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A Nonlinear Model for Mouse Pointing Task
Movement Time Analysis Based on Both

System and Human Effects
Amur Almanji, Alex R. Payne, Robert Amor, Member, IEEE, and T. Claire Davies

Abstract—This paper provides a detailed model for analyzing
movement time performance during rapid goal-directed point-
and-click motions with a computer mouse. Twelve typically devel-
oped individuals and eleven youths with cerebral palsy conducted
point and click computer tasks from which the model was devel-
oped. The proposed model is nonlinear and based on both system
(target width and movement amplitude) and human effects (erro-
neous clicks, number of submovements, number of slip-offs, cur-
vature index, and average speed). To ensure successful targeting
by youths with cerebral palsy, the index of difficulty was limited
to a range of 1.58 – 3.0 bits. For consistency, the same range was
used with both groups. The most significant contributing human
effect to movement time was found to be the curvature index for
both typically developed individuals and individuals with cerebral
palsy. This model will assist in algorithm development to improve
cursor speed and accuracy for youths with cerebral palsy.
Index Terms—Fitts’s law, human performance modeling, move-

ment time, point-and-click, speed-accuracy trade-off.

I. INTRODUCTION

T HE ABILITY to manipulate a computer cursor is impor-
tant for many applications such as word processing, game

playing, and Web browsing. Point-and-click interfaces are gen-
erally developed with the aim of making applications practical
and user-friendly; generally evaluated by Fitts's law. Fitts's law
has served as one of the most successful models of human-com-
puter interactions. It has been used as a theoretical framework
for computer input device evaluation [1], [2] and as a tool for
developing and improving interfaces as well as the logical basis
for modeling. Conversely, Fitts's law does not fully describe
human performance (e.g., errors introduced into the model by
human behavior). The central focus of Fitts's pointing para-
digm is based on the motor control part of pointing, where users
perform rapid goal-directed movements. Fitts's law models are
often developed in a controlled environment where the user
knows the exact position of the target. Furthermore, it was orig-
inally conceived before the existence of the computer mouse, so
the task was inherently different. However, in real world human
computer interactions, a mouse is generally used and the envi-
ronment is not controlled; an individual could be dealing with
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factors such as multiple possible targets or environmental in-
terference such as taking a phone call [3]. The idea of mod-
eling both the system and human effects for point-and-click
tasks has been researched previously [1]. For example, Hwang
et al. [4] made use of human effects to better understand com-
puter–human interaction for youths with motion impairment to
provide full computer access.
Our research contributes to the literature on human computer

interaction by developing a theoretical model based on both
system and human effects to describe the performance (move-
ment time) of point-and-click tasks. Model validation is un-
dertaken by comparing the proposed model against previous
models using the Akaike information criterion (AIC) and the co-
efficient of determination, , statistical measures. This paper
initially presents a literature review of movement time models
for rapid movement tasks. It then develops a model, for typi-
cally developed individuals and individuals with cerebral palsy,
which incorporates the human effect with the system effect. The
system effect is defined in this paper as the target width and am-
plitude (distance between centers of two targets). The human
effect parameters are defined as variables that are caused by
human behavior, such as erroneous clicks or slip-offs.

II. LITERATURE REVIEW
Rapid goal-directed movements are categorized by two

models: the iterative correction model, which is the basis of
Fitts's law [5], and the impulse variability model (for ballistic
movement) [6]. The iterative correction model is based on
spatially constrained movements where participants are re-
quired to reach the target with width, , placed at distance,
, as fast as possible. The measured movement time is used

