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Musculoskeletal Representation of a Large Repertoire
of Hand Grasping Actions in Primates

S. Schaffelhofer, M. Sartori, H. Scherberger, and D. Farina

Abstract—Reach-to-grasp tasks have become popular
paradigms for exploring the neural origin of hand and arm move-
ments. This is typically investigated by correlating limb kinematic
with electrophysiological signals from intracortical recordings.
However, it has never been investigated whether reach and grasp
movements could be well expressed in the muscle domain and
whether this could bring improvements with respect to current
joint domain-based task representations. In this study, we trained
two macaque monkeys to grasp 50 different objects, which re-
sulted in a high variability of hand configurations. A generic
musculoskeletal model of the human upper extremity was scaled
and morphed to match the specific anatomy of each individual
animal. The primate-specific model was used to perform 3-D
reach-to-grasp simulations driven by experimental upper limb
kinematics derived from electromagnetic sensors. Simulations
enabled extracting joint angles from 27 degrees of freedom and
the instantaneous length of 50 musculotendon units. Results
demonstrated both a more compact representation and a higher
decoding capacity of grasping tasks when movements were ex-
pressed in the muscle kinematics domain than when expressed in
the joint kinematics domain. Accessing musculoskeletal variables
might improve our understanding of cortical hand-grasping areas
coding, with implications in the development of prosthetics hands.

Index Terms—Arm, grasping, hand, musculoskeletal model,
nonhuman primates, upper extremity.

I. INTRODUCTION

E VOLUTION in primates has led to an organization of
large sets of muscles around multiple joints enabling

complex movements in the upper extremity [1]. Reach-to-grasp
tasks have become a popular paradigm for studying the mech-
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anisms underlying movement generation in the nervous and
musculoskeletal systems [2]–[7]. Due to the high level of
implantation complexity and ethical implications, invasive
recordings of neuromuscular activity are rare in humans [8],
[9]. Nonhuman primates (NHP) (i.e., macaca mulatta in this
study) became the preferred research model due to their strong
analogies to humans at the nervous and motor systems levels
[10].
During reach-to-grasp actions, the dynamics of the muscu-

loskeletal system has been studied with a main focus on limb
and joint kinematic variables, including: hand velocity, direc-
tion, and joint angular position [5], [11]–[13]. These studies
demonstrated strong correlations between the motor/premotor
cortex neural activity and such kinematics variables in NHPs.
In this context, movement was recorded using optical or
electromagnetic methods, based on nonanatomical models
of finger, hand and arm segments [5], [14]–[16]. Previously
proposed methodologies have never taken into account the
kinematic behavior of the underlying musculotendon units
(MTUs) spanning the hand and upper extremity joints during
reach-to-grasp movements.
This study uses musculoskeletal modelling and simulation

for deriving MTUs kinematic variables noninvasively from the
intact primate. This allows generating information that could
not be easily accessed by experimental tests alone. These in-
clude the MTU instantaneous length, contraction velocity, and
moment arms developed around multiple degrees of freedom
(DOFs) in the finger, hand, and arm segments [17]–[21]. Cur-
rent musculoskeletal models of the macaque monkey upper ex-
tremity [17], [21] do not account for the large number of DOFs
and MTUs in the primate hand and are not suitable for studying
complex reach-to-grasp tasks. In this study, a comprehensive
musculoskeletal model of the human arm and hand was used
as basis for exploring the complex NHP musculoskeletal func-
tion [18]–[20], [22]. This choice is further supported by exten-
sive studies consistently confirming strong anatomical similar-
ities between human and monkey primates [23], [24]. Scaling
and morphing methods were then used to adapt each anatom-
ical segment and muscle in the generic human model to match
the specific anatomy of each primate [25].
In this study we assess the potentials of the scaled, animal-

specific model for studying a large repertoire of grasping tasks
in twomacaquemonkeys. For this, we studied howwell features
extracted at the joint level and at the MTU level, respectively,
could represent large repertoires of grasping actions. Although
in humans and NHPs, the number of MTUs is by far larger than
the number of DOFs in the skeletal joints, the benefit associ-
ated with this high dimensionality is not yet fully explored. In
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Fig. 1. Behavioral task. (a) Two macaque monkeys were trained to grasp a wide range of objects presented on a PC-controlled turntable. During a recording
session the animals wore an instrumented glove holding electromagnetic sensor coils for tracking finger, hand, and arm movements. The magnetic field generator
was placed below the turntable (blue box). (b) In total, 48 objects of different shape and size were presented to the animals, including rings (pink), cubes (blue),
balls (orange), horizontal cylinders (grey), boxes (green), vertical cylinders (beige) and special forms (yellow). (c) Additionally, the monkeys performed precision
(red) and power grips (blue) on a handle.

this study we hypothesize that the information extracted at the
MTU level can produce more compact representations of a large
repertoire of hand grasping actions with an associated improve-
ment in grasping decoding capabilities than it would be pos-
sible by extracting information at the joint level, as done tradi-
tionally in the literature. This would emphasize on the inherent
nonlinearity between the skeletal and muscular systems. This
could play a crucial role for understanding the efficient neuro-
muscular mechanisms underlying the control of large biological
structures (i.e., muscles), which enable complex dexterous hand
movement.

