees
of freedom and these often involve more, smaller and deeper
muscles in the forearm than those of the wrist and thus have
poorer signal quality.

Comparison of these performance numbers is further com-
plicated by the nature of the performance evaluation (if it is
published in sufficient detail). We show that there is a 25%
boost in correlation measures of test performance depending
on whether one omits separating test and training data so that
data from the same task (but different repetitions) is used
for both settings (see column Train/Test, report “identical”)
or whether training and testing data is clearly separated across
tasks (see column Train/Test, report “different”). The latter
is statistically the more sound measure to evaluate test data
performance as it speaks to the ability of a framework to
generalise to novel settings (and potentially novel users) –
and is the one measure we applied throughout our analysis.
The appropriate separation of test and training data needs to
be paired with a cross-validation approach to estimate the
uncertainty in performance measures. All our results presented
here report variability of performance measures, but we did
not include this variability in Tab. III) as aside from [24] no
uncertainty estimates were published in the tabled literature.
Finally, another confounding factor that blurs the difference
in performance across studies is that previous work focusses
on assessing proportional control in either dynamic move-
ment tasks, i.e. dynamic, free, unimpeded movement of the
hand or passive hold of a light object (see column Task -
report “dyn”), or on isometric tasks (pressing a force sensor,
e.g. [13]) (see column Task - report “iso”). In contrast, our
set of data combines both dynamic tasks and isometric object
manipulation tasks that arise from interaction with daily life
objects. This approach reflects our need and aim to evaluate
performance across daily life scenarios and the use of joint
angular velocity control – it is difficult to extrapolate how well
other methods would generalise across this natural spectrum
of tasks. We suggest that focussing on free movement tasks
alone or isometric force tasks alone will result in inflated
performance reports than when evaluating a more naturalistic
combination of the two as we have done here.

Moreover, there are large differences in the number of inde-
pendently controlled degrees of freedom (DoF), as sometimes

a single variable is decoded (e.g. grasp force) while in other
cases multiple-actuators are decoded individually. We focussed
on actuating 11 individual finger joints independently. The
sensors used are very different, encompassing surface EMG
electrodes, high-density EMG arrays but also invasive mea-
sures of muscle activity (see column “sensors”). Our approach
is undersensored, as we control not only a much larger
(>3-fold) set of independent DoF than most previous
approaches, but also have a higher ratio degrees of freedom
controlled independently to sensors (electrodes) ( 11

5 = 2.2 or
11
9 = 1.22 if we include MMG with the EMG). In contrast,

previous work had ratios significantly smaller than 1 (see
column “DoF/Sensor ratio”). Reference [17] used comparable
levels of undersensored control to our work presented here,
however a correlation coefficient was not reported and the
RMSE of 15◦ was estimated from their publication, as no
summary RMSE was reported and per joint error was reported
as fraction of (unspecified) joint ranges (to obtain the value
we assumed 90◦ joint range for all joints (which is a low
value) and averaged across the joints). Also their work con-
sidered only dynamic free movement tasks without isometric
contractions resulting from object manipulation. Our work
controls joint velocities (RMSE 8◦/s) and not absolute joint
configuration as [17], and thus over a period of roughly
2 seconds our control error would accumulate to their reported
RMSE of 15◦, however in this time the end-user would have
multiple time steps time to compensate for pose configuration
error. We thus, conclude that when considering the large
number of simultaneously controlled degrees of freedom and
the degree of undersensored control for fluid full-finger hand
control, GP autoregression operates twice as well as previous
comparable work.

