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Assessing Upper Extremity Motor Function in
Practice of Virtual Activities of Daily Living
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Allison Ellington, Marga White, and Paul T. Diamond

Abstract—A study was conducted to investigate the criterion
validity of measures of upper extremity (UE) motor function de-
rived during practice of virtual activities of daily living (ADLs).
Fourteen hemiparetic stroke patients employed a Virtual Occu-
pational Therapy Assistant (VOTA), consisting of a high-fidelity
virtual world and a Kinect™ sensor, in four sessions of approxi-
mately one hour in duration. An unscented Kalman Filter-based
human motion tracking algorithm estimated UE joint kinematics
in real-time during performance of virtual ADL activities, enabling
both animation of the user's avatar and automated generation of
metrics related to speed and smoothness of motion. These metrics,
aggregated over discrete sub-task elements during performance
of virtual ADLs, were compared to scores from an established
assessment of UE motor performance, the Wolf Motor Function
Test (WMFT). Spearman's rank correlation analysis indicates
a moderate correlation between VOTA-derived metrics and the
time-based WMFT assessments, supporting the criterion validity of
VOTA measures as a means of tracking patient progress during an
UE rehabilitation program that includes practice of virtual ADLs.

Index Terms—Human computer interaction, human motion
tracking, human motor performance, occupational therapy, pa-
tient rehabilitation, virtual reality.

[. INTRODUCTION

HE IMPACT of stroke on individuals and on the economy

is substantial. Approximately 7 million Americans who
are 20 years of age or older have experienced a stroke, with an
overall incident rate estimated at 2.8% [1]. Minorities are dis-
proportionately affected, with 3.9% of non-Hispanic blacks and
5.9% of American Indian/Alaska Natives having a history of
stroke. Each year, approximately 795,000 individuals suffer a
new or recurrent stroke, which translates into one every 40 sec-
onds. Approximately 70% of individuals suffering from stroke
experience significant functional deficits [2].
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Current stroke rehabilitation practice is based on principles of
cortical plasticity which emphasize the need for repetition and
task specificity [3]. Training specificity is required, whether tar-
geting a particular movement (e.g., anti-gravity elbow flexion)
or an integrated skill (e.g., self-grooming). Task-directed
therapy appears to be a critical element to the regeneration of
cortical function in regions of the brain responsible for related
neurological activity [4]. Non-specific repetitive motor activity
alone appears to be less effective [5]. The need for training
specificity has been widely accepted for decades in milieus
from competitive sports to aviation, but only more recently as
a systematic approach to upper extremity (UE) stroke reha-
bilitation. One example is the Accelerated Skill Acquisition
Program (ASAP), which integrates constraint-induced therapy,
skill acquisition, and motivational elements to reinforce normal
motion patterns through massed, task-specific practice [6], [7].

Rapid advances in low-cost human motion tracking tech-
nology and advanced computer graphics, largely fueled by the
video gaming industry, have also spurred interest in gaming
and virtual reality (VR) as tools for stroke rehabilitation. Pre-
liminary studies have shown that gaming systems can provide
a high level of patient enjoyment, and thus lead to increased
motivation to engage in physical activity [8]. These encour-
aging findings are tempered by observations that off-the-shelf
games encourage nonspecific (and sometimes undesirable)
movements, do not permit patient-specific settings, and can
be frustrating for individuals with more severe impairment.
Therapists have also observed that it is hard to target clinical
outcomes and/or desired movements with available games [9].