II. METHODS

A. Experimental Task

Two macaque monkeys (macaca mulatta; animal M and Z, 7
kg male and 11 kg female, respectively) were trained to grasp
a wide range of different objects of equal weight while wearing
an instrumented glove to track their hand and arm motion [42]
[see supplementary movie 1–2]. Animal care and all experi-
mental procedures were conducted in accordance with German
and European laws governing animal care and were in agree-
ment with the Guidelines for the Care and Use of Mammals in
Neuroscience and Behavioral Research [26].
Objects were presented to the monkeys on a PC-controlled

turntable in front of them [Fig. 1(a)]. In total, each animal
grasped 48 objects of different shape and size [Fig. 1(b)]
including spheres, rings, cubes, horizontal cylinders, boxes,
vertical cylinders, and six other objects having more complex
forms. The turntable could be replaced by a handle [Fig. 1(c)]
that the animals grasped with a precision grip (touching the
center of the handle with index finger and thumb) or a power
grip (enclosure of the handle using digits). This resulted in a
total of 50 different grasping conditions, which the monkeys
repeated for at least ten times during each experimental session.
All repetitions were performed in a controlled trial sequence

in which the monkey had to release a switch at the resting
position, grasp for and hold the randomly selected object or the
handle for 0.5 s.
All digital signals affecting and monitoring the animal's

behavior were controlled by a custom-written software im-
plemented in Labview Realtime (National instruments; time
accuracy: 1 ms) and were recorded together with the hand and
arm kinematics.

B. Tracking of Hand and Arm Movements

The musculoskeletal simulations presented in this study
required comprehensive motion data describing finger, hand,
and arm movements. To record this kinematics we used an in-
strumented glove equipped with seven electromagnetic sensors
[Fig. 1(a)] that was previously reported in detail [14], [27]. In
short, the method accessed the orientation and the position of
seven electromagnetic sensors that were placed on top of the
fingernails of digits and thumb, the hand's dorsum and the wrist
of the hand. In this way the position of the fingertips ,
distal interphalangeal joints , metacarpal phalangeal
joints , and the wrist (W) could be derived from the
sensors . Exploiting the manually measured
segment length and the anatomical restrictions of the hand al-
lowed computationally estimating the position of the proximal
interphalangeal joints , elbow (E), and shoulder (S) at
high accuracies [14]. This gave a total of 18 joint positions in
3-D space (experimental markers).

C. Preprocessing of Kinematics

In addition to the 18 joint centers, two more markers (E' and
W') were defined to better constraint the simulation throughout
the task and were defined as function of the existing joint posi-
tions. Whereas vectors and allowed describing the ori-
entation of forearm and upper arm respectively, the additional
two markers defined their rotation. The E' marker was placed
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Fig. 2. Kinematic drive of the musculoskeletal model. (a) Instrumented glove allowed extracting the position of 25 experimental markers (illustrated in blue).
(b) Corresponding model markers (red) were added to the musculoskeletal model, placed at the matching positions at the model's joint centers and fingertips.
(c) Inverse kinematics allowed finding the posture of the musculoskeletal model, giving the least mean error between all experimental markers (blue) and model
markers (red). Marker name syntax: ; joint name; finger index: , thumb, index, middle, ring, little; marker
name: , experimental marker, model marker.

orthogonal on the plane , described by W, E, and S and was
placed mm distant from its origin E

(1)

where was the unit vector normal to P1 pointing to the side
of the medial epicondyle of the humerus [Fig. 2(b)]. The marker
W' was located orthogonal to the sagittal plane of the hand
(described by the reference sensor at the back of the hand) 20
mm distant from its origin W

(2)

where was the unit vector normal to P2 pointing to the radial
side of the hand [Fig. 2(b)].
Markers E', E and S provided sufficient information to de-

scribe the rotation, elevation and adduction/abduction of the
humerus at the shoulder when applied to the driven muscu-
loskeletal model. The marker W' gave information about the
pronation/supination of the hand, which was directly linked to
the rotation of the lower arm, e.g., ulna and radius. The 3-D tra-
jectories of the 25 experimental markers (18 joints, five finger-
tips and two additional help points) were transformed into the
coordinate system of the musculoskeletal model and taken as its
input. We refer to them as the experimental markers driving the
model [Fig. 2(a)].
All kinematic data were recorded at a sampling rate of

100 Hz. Three-dimensional coordinates of each experimental
marker were then exported to our musculoskeletal model real-
ized in OpenSim, a software system allowing users to develop
models of musculoskeletal structures and to create dynamic
simulations of movement [25].