Previous approaches use some form of direct-mapping
paired most frequently with neural networks which take into
account present (and past) muscle activity, while we developed
a probabilistic description of the inference problem (cf. Fig. 2)
and used an GP autoregressive with exogenous inputs to solve
the problem. Some work performed direct mapping of signals
after muscle activity signal feature extraction [11], [13], [18],
these features implicitly included time-series element of the
muscle signal input. Other work [16], [17] used for example
explicitly time-delayed inputs into neural networks to incorpo-
rate the history of muscle activities. In contrast here we operate
with the history (i.e. context) of the hand movement itself
(autoregression), and thus our approach takes into account
both past joint kinematic context and muscle activity to
perform decoding. Thus our work should be also compared
to [21], [25], which exploit directly the conserved spatio-
temporal structure of natural hand kinematics to predict from
the configuration of fingers 3-5 the configuration of the
(missing) thumb and index finger. That work is applied to par-
tial hand prosthetics and operates without having to use muscle
activity, while here we reconstruct full hand configuration
from knowledge of the spatio-temporal structure and muscle
activity, we achieve an over 30% higher correlation coefficient
here than reported before. Proportional control approaches
focussed on different control quantities, such as wrist control
and open/closure of the hand (as a whole) or force of grasp
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(see column “controlled quantity”). In contrast, we enabled
here detailed fluid control of the individual fingers and
especially the thumb, for which we report an average cor-
relation coefficient of ρ = 0.72 and RMSE of 7◦/s.

B. Risk- and Context-Aware Control

The nervous system and movements are inherently
noisy [49], [50]. We use here probabilistic Bayesian methods
to process this neurobehavioural data in a principled way to
operate with this uncertainty. We presented a novel framework
for prosthetic control, framed in the language of Bayesian
Decision Theory that reinterpreted the prosthetic decoding
problem as a recursive time series prediction model with exter-
nal inputs. We compared both linear approaches and non-linear
methods, based on Gaussian Process (GP) regression. While
GP regression has not been used for direct mapping problems
before, it is generally considered equivalent in terms of per-
formance to conventional artificial neural network approaches,
which have been extensively used before in direct mapping
of prosthetic control. In fact Gaussian Processes are formally
equivalent to a neural network with an infinite number of units
in the hidden layer [34], [51], [52]. Using GP respression
allows us now to extend the prosthetics taxonomy [15] by
the notion of risk-based control. GP regression provides a
principled method for us to obtain the decoders uncertainty
in interpreting the user intention. We propose that risk-based
control enables us to use the systems own understanding of
how uncertain, given the data and the calibration, the decoding
of a specific hand-movement can be. This allows the con-
troller to make decisions about whether to go ahead with an
unmodulated movement of the hand or choose a modulated
movement (e.g. uses smaller amplitudes or forces to avoid
dangerous situations where the user suffers from unintended
actions). These unique benefits of probabilistic inference over
standard neural network based approaches for decoding come
at a cost. GP regression is numerically complex during train-
ing (which can be however performed offline) and is also
somewhat more complex to evaluate than neural network based
methods. We found that these potential concerns do not form
an issue for two reasons. 1. we proposed here the use of
approximation methods to simply and reduce the complexity
of inferring the GP for prosthetic control and 2. constant
advances in embedded processing, have seen GP processes
already successfully deployed in real-time activity recognition
in smartphone-based settings using state-of-the-art low-power
embedded processors (e.g. [53], [54]).

While better quality and more sensor signals, e.g. from
high density electrode arrays, will improve our system’s
performance further, we demonstrated the power of using
the inherent structure of natural movements with record-
ings from a few sensors, to achieve undersensored control,
i.e. enabling a larger independent degrees of freedom to be
controlled from a smaller number of sensors. This will become
increasingly important as robotic prosthetic hands increase in
sophistication, enabling not only dextrous control of grasping
but also allowing us to perform in-hand object manipulation
tasks: The EthoHand [7], for example, is capable of writing

a text message on a smart phone or rolling balls inside its
palm [7]. This mechatronic capability is enabled by novel
thumb designs that enable complex pointing of the thumb, and
hence which requires corresponding decoding of thumb action,
as we demonstrated here. We showed that the EthoHand can
render the complex spatio-temporal structure of natural human
hand movements to an unprecedented extent [27] and here
we used the very same spatio-temporal structure to boost
decoding performance by providing context to the muscle
activity recorded.