as a reflection of task performance; it is a time minimization
task [7]. The impulse variability model is based on a form of
temporally constrained movement; participants are required to
reach towards the target for a specified movement time, creating
a time-matching movement task [6], [7]. The goal of this task is
to get as close as possible to the targetwithin the time constraints.
However, these two models cannot be independently applied to
all pointingmovements. They have been integrated into the opti-
mized initial model [8] which is a hybrid of the two models. The
optimized initial model describes the movement by two phases
of submovements (rapid primary and slow secondary). Firstly,
a rapid primary movement is conducted toward the target. If the
movement attains the target, then the task is completed. On the
other hand, if the movement lands outside the target, a slower
corrective movement is required. This process carries on until
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the target is attained. The primary goal of the task is to reach the
target as fast as possible; thus, in an ideal scenario, the subject
should perform a single high-velocity movement toward the
target. In reality, the ideal scenario seldom occurs as the initial
movement undershoots or overshoots the target in most cases.
On the other hand, Soukoreff and Mackenzie [2] argued that

Fitts's law is applied to movements where pauses midtrial do not
exist (pauses violate the requirement that movements be rapid).
Another impracticality is that the movement time data have to
be normally distributed (by removing distance or time outliers
beyond three standard deviations from the average of movement
distance or time) [2]. Motion-impaired users experience insta-
bility of movement; therefore, the existence of a pause compo-
nent is expected. In addition, Fitts's law takes into account only
certain system effects (target width and movement amplitude)
while neglecting the effects of human behavior [1]. Behavior
significantly influences movement characteristics of motion-im-
paired users [4], [9].
For rapid goal-directed (aimed) movements, Fitts's law

(1954) [5] expresses the relationship between three parameters:
movement time (dependent variable); movement amplitude (in-
dependent variable, ); and target size (independent variable,
) [(1)]. The Fitts's law model originated from direct pointing,

where the hand taps physical objects. Fitts's law is used to
predict the movement time to reach the target. The prediction
formula is a linear function of the index of difficulty. Fitts's law
does not form a full picture of point-and-click computer tasks
as it does not take into account sources of error particular to
using a mouse [10].
Themost common representation of Fitts's law is the Shannon

formulation where the effective width is either calculated based
on the standard deviation of end points or using the error rate
with the assumption that the movement end points are normally
distributed [2] (error rate is defined as the percentage of erro-
neous clicks within a block of trials). The effective width is
equal to the original width when 96% of the end points fall
within the target width while moving “as fast as possible.” “As
fast as possible” indicates that there are no pauses; therefore,
according to Soukoreff and Mackenzie [2] the movement time
should be normally distributed. If the error rate is greater than
4%, the effective width is greater than the original width and
vice versa. The effective width is computed by ,
where is the standard deviation of the experimentally ob-
tained end-point coordinates. The Shannon formulation of the
index of difficulty (ID) for Fitts's law is given by

(1)

where and are experimentally derived constants specific
to an individual participant, is movement time, is the
index of difficulty (bits), is movement amplitude, and is
target width.
Some motion-impaired users have spastic movements, which

result in error rates beyond 4% and lead to longer pauses during
movement correction; therefore, the spatially constrainedmove-
ment theory might not be obeyed.Moreover, Fitts's law assumes
that movements are visually guided, which is seemingly the case
for Fitts IDs greater than 3. Gan and Hoffmann [11] stated that

for an ID less than 3, themovement is a nonvisual guided correc-
tive movement (ballistic movement). However, this testing was
only conducted by typically developed individuals. Individuals
with cerebral palsy have different access approaches and needs
[12], thus a better model is required.
In a study of 22 children (aged 5–16 years) with congenital

spastic hemiplegia (CSH), Smith-Englesman et al. [13] found
that children with CSH adhere to Fitts's law in visually guided
tapping tasks (Fitts ID ranges from 2 to 4 bits). However, in an
earlier study of eight participants with cerebral palsy, CP (aged
28–60 years, seven with moderate to severe spastic quadriplegia
and one with mild CP), Gump et al. [14] found that pointing
task movements conducted by adults with CSH did not adhere
to Fitts's law (ID ranges from 2.19 to 6.00 bits), but they obeyed
the ballistic factor [15]. On the other hand, Gump et al. [14] did
find that one of the participants adhered to both Fitts's law and
the ballistic factor law. However, they explained that noncom-
pliance with Fitts's law might have been caused by visual prob-
lems, especially for severely impaired participants who may not
have used visual feedback to control their movement.
We have found that for participants with CP, the ability to