D. Musculoskeletal Model

1) Model Description: The musculoskeletal model em-
ployed in this study was adapted from an anatomically correct
musculoskeletal model of the human upper extremity. This
incorporated a total of 15 DOFs in the joints of the upper
extremity, thumb and index segments (Table I) [18]. For this
study, we extended the original musculoskeletal model to
include four additional DOFs in each of the remaining fingers
(middle, ring, little) as reported in Table I. In this, the axes
of rotation of the joints in each finger were determined as
the long axis of cylinders fit to the articular surfaces of the
metacarpal and phalangeal bones as previously described [18].
Our proposed extended model had a total of 27 DOF in the
hand and arm segments.
The model incorporated a total of 50 MTUs [18]. Each MTU

in the model was defined by a set of points and surfaces attached
to the underlying anatomical segments. The MTU attachments
were determined from digitized muscle insertions and anatom-
ical description [18]. This allowed generating anatomically ac-
curate MTU paths over the range of motion of the considered
27 DOFs. The path of each MTU corresponded to the instanta-
neous MTU length measured from origin to insertion
and accounting for intermediate MTU-to-bone wrapping points
and surfaces. All included MTUs are listed in [18].
2) Model Adaptation: For accurate simulations, we scaled

each skeletal segment and MTU in the generic model to match
the primate-specific anatomy for each specific animal using the
25 experimental marker positions [Fig. 2(a)] tracked by the in-
strumented glove. The tracking technique explores the manu-
ally measured segment length, anatomical constraints of hand
and arm, and the accurate spatial and rotational information
of 7 sensor coils (see [14, ch. 2.5] for detailed information).
As described previously, measured and computationally derived
experimental markers provided high accuracies [14] and were
therefore selected for scaling.



SCHAFFELHOFER et al.: MUSCULOSKELETAL REPRESENTATION OF HAND GRASPING ACTIONS IN PRIMATES 213

TABLE I
JOINT AND DEGREES OF FREEDOM INCLUDED IN MUSCULOSKELETAL MODEL

Symbol (II-V) refers to the index (II), middle (i.e., III), ring (IV), and little (V) fingers. Thumb finger is referred to as the first finger (I).

The model scaling procedure was performed using the
OpenSim software package [25].1 A set of model markers
[Fig. 2(b)] was placed in the generic human musculoskeletal
model in correspondence to the experimental marker positions
extracted from the primate [25]. The dimensions of each
anatomical segment in the generic musculoskeletal model
were then adjusted to minimize the relative distance between
each pair of experimentally recorded marker locations and
the corresponding model marker locations (see Fig. 2(c) for a
match between model and experimental markers). The MTU's
insertion, origin, and MTU-to-bone wrapping points were ad-
justed proportionally so that they remained in the same relative
position within the anatomical segment they were attached on
[25]. This allowed adjusting the dimensions of each anatom-
ical segment as well as the MTU paths in the generic human
musculoskeletal model to the actual primates' anatomy.
3) Inverse Kinematics and Extracted Features: The scaled

musculoskeletal model was then used to calculate angles and
length (i.e., ) in all DOFs and MTUs, respectively. An
inverse kinematics (IK) problem [25] was solved in OpenSim
to determine the model DOF angles that best reproduced the
experimentally recorded marker trajectories obtained from the
magnetic glove system. As a result, for each frame in the sim-
ulation DOF angle values were computed, which positioned
the scaled model in a pose that best matched the experimen-
tally recorded marker trajectories [Fig. 2(c)]. As the simulated
model tracked the experimental marker trajectories frame-by-
frame over time, instantaneous estimates of DOFs and
were calculated and stored. The simulated data were resampled
at 50 Hz and low-pass filtered by a Kaiser window finite im-
pulse response filter (pass-band cut-off: 2 Hz, stop-band cutoff:
8 Hz, pass-band ripple: 1%, stop-band attenuation: 20 dB), as
suggested previously [11]. The 27 DOFs and 50 repre-
sent the features used in this study for the subsequent analysis
of the grasping tasks.