We propose that more detailed and higher-level context
information will further boost the ability to decode correctly
ambiguous and noisy sensor signals. This is enabled by
current developments of haptic sensing algorithms (Haptic
SLAM) that can reconstruct and recognise from finger joint
kinematics alone the object shape that is manipulated by
the artificial hand [55], [56], but also come from sensory
feedback of the hand. We will aim to move beyond low-
level kinematics, as used here, to higher order structure of
hand-based actions (e.g. reach, grasp, pull), tasks (e.g. drink
from cup) and ultimately overall user intentions (e.g. having
breakfast) [24]. This high-level information will be eventually
available from smart home environments but could also be
inferred directly from the activity dynamics with information
accessible to a prosthetic hand itself. These developments need
to be supported by careful designed performance evaluations,
that cleanly separate training and test data, evaluate decoding
across both dynamic and isometric tasks taken from daily life.
Ultimately, the best performance measures should be the abil-
ity, agility and satisfaction with which an actual end-user can
perform complex tasks, as demonstrated in [20]). In conclusion
we demonstrated how statistical machine learning approaches
can yield in a purely data-driven way a method that efficiently
combines contextual information with multi-modal data to
boost the ability of end-users to control an artificial hand’s
finger better approaching the dexterity of the human hand.
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[31] M. Šarić, Libhand: A Library for Hand Articulation version 0.9., 2011.
[32] E. Todorov and Z. Ghahramani, “Analysis of the synergies under-

lying complex hand manipulation,” in Proc. 26th Annu. Int.
Conf. IEEE Eng. Med. Biol. Soc. (IEMBS), vol. 2. Sep. 2004,
pp. 4637–4640.

[33] D. A. Dickey and W. A. Fuller, “Distribution of the estimators for
autoregressive time series with a unit root,” J. Amer. Statist. Assoc.,
vol. 74, no. 366a, pp. 427–431, 1979.

[34] J. Bernardo et al., “Regression and classification using Gaussian process
priors,” in Bayesian Statistics, vol. 6.

[35] C. Rasmussen and C. Williams, “Gaussian processes for machine
learning,” in Gaussian Processes for Machine Learning. Cambridge,
MA, USA: MIT Press, 2006.

[36] J. Quiñonero-Candela and C. E. Rasmussen, “A unifying view of sparse
approximate Gaussian process regression,” J. Mach. Learn. Res., vol. 6,
pp. 1939–1959, Dec. 2005.

[37] Q.-C. Pham, H. Hicheur, G. Arechavaleta, J.-P. Laumond, and
A. Berthoz, “The formation of trajectories during goal-oriented locomo-
tion in humans. II. A maximum smoothness model,” Eur. J. Neurosci.,
vol. 26, no. 8, pp. 2391–2403, 2007.

[38] J. Silva, T. Chau, and A. Goldenberg, “MMG-based multisen-
sor data fusion for prosthesis control,” in Proc. IEEE 25th
Annu. Int. Conf. Eng. Med. Biol. Soc., vol. 3. Apr. 2003,
pp. 2909–2912.

[39] C. Gavriel and A. A. Faisal, “A comparison of day-long recording
stability and muscle force prediction between BSN-based mechanomyo-
graphy and electromyography,” in Proc. 11th Int. BSN Conf, 2014,
pp. 69–74.

[40] S. Fara, C. Gavriel, C. S. Vikram, and A. A. Faisal, “Prediction of arm
end-point force using multi-channel MMG,” in Proc. 11th Int. Conf.
Wearable Implant. Body Sensor Netw., Sep. 2014, pp. 27–32.

[41] M. Xiloyannis, C. Gavriel, A. A. C. Thomik, and A. A. Faisal, “Dynamic
forward prediction for prosthetic hand control by integration of EMG,
MMG and kinematic signals,” in Proc. 7th Int. IEEE/EMBS Conf. Neural
Eng. (NER), vol. 7. Sep. 2015, pp. 611–614.

[42] K. Akataki, K. Mita, and M. Watakabe, “Electromyographic and
mechanomyographic estimation of motor unit activation strategy in
voluntary force production,” Electromyogr. Clin. Neurophysiol., vol. 44,
no. 8, pp. 489–496, 2004.