conduct computer point and click tasks is limited to an index
of difficulty of 2. Computer tasks become too difficult for this
population for IDs greater than this [12].
Analysis of discrete submovement components supplies ad-

ditional information that may provide a larger picture of point-
and-click computer tasks. Fitts's law and the ballistic movement
law are bounded by movement amplitude and target width pa-
rameters. Combining these has led to the development of the ini-
tial impulse model that accounts for discrete submovements and
can be used for graphical interface design for motion-impaired
users [8], [16], [17]. The optimized initial impulse model is a
form that includes both spatial and temporal movement tasks.
Fitts's law has already been augmented to provide a better pic-

ture of human motor functionality during point-and-click com-
puter tasks. Wobbrock et al. [18] attempted to reverse Fitts's
law to develop an error model for point-and-click computer
tasks [18], [19]. They concluded that the error prediction model
based on a reversed Fitts's law provides predictions with a strong
similarity to observed error rates for movements with experi-
mentally controlled movement times (using a metronome-based
time-matching study). On the other hand, the probability of suc-
cess, ( error rate), has been added as an independent
variable in Fitts's law to establish the system-human model (SH
model). The SH model is an example of an augmented Fitts's
law that includes both the system and human effects [1]. The
SH model equations are as follows:

(2)

where , , and are constants, is an estimated parameter from
the minimum Akaike information criterion (AIC), is the total
number of clicks inside the target, and is the total number of



ALMANJI et al.: A NONLINEAR MODEL FOR MOUSE POINTING TASK MOVEMENT TIME ANALYSIS BASED ON BOTH SYSTEM AND HUMAN EFFECTS 1005

trials (click attempts), is system effect, is human effect,
and is the probability of success.

III. PROPOSED MODEL

The fundamental idea behind our proposed model was to join
the Shannon formulation of index of difficulty [(1)] of Fitts's
law with the most important path evaluation measures as listed
below to formulate an equation to predict movement time (MT).
Our model is based on the inclusion of both system influence
and human influences; similar to the SH model [1]. System in-
fluence is evaluated by the pointing task condition (the ampli-
tude between targets and the target width). The number of er-
roneous clicks is an example of human behavior affecting task
performance. In previous research [20]–[30], 40 different path
evaluation measures were identified as possible contributors to
movement and submovement times. The most important path
evaluation measures that relate to movement time were deter-
mined using an automatic linear modeling technique on col-
lected data (experiment design is discussed in detail in next sec-
tion). We found that the best indicators of human error that sig-
nificantly affect movement time were the number of erroneous
clicks (EC), the number of submovements (NS), the curvature
index (CI), the number of slips-off (NSO), and average speed
(AS). These were used in the development of the new model.
These parameters are defined as follows.

A. Number of Erroneous Clicks (EC)
The number of nontarget clicks within a trial. Nontarget

clicks require movement correction; therefore, movement
time is expected to increase as the number of nontarget clicks
increases. This number is unit-free.

B. Number of Submovements (NS)
The number of discrete movements separated by pauses

defined as a zero cursor speed. It is unit-free. A high number
of submovements indicate more movement correction, re-
sulting in an increase in movement time. Hwang et al. [4],
[9] found that typically developed users completed 90% of
point-and-click trials in less than seven submovements, while
90% of trials of motion-impaired users required more than
seven submovements. In our experiment, the definition of a
pause was conservatively set to a cursor speed of zero because
it is difficult to specifically define a submovement [3].