E. Analysis

1) Model Fit: This first test assessed how well the scaled
model reproduced the actual kinematics recorded experimen-
tally from each primate upper extremity. For this, the root mean
squared error (RMSE) between experimental [Fig. 2(a)] and

1OpenSim release 2.4.0 available from https://simtk.org/home/opensim

model markers [Fig. 2(b)] was calculated to quantify the ac-
curacy of both matching the primate anatomy and tracking the
upper extremity kinematics

RMSE (3)

where and represented the 3-D position of
a specific marker as placed on the actual primate (i.e., experi-
mental marker) and on the associated scaled model (i.e., model
marker), respectively. The term is the total number of time
frames in each simulated trial. This allowed quantifying the ex-
perimental kinematics tracking accuracy within each trial.
2) Computation Speed: In this test the IK computation time

was examined. This was calculated as the average time needed
to extract one frame of DOF andMTU kinematics from all joints
and muscles in the model. The time needed to solve the IK
problem from all trials and animals was averaged with respect
to the total number of frames. Tests were performed on an 8 GB
RAM, Intel Core i7 CPU @ 2.93 GHz machine.
3) Principal Component Analysis of Muscle and Joint Angle

Patterns: The extracted DOFs and MTU kinematics exhibit a
large number of variables, making them difficult to interpret and
visualize. However, multidimensional datasets often show re-
dundancies among their variables. Principal component analysis
(PCA)makes use of these correlations and allows for simplifica-
tion of multidimensional hand variables [28] by creating a new
set of features (principal components) that are uncorrelated and
orthogonal to each other.
Animals were trained to grasp and hold each object for half a

second. This epoch was well suited for PCA, since it showed
the greatest variability of hand kinematics across conditions.
We therefore examined the DOF and the in the holding
epoch for all correctly performed trials. Before computing the
principal components, both measures were standardized to zero
mean and unit standard deviation (Matlab function: ),
which eliminates the influence of different measurement scales.
The PCA analysis was performed over all correctly performed
trials, which resulted in at least 500 trials in the DOF and MTU
space.
For comparing both spaces, we computed the Euclidean dis-

tance (ED) between all pairs of correctly performed trials within
their complete multidimensional representations (Matlab func-
tion: ) and then correlated the resulting distance matrices
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for both spaces (Pearson correlation coefficient, Matlab func-
tion: ).
Additionally, cluster quality was expressed in both represen-

tations as the Dunn Index (D) aiming to identify dense and
well-separated clusters [29]. The index is defined as the ratio
between the minimal inter-cluster distance to maximal intra-
cluster distance

(4)

where represents the distance between clusters and
and the maximum inter-cluster distance from all

clusters.
4) Object Classification Accuracy: The large repertoire of

objects did not only cause a rich diversity of grip types, but also
contained intended redundancies (different objects that were
grasped in a similar fashion). These similarities among the dif-
ferent objects were used to evaluate and compare the informa-
tion content carried in the MTU and the DOF space. As a mea-
sure, we determined how accurately the grasped objects could
be decoded from the extracted DOF angles or, alternatively,
from the . For this purpose, we implemented a likelihood
decoder based on the Bayesian theorem [30]

(5)

In a first step, the decoder was trained with a segment of the
recorded data to acquire , which is the probability of ob-
serving the kinematic variable ( or DOF) on channel
in condition . Probability distributions were modelled using

Poisson distributions. In total, 50 different grasping conditions
were decoded (48 objects plus precision and power grip in the
handle task). In the DOF and the MTU space, 27 and 50 chan-
nels (number of DOF or MTU) were available, respectively.
Since is uniformly distributed and does not depend
on condition , both terms can be summarized by a normaliza-
tion factor that is independent of condition . This allows
expressing the probability of for given as

(6)

In a second step (decoding), a different segment of the recording
was used to find the most likely condition for the observed kine-
matic variable . To predict the decoded object, the likelihood
function

(7)

was evaluated for all conditions and the condition selected as
the predictor that maximized this function: .
Since the factor in (5) was constant across all conditions,

it could be ignored for the maximization and the calculation
reduced to

(8)

Leave-one-out cross validation ensured that data sets for
training were not used for testing.
For comparing the classification accuracy based on

joint-angle or muscle patterns, we computed the decoding accu-
racy versus the number of included objects .
To rank the objects according to their separability, we first
extracted the kinematic variables ( , DOF) from the mean
hold epoch and computed the Mahalanobis distance (MD) be-
tween each pair of objects groups (Matlab function: ).
The two objects (groups) showing the largest MD to each
other (most separated in /DOF space) were added first
to the decoder. Next, a new decoder was built by adding the
object that maximized the performance in combination with
previously selected objects. This “greedy” selection process
was continued by gradually adding one more object at a time
and rebuilding the decoder [5]. Using this procedure allowed
us to rank the objects based on their separability in the DOF
and MTU space. Objects that could be separated best by the
decoder were ranked first.

III. RESULTS

The model was successfully used to provide fast, accurate,
and reliable musculoskeletal descriptions for a large repertoire
of grasping movements in primates.