[43] T. W. Beck et al., “Does the frequency content of the sur-
face mechanomyographic signal reflect motor unit firing rates? A
brief review,” J. Electromyogr. Kinesiol., vol. 17, no. 1, pp. 1–13,
2007.

[44] F. Tenore, A. Ramos, A. Fahmy, S. Acharya, R. Etienne-Cummings, and
N. V. Thakor, “Towards the control of individual fingers of a prosthetic
hand using surface EMG signals,” in Proc. 29th Annu. Int. EMBS Conf.,
Aug. 2007, pp. 6145–6148.

[45] B. Crawford, K. Miller, P. Shenoy, and R. Rao, “Real-time classification
of electromyographic signals for robotic control,” in Proc. AAAI, 2005,
pp. 523–528.

[46] N. Alves and T. Chau, “Uncovering patterns of forearm muscle activity
using multi-channel mechanomyography,” J. Electromyogr. Kinesiol.,
vol. 20, no. 5, pp. 777–786, 2010.

[47] L. Hargrove, Y. Losier, B. Lock, K. Englehart, and B. Hud-
gins, “A real-time pattern recognition based myoelectric control
usability study implemented in a virtual environment,” in Proc.
29th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., Apr. 2007,
pp. 4842–4845.

[48] B. Lock, K. Englehart, and B. Hudgins, “Real-time myoelectric control
in a virtual environment to relate usability vs. accuracy,” in Proc.
Myoelectr. Symp., 2005, pp. 1661–1667.

[49] A. A. Faisal, S. B. Laughlin, and J. A. White, “How reliable is the
connectivity in cortical neural networks?” in Proc. IEEE IJCNN, vol. 2.
Sep. 2002, pp. 1661–1667.

[50] A. A. Faisal, L. P. Selen, and D. M. Wolpert, “Noise in the ner-
vous system,” Nature Rev. Neurosci., vol. 9, no. 4, pp. 292–303,
2008.

[51] R. M. Neal, “Bayesian learning for neural networks,” Ph.D. dissertation,
Univ. Toronto, Toronto, ON, Canada, 1995.

[52] D. J. MacKay, “Gaussian processes—A replacement for supervised
neural networks?” Cavendish Lab., Cambridge Univ., Cambridge, U.K.,
Tech. Rep., 1997.

[53] H. Shin, Y. Chon, and H. Cha, “Unsupervised construction of an indoor
floor plan using a smartphone,” IEEE Trans. Syst., Man, Cybern. C,
Appl. Rev., vol. 42, no. 6, pp. 889–898, Jun. 2012.



XILOYANNIS et al.: GP AUTOREGRESSION FOR SIMULTANEOUS PROPORTIONAL MULTI-MODAL PROSTHETIC CONTROL 1801

[54] L. Zhang, J. Liu, H. Jiang, and Y. Guan, “SensTrack: Energy-efficient
location tracking with smartphone sensors,” IEEE Sensors J., vol. 13,
no. 10, pp. 3775–3784, Oct. 2013.

[55] F. M. P. Behbahani, R. Taunton, A. A. C. Thomik, and
A. A. Faisal, “Haptic SLAM for context-aware robotic hand
prosthetics—Simultaneous inference of hand pose and object shape
using particle filters,” in Proc. IEEE Neural Eng. (NER), vol. 7.
Sep. 2015, pp. 719–722.

[56] F. M. P. Behbahani, G. S. Buxarrais, and A. A. Faisal, “Haptic slam:
An ideal observer model for Bayesian inference of object shape and
hand pose from contact dynamics,” Eurohaptics, vol. 6, pp. 1–6,
Apr. 2016.

Michele Xiloyannis, photograph and biography not available at the time
of publication.

Constantinos Gavriel, photograph and biography not available at the time
of publication.

Andreas A. C. Thomik, photograph and biography not available at the
time of publication.

A. Aldo Faisal, photograph and biography not available at the time of
publication.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