C. Curvature Index (CI)
The ratio of the total distance traveled to the straight-line dis-

tance between the start and end points. A value of 1 indicates the
cursor path follows a straight line toward the target, and a larger
value shows increasing deviations [23]. It is expected that in-
voluntary movement in an unintended direction increases as the
degree of impairment increases; therefore, the distance travelled
and hence the movement time increases [31]. It too is unit-free.

D. Number of Slips-Off (NSO)
A slip-off is defined as the submovement that starts inside

the target and ends outside the target. Note that this means the
cursor had stopped inside the target before moving away. The
number of slips-offs is a count of the number of in-out target

submovements within a trial [4]. It is unit-free. Hwang et al.
[4], [9] found that typically developed users rarely slip off, and
motion-impaired users slip off more frequently than typically
developed users.

E. Average Speed (AS)
The average value of speeds sampled within a given trial. It

is expected that the degree of impairment has an influence on
average speed. The unit is pixels/millisecond.
These measures were used in the development of a general

new model (the unit of movement time is milliseconds)

(3)

F. SE
ID (for Fitts based models), or (for Ballistic based models).
where , , , , , , and are time factor constants, and SE

is system effects.
Note that most of these variables can only be obtained post-

hoc. Also note that multicollinearity is analyzed later under the
Results and Analysis section.

IV. EMPIRICAL VALIDATION OF THE PROPOSED MODEL

It was important to validate the model by carrying out a con-
trolled experiment using standard discrete pointing tasks. This
section covers three aspects of the experiments, including par-
ticipants, apparatus, and experimental design.

A. Subjects
1) Twelve typically developed (TD) participants (eight males

and four females, aged 18–32, all right-handed) took part
in the experiment.

2) Eleven participants (aged 13–22) with cerebral palsy (CP)
(eight MACS1 I and three MACS II) [32] took part in the
point-and-click tasks. Inclusion criteria: able to use the
mouse. Mouse experience: the participants uses the com-
puter during computer teaching sessions in rehabilitation
centres.

B. Apparatus
1) Typically Developed Participants: Participants were

seated comfortably on a desk chair in a normally lit room whilst
they completed computer mouse pointing tasks at a desk. The
experiment was conducted on a Dell desktop machine with a
2.4 GHz Intel Core 2 Quad CPU with 2 GB of RAM running
64-bit Windows 7 Enterprise. The pointer speed (control and
display gain) was set to 10 as normal. The screen used was at
a resolution of 1280 1024 pixels (51 33 cm) with a refresh
rate of 60 Hz. The pointing device type was a standard USB
optical mouse. The resolution of the pointing was 96 pixels per
inch (DPI). The average horizontal distance between the screen
and a participant's face ranged between 50 and 60 cm.

1MACS (Manual Ability Classification System): is used to classify the level
of upper limb ability in children with CP; widely ranging fromMACS I (handles
objects easily and successfully) to MACS V (does not handle objects and has
severe impairment that require assistance to carry out simple actions).
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TABLE I
SUMMARY OF EXPERIMENT CONFIGURATION

2) Individuals With CP: Participants sat at a desk (some of
them in a wheelchair) and completed pointing tasks with a com-
puter mouse under normal lighting conditions. The experiment
was conducted on an HP laptop machine with a 2.2 GHz AMD
Turion X2 Ultra Dual-Core Mobile ZM-82 with 3 GB of RAM
running 32-bit Windows 7 Enterprise. The pointer speed (con-
trol and display gain) was set to 10 as normal. The screen used
was at a resolution of 1280 800 pixels (35 24 cm) with a
refresh rate of 60 Hz. The pointing device type was a standard
USB optical mouse (manufactured by Dell). The resolution of
the pointing was 96 pixels per inch (DPI). The average dis-
tance between the screen and participants ranged between 50
and 60 cm.