A. Extracted Parameters

All extracted model parameters allowed visualizing the
course of motion continuously over time. As an example,
we present the kinematic and muscular variables of three
subsequent grasping movements together in (Fig. 3) and as
supplementary videos [see video 1 for DOF extraction and
video 2 for MTU extraction].
The parameters clearly demonstrated a distinct approach for

grasping the three objects: ring, sphere, and cylinder (i.e., Fig.
3(b), (c) at times , , and , respectively). The ring was
grasped using power grips, requiring a strong rotation (supina-
tion) of the wrist of about 70 (i.e., seeWrist DOF variable in
Fig. 3(b) at time ). In macaque monkeys, the rotation of ulnar
and radius is mainly achieved by the pronator teres (PT) and the
pronator quadratus muscle (PQ, i.e., see Wrist variable
in Fig. 3(c) at time ) for pronating the forearm, whereas the
supinator (SUP, i.e., seeWrist variable in Fig. 3(c) at time
) and the biceps muscles (BIClong, BICshort; long and short

head, respectively) are responsible for supination. In addition,
the brachioradialis muscle (BRD) moves the forearm back to
a neutral position, either from a supination or from a pronation
posture. Results show how grasping the ring led to a supination
of the forearm with a shortening of the SUP-muscle and a si-
multaneous lengthening of the PQ-muscle (i.e., seeWrist
variable in Fig. 3(c) at time ). When the monkey grasped the
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sphere or the cylinder, the rotation of the forearm was min-
imal, therefore affecting the corresponding muscles (i.e., PQ
and SUP) less (i.e., seeWrist variable in Fig. 3(c) at time

and ). Grasping the small sphere required a more precise
control of index finger and thumb with longer grasping time
needed in comparison to ring and cylinder. Furthermore, this
grip type caused a strong flexion of index finger and thumb,
which was also reflected in the corresponding length of thumb
and index finger muscles, including the flexor pollicis longus
(FPL), the extensor pollicis longus (EPL) as well as the flexor
digitorum profundus index (FDPI) and the extensor indicis pro-
prius (EIP) (i.e., see Thumb and Index variables
in Fig. 3(c) at time ). In comparison to the other two objects,
the cylinder was grasped with a whole-hand grip achieved by
digits and thumb requiring less flexion of the fingers that caused
less shortening of the muscles (i.e., see Thumb and Index

variables in Fig. 3(c) at time ).
These findings demonstrate the ability of our musculoskeletal

model to extract joint angle (DOF) and muscle kinematics
for describing finger, hand, and arm movements.

B. Model Fit

Results from the model fit test revealed an average RMSE
error of 2.06 1.64 mm and 2.33 1.50 mm (mean standard
deviation) across all pairs of experimental and model markers
from all trials performed by animal Z and M respectively. The
marker RMSEs in animal Z ranged from 0.77 0.13 mm (i.e.,
DIP marker of ring finger) to 5.66 0.31 mm (i.e., MCP marker
of little finger). For animal M, marker RMSEs ranged from
0.93 0.22 mm (i.e., DIP of middle finger) to 8.26 0.10 mm
(i.e., MCP of thumb marker). Across all trials and animals, the
majority of average RMSE errors between experimental and
model markers were smaller than 3 mm (for 40 out of 49 pairs)
as shown in Fig. 4.
Importantly, these RMSE values are small in comparison to

objects sizes that ranged from 15 to 60 mm in diameter or length
(balls and cubes, respectively). Therefore, model-fit accuracies
were well suited for investigating the musculoskeletal represen-
tations performed on the set of objects.

C. Computation Speed

The recording sessions from both animals produced exten-
sive datasets that were used to assess the simulation speed of
our musculoskeletal model. We found that performing inverse
kinematics with OpenSim, despite providing a more complex
musculoskeletal description of hand and arm, was significantly
faster to compute than our previous, simpler kinematic model
(KinemaTracks, [14]). The OpenSim's IK could process both
sessions (i.e., 284795 and 342335 frames from animal Z and
M, respectively) in 15:08 and 17:31 minutes, whereas Kinema-
Tracks required 18:12 and 19:55 minutes. In this, the average
time needed to extract one frame of DOF and MTU kinematics
from all joints and muscles required 3.1 ms of computation
time. The musculoskeletal model therefore allowed extracting
the motion data faster than real-time and can be readily used to
process extensive datasets such as the ones presented here.

D. Principal Component Analysis of Muscle and Joint Angle
Patterns

We used PCA to interpret and visualize the large repertoire of
grasping movements in both the DOF and space. As an
example we plotted the first two PCA components in the hold
epoch of animal Z for both, the DOF and representation
(Fig. 5(a) and (b), respectively). The plots demonstrate a high
variability of joint angle and muscle patterns across the large
number of objects and trials.
For animal Z, the first PCA component roughly represented

the aperture of the hand, pointing from the condition of smallest
(precision grip) to the condition of highest aperture (big boxes),
whereas the second component approximately reflected the
monkey's wrist orientation. We also used PCA to reveal sim-
ilarities and dissimilarities between grasping movements. For
example, smaller objects including the small ball, cube, or ring
were grasped with a similar grip, using index finger and thumb,
and were therefore located close to each other in PCA space.
Even objects of largely diverse shape might be grasped very
similarly such as the vertically aligned cylinders, big rings,
and the handle. All of these objects were grasped with a kind
of power grip (rotation of the forearm and enclosure with four
digits).
Notably, the DOF and the space showed a strong sim-

ilarity within PCA coordinates. Almost the same cluster over-
laps were observed for the DOF and for the MTU representa-
tion [Fig. 5(a), (b)]. Computing the Pearson correlation coef-
ficient between both multidimensional spaces further demon-
strated the strong link between the DOF and the represen-
tation ( and for animal Z and M, respectively).
These similarities were expected, since the muscle patterns and
the joint angle patterns are strongly linked to each other and both
reflect the shape and size of the grasped objects.
Although the representation of grasping movements was sim-

ilar in the DOF and in theMTU space, howmany linearly uncor-
related components were actually engaged in the task remained
an open question. The large number of natural grip types and the
resulting large variability in our dataset allowed us to answer
this question. We determined how many principal components
were required to reproduce the individual grip types [Fig. 5(c)].
We found that eight PCA components were sufficient in both
animals to explain more than 95% of variance across all condi-
tions in the MTU-space, whereas in the DOF-space 11 (animal
Z) and 12 components (animal M) were needed to explain the
same amount of variance. The lower dimensional representation
in the space is remarkable, since the number of MTUs
(i.e., 50) involved in grasping strongly exceeded the number of
DOF (i.e., 27).
In addition to these findings, we tested whether the 50 object

conditions were also represented more compactly in the
than in the DOF space by computing the Dunn index (D)[29].
In both animals, the condition clusters were represented more
separated when expressed in the space than in the DOF
space (D for animal Z: 1.17 DOF, 1.39 ; animal M: 0.57
DOF, 0.714 ).
These findings emphasize the importance of the muscu-

loskeletal organization for the control of hand movements,
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Fig. 3. Model features: (a) Musculoskeletal model, (b) allowed extracting joint angles, (c) as well as muscle kinematics. In total, the information of 27 DOFs
(18 joints) and 50 could be accessed. (a) Hand and arm posture of the monkey while grasping three different objects in the hold period of sample trial t1
(ring), t2 (ball), and t3 (cylinder). In addition to the skeletal configuration, a selection of MTUs is illustrated for these trials in red [anterior deltoid (antDELT),
posterior deltoid (postDELT), teres minor (TMIN), teres major (TMAJ), coracobrachialis (CORB), triceps long head (TRIlong), biceps long head (BIClong),
brachialis muscle (BRA), extensor carpi radialis brevis (ECRB), flexor carpi radialis (FCR), FDPI (flexor digitorum profundus index), extensor indicis proprius
(EIP), extensor pollicis longus (EPL), extensor pollicis brevis (EPB)]. (b) Example DOFs of the thumb, index finger, wrist, elbow, and shoulder while subsequently
grasping three objects. (c) of example muscles linked to the joints in (b).

Fig. 4. Test of model fit accuracy. Histogram shows RMSEs (3) derived from
all pairs of experimental and model markers averaged across all trials and ani-
mals (50 markers in total).

which might become highly relevant for the development of
future hand prosthetics [31].

E. Object Classification Accuracy
As a measure of discriminability, we implemented a Bayesian

classifier for decoding objects based on the extracted DOF or
parameters (27 and 50 dimensions, respectively).

Starting with a decoder of including only two objects, we iter-
atively added more objects to the decoder in a “greedy” fashion
based on their separability (see Section II). As shown in Fig. 6(a)
(solid dots), the decoding accuracy remained stable until ob-
jects were included, that evoked similar DOF or repre-
sentations with respect to other objects. As a consequence, the
decoding accuracies dropped. Importantly, the -represen-
tation of grasping movements was better suited to distinguish
individual objects than with the DOF representation. These find-
ings were consistent in both animals and in agreement with the
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Fig. 5. Dimensionality estimation. (a) Principal components were computed
across all correctly performed trials in the space of all DOFs as well as (b) in
the space of all s. Each symbol in (a) and (b) represents the DOF or

state of a correctly performed trial while the monkey is holding an object.
Color of each symbol represents the shape of the object whereas the symbol size
reflects the actual size of the object (color code according to Fig. 1). Arrows in
a-b point to the three selected grips presented in Fig. 3 at time t1, t2 and t3.
(c) Percentage of variance explained as a function of the (sorted) number of
principal components of DOF-space (blue) and -space (red) for monkey
Z andM. As can be seen, the first eight PCA components are sufficient to explain
95% of the variance in the -space.