C. Experimental Design
A multidirectional discrete pointing task was undertaken by

each participant to evaluate the cursor movement between two
targets with different sizes and center-to-center amplitudes. The
software was developed in C#with a sampling interval of 15ms.
A single trial was defined as the cursor traveling from a home
square, located at the center of the screen, to a target square,
which was visible prior to trial start. A trial started (and move-
ment time is counted) from when the user clicked on the home
square and ended when the user clicked on the target square.
Next, the user returned the cursor to the home square to initiate
a new trial. Trials were conducted in blocks of 40 with roughly
half to one minute breaks in between. In each block, the am-
plitude and width was consistent whilst the target direction was
varied quasi-randomly between eight compass directions. The
eight combinations of amplitude and width are summarized in
Table I along with the possible target directions.
The typically developed (TD) participants undertook two

sets of the eight blocks of combinations; while the youths with
CP did only one set to diminish issues with fatigue. The total
number of trials for each set (A-B-A-B) of the experiment
was 320 (8 40). Participants were instructed to take breaks
whenever they wanted (not mid-trial; they can stop whenever
they click on the target object). The total number of trials across
the 12 TD participants was 7680, and the 11 participants with
CP completed a combined total of 3520 trials.

V. RESULTS AND ANALYSIS

To show the need to develop a better model for point-and-
click computer tasks, it was necessary to investigate the effect
of impairment on pause time (the time interval when the cursor

Fig. 1. Average pause time.

Fig. 2. (a) Log distribution of movement time (TD participant 1, A: 100
pixels, W: 50 pixels (ms). (b) Log distribution of overall movement time for
TD participants.

travels at zero speed), since Fitts's law depends on there being
none, or at least very little. Fig. 1 shows the average pause time
grouped by successful trials (with no erroneous clicks) and
unsuccessful trials (with erroneous clicks) across TD, MACS
I, and MACS II participants. Fig. 1 shows that the average
pause time during point-and-click computer tasks conducted by
youths with CP (MACS I [575 ms successful, 1409 ms unsuc-
cessful] and MACS II [501 ms successful, 1032 unsuccessful])
is more than double the average pause time of typically devel-
oped users (195 ms successful, 380 ms unsuccessful).
Whereas Fitts's law is based on a selective normal distribution

of data, the analysis of experimental data for movement times
in our point-and-click tasks showed a non-normal distribution
(positively skewed). The best-fitting distribution (as required for
statistical analysis) was found to be a log distribution (natural
log, Fig. 2). Thus, a better model must represent the components
based on the natural log. For example, the number of erroneous
clicks can be represented as

(4)

If the number of erroneous clicks is 0, the result of [(4)] is zero;
the ECwould only contribute to themodel if, in fact, EC actually
occurred. The same applies to NSO and NS. Therefore, the log-
transformed model is given by

(5)
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Equation (5) can be transformed nonlinearly (natural expo-
nentiation) as the following:

(6)

The proposed model without the human effect is given by

(7)

A. Validation of Models

To further validate the model, it was formulated with Fitts-
like and ballistic-like system effects, and with [(5)] and without
[(7)] human effects. It was also tested against Fitts's model [(1)]
(with original and effective width), and the SH model [ ,
(2)]. The effective width is calculated based on Mackenzie's
equation for the error rate [2]. Outliers of movement time or
movement amplitude beyond three standard deviations were re-
moved from analysis based on Fitts's law. The movement time
and amplitude used for Fitts's law (effective width) is recorded
from start to the first click (either target or erroneous click to
compensate for end-point scattering).
The analysis of collected data was conducted using multiple

linear regressions [note that the linearization of a nonlinear
equation allows linear regression; linearization of (6) to (5)].
Seven different models—Fitts's law (with original width
and effective width), SH, Fitts-like (with and without the
human effect), and ballistic-like (with and without the human
effect)—were compared. Using analysis of variance on move-
ment times ( and Combination Direction) direction
was not found to be significant ( ) nor to interact
significantly ( ) with and combination for either
typically developed individuals or youths with CP. As such, it
was not used as a factor in regression modeling. Participants
and blocks were considered as random effects in regression
modeling.
Three criteria were used to validate the model: the Akaike

information criterion (AIC), multicollinearity of independent
variables, and homoscedasticity. The AIC allowed the selection
of the best model among the seven models. After that, the best
selected model is diagnosed by the multicollinearity of indepen-
dent variables to ensure that each variable is really making an
independent contribution to the movement time and, finally, ho-
moscedasticity. The homoscedasticity test is to ensure constant
variance of the dependent variable for all data.