cluster analysis results. To test, whether this effect remained
with an equal number of dimensions, we decoded the same ob-
jects with a randomly selected set of ten dimensions (100 rep-
etitions) in the and DOF space. As shown in Fig. 6(a)
(dashed lines), still provided a better decoding in com-
parison to DOFs.
Further tests were performed on all dimensions. In the com-

plete DOF space, the decoding accuracy was better than 95%
for up to a maximum number of 20 objects in both animals. In
comparison, the same decoding accuracy was achieved with a
maximum number of 28 and 26 objects in the MTU space for
animal M and Z, respectively. Beyond these thresholds the de-
coding accuracy decreased linearly with increasing number of
objects (i.e., less separable objects).
To quantitatively estimate the point of accuracy drop, we im-

plemented the L-method [32]. The algorithm searches for the
two piecewise linear regression lines that fit the decoding re-
sults best [solid lines, Fig. 6(a)]. For this, the algorithm grad-
ually changes the intersection points of the two lines and mea-
sures their fit. The RMSE error produced by this fit is plotted
in Fig. 6(b) for variable intersection points. Results highlight a
better resolution and separability between objects when using
the description of grasping movements rather than the
DOF description.
Additionally, we computed the PCA components accounting

for 95% of the variance of the data in the and DOF space

as a function of the number of included objects in the greedy
selection. Fig. 6(c) shows a strong increase in variability when
the most separable objects (ranked first) were added. However,
the variability reached a plateau already for a small number
objects in both animals. This demonstrated that including sim-
ilar objects could not increase the variability of grip types fur-
ther and explained the significant drop of decoding accuracy for
larger object sets. Classifying the objects based on and
DOF demonstrated a higher separability and resolution in the
MTU-space.

IV. DISCUSSION

In this study we presented a musculoskeletal modelling
method that could account for the specific upper extremity
anatomy in two primates. The animal-specific model was used
to investigate grasp actions from a large repertoire of different
objects. This study enabled observing and investigating larger
kinematics variability in the primate's arm and hand (Fig. 5)
than it was possible in previous studies [5], [12]. Furthermore, it
allowed for the first time extracting comprehensive kinematics
information in 27 DOFs and 50 MTUs in the arm and hand
segments simultaneously [17], [18]. This resulted in higher
classification accuracy than reported in previously published
methods that used a nine-DOF, nonanatomical kinematics
model in conjunction with electromyography (EMG) signals
from 24 muscles [16].
Importantly, results showed that the number of components

extracted from MTU kinematics that describe 95% of the data
variability across all grip types was substantially smaller than
the number of components extracted from DOFs kinematics for
reconstructing the same data variability [Fig. 6(c)]. This empha-
sizes the nonlinear relationship between MTU and DOF kine-
matics [18], [33] and proves its exploration to generate a more
compact representation of grasping actions than it was possible
with conventional joint kinematics. Further research is needed
to investigate whether this may have related neural mechanisms.
Supporting results in this direction [5] are providing evidence
of direct relationships between single M1-neuron activity and
the simultaneous actuation of proximal distal joints in the hand
segments, such as wrist pronation/supination and thumb-index
aperture. In this context, the relationship between single M1
neuron activity and simultaneous actuation of multiple DOFs
might reflect the activation of the underlying muscles span-
ning proximal and distal joints. This hypothesis is further sup-
ported by the fact that M1-neurons have a direct influence on the
spinal alpha motor neurons innervating MTUs [5]. The ability
of extracting variables reflecting muscle behavior from reach-
to-grasp movements, such as presented here, might help further
explain the neural code of grasping.
The compact representation of grasping tasks provided by

MTU kinematics also resulted in a decoding method that could
account for a larger number of objects than observed using DOF
kinematics-based decoders Fig. 6(a). In this, MTU redundancy
may play an important role. Multiple MTUs spanning the same
DOF may play different roles across grasping tasks. This may
contribute to assuring good representation of a larger number of
objects than it was possible with DOFs only.
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Fig. 6. Object classification accuracy. (a) Classification accuracy of the Bayesian Decoder versus the number of gradually included objects sorted according to
their separability (DOF in blue, in red). Decodings were performed on the complete spaces (solid dots; 27 DOF and 50 ) and on the reduced spaces
(dashed line; 10 DOF and 10 ). To find the optimal number of objects for the decoder in the complete space, the L-method was applied (Section III-E), which
provided two regression lines fitting the data best (solid black and green lines). (b) Edge position (intersection of both regression lines) was systematically varied
in order to minimize RMSEs. Object numbers with minimal RMSE are marked with green boxes. (c) Number of principal components required to describe 95% of
data variance were plotted against the number of included objects (DOF-domain in red, –domain in blue). (d) For animal M, the set of objects that achieved
decoding accuracies higher than 95% (28 in and 20 in DOF space) are illustrated. Their order corresponds to the x-axis of a–c. Large panels a–c: results for
animal M; inlays: corresponding results for animal Z.