B. The Akaike Information Criterion

The main goal of statistical modeling is to develop a model
with robust prediction features given that the independent vari-
ables are accurately known. This allows us to compare the ef-
fectiveness of different models. The traditional method (coeffi-
cient of determination, ) of model comparison and evaluation
is not sufficiently powerful as it cannot represent the model's
prediction ability and is limited only to linear models. One of
the shortcomings of is that it does not become smaller as

the number of independent variables increases; therefore, ad-
justed compensates for the increase of independent variables
(adjusted is less than or equal to ). The Akaike informa-
tion criterion has gained a strong reputation in model selection
as it can be applied to linear and nonlinear models. Further-
more, it can characterize the prediction features of the model
based on maximum log likelihood and the number of parame-
ters. The selection of a robust predictive model of those com-
pared is based on the lowest AIC value among the compared
models [1], [33]–[38]. AIC is defined as follows:

(8)

where is maximum log likelihood of the model, and is the
number of estimated parameters, including intercept and error
terms in the model.

C. Regression Analysis

The regression of the models is based on the original data of
each block rather than the average of each combination.
The average of each combination removes the effect of vari-
ation in regression. In addition, according to statistical theory,
estimation of results is more robust when using the original data
to develop a model; therefore, we implement model regression
using the original data. For example, the regression of the SH
model is conducted by calculating the error rate of each
combination and reprinting the error rate in each trial within
each combination. A similar method is conducted for
the calculation of effective width.

D. Statistical Analysis to Interpret the Development of the
Final Model

Table II shows the AIC for each model. The lowest two
AIC values for the experiment conducted by TD, MACS I, and
MACS II, respectively, fits with the models that include human
factors.
The evaluation of each independent variable's contribution

to constructing the model is based on the -ratio value (a high
value indicates higher contribution to the model; -ratio value
is used to add or remove an independent variable to/from the
model, where a high value indicates it should be added and a
low one indicates it could be deleted) [39], [40]. Table III shows
the contribution of each independent variable to the lowest AIC
models; Fitts-like and ballistic-like + human effects.
1) Homoscedasticity (Constant Variance) : To be valid, the

regression model must have a constant variance over predicted
values of the dependent variable. If it has a changing variance,
it is called heteroscedastic. The presence of heteroscedasticity
requires further correction of the model, such as applying a
better mathematical transformation [38]. The examination can
be made visually and numerically using the root-mean-square
error (RMSE). The homoscedasticity can be visually examined
by predicted plot versus actual plot and residual versus actual
plot (see Figs. 3 and 4).
The homoscedasticity may not be related to human factors.

To clarify this issue, the Fitts-like and ballistic-like proposed
models have been compared with [Fig. 3(a) and (b)] and without
human effects (Fig. 4), respectively in Table IV.
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TABLE II
AIC AND VALUES FOR THE SEVEN MODELS FOR

TD, MACS I, AND MACS II

TABLE III
-RATIO VALUES FOR EACH INDEPENDENT VARIABLE OF LOWEST

AIC MODEL (ALL VALUES ARE SIGNIFICANT)

2) Multicollinearity of Independent Variables: A high cor-
relation between independent variables is an indication of mul-
ticollinearity. Multicollinearity is tested by the variance inter-
active factor (VIF). The threshold value of VIF is 10. A value
greater than 10 indicates the existence of multicollinearity be-
tween one independent variable with another independent vari-
able or a combination of other independent variables [38]. The
VIF values for both Fitts-like and ballistic-like models ranged
from 1.1 to 3.5 (TD) and 1.1 to 2.3 (MACS I &MACS II) indi-
cating the absence of multicollinearity.
3) Model Constants: The ballistic-like model has a lower

AIC than the Fitts-like model. The values of constants
are obtained using linear regression under the

Fit Model option in JMP software (participants and blocks are
added as random factors). Therefore, the reformatted model is
given as the following.
Typically developed

(9)

MACS I

(10)

MACS II

(11)

VI. DISCUSSION

The ballistic-like proposed model has the lowest AIC of those
compared within each subject group; therefore, it is the best
model. However, further diagnosis of model validity was con-
ducted, which involved homoscedasticity, , and VIF.
A visual examination of homoscedasticity appears in the pre-

dicted plot versus actual plot for TD, MACS I, and MACS II
(see Fig. 3). This suggests that the proposed model works effec-
tively for predicting the movement time. Fig. 3 shows the ho-
moscedasticity of the log-transformed movement time model,
which has horizontal residual ranges from to 0.70 for
TD, to 0.9 for MACS I, and to 0.25 for MACS II
(no tendencies to be positive or negative). Fig. 3 also shows that
the predicted and actual movement time has a linear relationship
with increasing variations at higher movement times. According
to the diagnosis of a prototypical residuals plot, the model is
homoscedastic; therefore, the model does not require additional
correction and transformation of independent variables.
Table III shows that the -value of the system effect (ID) is

higher than the -values of the human effects (EC, NS, NSO,
CI and AS). A comparison of the proposed model with human
effects [(5)] and without human effects [(7)] shows that the
proposed model with human effects has a lower AIC and higher

than without human effects (see Table II). In addition,
Table IV shows that the addition of the human factors ho-
mogenates the variance, thereby reducing the root-mean-square
error. Fig. 4(b) shows that there is no linear relationship between
predicted and actual movement time for typically developed
users in comparison to the linear trend presented in Fig. 3(b).

is a measure of the independent variables' contribution
to the linear model, and the model variations are explained by

. Of the TD-based, MACS I–based, and MACS II–based
models, 92%, 97%, and 93% of the respective variations are ex-
plained by the given independent variables, which are EC, NS,
NSO, CI, and AS. Compared to previous studies [41], we found

values that were poor in comparison (OW:0.55 , EW:0.46).
This is because the regression included all data rather than the
average of each combinations. This was based on con-
sultation with a statistician who insisted that the data not be av-
eraged as variation especially evident for youths with cerebral
palsy is eliminated by doing so.
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Fig. 3. (a), (c), and (e) Residual of predicted log-transformed movement time of the ballistic-like model with human effects. (b), (d), and (f) Distribution of actual
versus predicted movement time of the ballistic-like model with human effects. Both (a) and (b) represent typically developed participants, (c) and (d) represent
MACS I, and (e) and (f) represent MACS II. (a) TD. (b) TD. (c) MACS I. (d) MACS I. (e) MACS II. (f) MACS II.

Fig. 4. (a) Residual of predicted log-transformed movement time of the ballistic-like model without human effects. (b) Distribution of actual versus predicted
movement time of the ballistic-like model without human effects. Both (a) and (b) represent typically developed participants.

The VIF values for experiments of TD, MACS I, and MACS
II range from 1 to 2 and indicate the absence ofmulticollinearity.