Some limitations in our methods should be recognized. The
proposed primate-specific model was derived and extended
from a human upper extremity model [18] (see Section II).
This model was used as a basis for our study because of the
extensive research consistently confirming strong anatomical
and morphological similarities in the majority of the upper
extremity joints and muscles between both species [23], [24],
[34]. However, some differences should be acknowledged.
While joints move about the same DOFs in both species, their
range of motion can differ. To support and stabilize quadrupedal

locomotion, the shoulder rotation in NHP is smaller than in
humans, whereas the NHP wrist allows for a higher abduction
and extension [23]. Differences are also reflected at the mus-
cular level across proximal and distal joints [34]. This results in
discrepancies in terms of insertion, origin, and size in muscle
groups that are shared across the two species. Furthermore,
this results in some muscles not being preserved across the two
species [34]. Major differences in proximal muscles include
the so-called “climbing muscle” (i.e., the dorsoepitrochlearis
muscle), which is not present in humans [35], [36]. Major
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differences in distal muscles relate to the macaque extensor
digitorum communis group in the hand, which is equivalent to
the human's extensor digitorum group. The macaque extensor
digitorum communis group differs from the human's in that the
four separate tendons are united as far distally as the metacarpal
heads, after which they diverge and progress toward all fingers.
Overall, morphological differences are related to the habitual
quadrupedalism of the macaque, with the constant extension
of the wrist and fingers and with larger moment arms in the
shoulder muscles [34].
Therefore, the ability of fitting the generic model to each

animal specifically played an important role in compensating
for the reported morphological discrepancies. Fitting errors
were small throughout each performed task, providing evidence
that the scaled model not only matched a specific static pose in
the monkey, but remained kinematically consistent throughout
all performed motor tasks (see Section III-B). This resulted in
a scaled model that, despite morphological discrepancies with
respect to the primate anatomy, resulted in improved perfor-
mances in dimensionality reduction and decoding with respect
to conventional methods based on DOF kinematics analysis.
Future research will assess whether the availability of a

more correct musculoskeletal model may substantially improve
dimensionality reduction and decoding results. Future work
will also use EMG-driven musculoskeletal modelling method-
ologies [37], [38] for reconstructing all the transformations
from the neural drive onset (i.e., muscle-specific EMG onset) to
the generation of functional movement in the upper extremity
joints. Combining EMG-driven modelling [37] with in vivo
recordings of neuronal activity will enable, for the first time,
tracking and monitoring all the major steps taking place along
the neuromuscular pathway in primates.
Findings from this study might have important implications

in the context of neurorehabilitation technologies. The devel-
opment of multi-articulated prosthetic hands with fingers and
thumb individually actuated by artificial tendons is providing
amputees with effective solutions to restore lost grasping ca-
pabilities [39], [40]. Our presented methodology could be used
to determine the required length changes to be generated in the
prosthesis artificial tendons to reconstruct large repertoires of
grasping tasks accurately. Importantly, it allows controlling a
large number of artificial tendons with a low-dimensional con-
troller as suggested by our PCA results (i.e., Section III-D and
Fig. 5). This could bring current PCA-based prosthesis con-
trollers an important step forward [40]. Our proposed method-
ology could also have implications for the development of ad-
vanced neuroprostheses [8], [41]. In this scenario, recorded neu-
ronal activity might better correlate to the coordinated behavior
of multiple muscles than to the movement of individual DOFs,
which might lead to the possibility of controlling tendon-driven
prostheses with more intuitive control systems.

V. CONCLUSION
This study showed that a musculoskeletal model of the upper

extremity can be scaled to match the specific anatomy and of
individual primates. The scaled model provides a nonlinear
transfer function from the joint domain to the muscle domain,
which enables a more compact representation and a higher

decoding accuracy of large repertoires of grasping actions than
was possible using traditional joint kinematics recording. This
has direct implications for improving the decoding of complex
grasping movements and for the development of biologically
inspired control systems for upper limb prostheses. A better
understanding of the inherent nonlinearity between the skeletal
and muscular systems is crucial for unravelling the nature of
the neuromuscular control mechanisms in the primate's arm
and hand movement.
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