Table III shows the system effect contributors to the task
performance for all TD, MACS I, and MACS II groups. The
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TABLE IV
COMPARISONS OF HOMOSCEDASTICITY OF THE PROPOSED MODEL

WITH/WITHOUT HUMAN FACTORS USING RMSE

curvature index and average speed were found to be the biggest
contributor of human effects on the task performance for all
TD, MACS I, and MACS II groups. Previous research study
with a different population of individuals with CP (29 individ-
uals range from MACS I to MACS IV) showed that average
speed was significantly correlated with both Index of Diffi-
culty (system effect) and MACS level [11]. That study (which
did not include submovement analysis) also showed the CI
was significantly correlated with ID (system effect) and had
a good correlation with MT for typically developed individ-
uals. In this paper, we combined the system effect (ID or A)
with human effect to model the movement time, we found that
average speed and CI are not only the main human effects,
but also significant correlated with of MT in both Fitts-like
and ballistic-like models. The number of slip-offs is the lowest
contributor of human effects on the performance task for all
TD, MACS I, and MACS II groups of the five chosen human
effects.
Equations (9), (10), and (11) show that all independent vari-

ables correlate positively with movement time except average
speed (negative power, and and , respec-
tively). Simply, a higher number of submovements, erroneous
clicks, and slip-offs and a larger curvature index increase the
movement time and vice versa for higher average speed.
Previous studies have compared task performance discretely

based on path evaluation measures. Hwang et al. [4], [9],
[26] compared the task performance for each subject and each
path evaluation measure independently; however, a model
representing all participants and measures was not developed.
Thus, Hwang et al. [9] failed to account for the effect of human
factors to efficiently evaluate task performance. This type of
nonlinear modeling can potentially augment Fitts's law or the
ballistic movement model to predict the movement time or to
evaluate pointing devices because it better includes the human
influence. Connelly [42] concluded his study by saying that
nonlinear or higher-order-control models account for varying
coefficients along the trajectory can be developed to describe
task performance. This study has provided a nonlinear model
that account for trajectory variables such as submovements.
In an ideal case, when the user moves in a straight line from

target to target (curvature index becomes 1) and produces no er-
roneous clicks, submovements, or slip-offs, the movement time
model is reduced to two independent variables, which are recip-
rocal average speed (negative power) and system effect (index
of difficulty or movement amplitude).

Fitts's law itself cannot apply to participants with motion
control issues because the movement time distribution must
be normal, with no midtrial pauses [18], [19], which only
occurs in environmentally controlled experiments. Chapuis
et al. [3] argued against the success of Fitts's law in the real
world as users are not forced to move rapidly. Their analysis
indicated the collapse of Fitts's law beyond a specific range
of movement time data [3]. They augmented Fitts's law by
adding a mathematically transformed curvature index (called
the length-distance index) as an independent variable. Our
results support Chapuis's model in terms of using CI as an
independent contributor to movement time.
A potential application of this model is to compare different

pointing input devices and algorithms by varying one indepen-
dent variable and fixing others, similar to the SH model theory.
This may result in a more detailed evaluation process of the user
friendliness of devices. For example, the contribution of erro-
neous clicks to the total movement time may be lower for a cer-
tain device, possibly indicating that it is easier to correct.
Furthermore, since this model indicates that average speed

and curvature index significantly affect movement time, it
suggests that adjusting control-display gain and potentially the
cursor's resistance to change in direction based on the curvature
index and average speed (calculated in sets of trajectory sam-
ples) could enhance the performance of point-and-click tasks
for motion-impaired users.
It should be reiterated that the immediate purpose of this

model is not for predicting movement times. To achieve this,
statistical information about the probability of events occurring,
such as slip-offs, would be required.

VII. CONCLUSION AND FUTURE WORK

The proposed model in this research has been validated
against the conventional Fitts's model and ballistic movement
model. It shows better prediction of movement time compared
to Fitts's law (assuming that the appropriate independent vari-
ables are known).
The model proposed in this research is nonlinear, including

the system and human influences together. Unlike Hwang et
al.'s approach, this model expresses task performance with a
single equation. The curvature index was found to be the biggest
contributor of human effects to task performance.
Future work will include a validation of the proposed model

with different types of point-and-click tasks, such as onewithout
prior knowledge of target locations for both typically developed
individuals and individuals with motion impairment.
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