In an overview of the use of virtual environments for stroke
rehabilitation, Holden found that stroke-affected patients are
able to reacquire motor function in a virtual environment and
that movements practiced in a virtual environment transfer to
real-world tasks [10]. In a meta-analysis of the use of VR in
stroke rehabilitation, Saposnik and Levin found that 11 of 12
studies considered showed a significant benefit in the selected
outcome measure [11]. Another review of recent work within
the field indicates task-specific virtual UE training resulted in
superior outcomes, while game-based interventions produced
less specific outcomes [12]. In a comparative investigation, a
group of chronic stroke patients performing a simple pointing
task in a virtual environment achieved similar improvements
as a group receiving equivalent training in a real-world phys-
ical environment [13]. The authors of that study suggest virtual
training is especially applicable to the chronic post-stroke stage
for targeted upper-limb tasks. While these studies have demon-
strated the potential of VR for task-specific stroke rehabilitation,
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Fig. 1. User performing a virtual ADL activity.

barriers including system cost and burdens on personnel time
(specialized training and cumbersome setup/calibration proce-
dures) continue to impede widespread adoption [14].

This paper describes the design of a low-cost virtual world-
based system for practice of meaningful activities that incorpo-
rate specific functional movements, and investigates the concur-
rent validity of motor performance metrics generated during vir-
tual ADL practice. Correlation of computer-derived measures
generated by a Kinect™-based motion tracking algorithm to the
WolfMotor Function Test (WMEFT) [15], [16] provides evidence
of the suitability of these measures for tracking patient progress
and reporting status. Note that although we expect a mature Vir-
tual Occupational Therapy Assistant (VOTA) system to deliver
therapeutic benefits, this paper focuses specifically on a hypoth-
esized correlation between VOTA metrics and an accepted clin-
ical measure (the WMFT). Assessing the efficacy of VOTA prac-
tice for UE motor recovery is the subject of ongoing research.

II. APPROACH

A. Virtual Occupational Therapy Assistant

VOTA is being developed to enable stroke patients to prac-
tice virtual ADLs as part of an in-patient, skilled nursing, out-
patient, home health, and/or teletherapy rehabilitation program.
The system employs a Kinect™ sensor, kinematic pose estima-
tion algorithms, and state-of-the-art game engine technology to
create a compelling world in which patients can perform real-
istic virtual ADLs that target specific UE movements within in-
tegrated, multi-step activities. Fig. 1 shows a prototype VOTA
system during virtual ADL practice. Depending on the treat-
ment context, VOTA may be employed in independent practice
or under the supervision of a care provider.

Patient experience in the VOTA virtual world is built around
the theme of a metaphoric “Road to Recovery.” After an auto-
mated introduction to the island by a virtual occupational ther-
apist (OT), patients move within the virtual world to activity
areas in which virtual ADL practice takes place. Once in an ac-
tivity area, the patient's character transitions into an “activity

Fig. 2. Examples of elements of the VOTA Meal Preparation activity: (a) vir-
tual OT introduces patient to the VOTA virtual kitchen, (b) Bring Second Slice to
Toaster sub-task performed in “activity mode,” and (c) Put Pan in Sink sub-task.

mode” in which avatar arm motion matches the patient's UE
pose (see Fig. 2). Tasks are explicitly constructed to emulate ac-
tions required for independent living. It was hypothesized that
patients would be more likely to accept and use the technology
if “games” had a direct link to real-world benefit [17]. Training
specificity is achieved by incorporating functional movements
and task sequences associated with real-world ADLs.

Note that this paper employs a broad definition of activities of
daily living (ADLs) that encompasses both the traditional defi-
nition of ADL behaviors [18] and instrumental activities of daily
living (IADLs) [19]. The former comprise toileting, feeding,
dressing, grooming, locomotion, and bathing. The latter include
use of a telephone, shopping, food preparation, housekeeping,
laundry, use of transportation, management of medication, and
handling finances.



ADAMS et al.: ASSESSING UPPER EXTREMITY MOTOR FUNCTION IN PRACTICE OF VIRTUAL ACTIVITIES OF DAILY LIVING 289

VOTA MOTORSCORE
COGSCORE
~ MealPreparation UNSCORED
— GetPan — CookEggs
:f OpenCabinet — ReachForFirstEgg
— ReachForPan — BringFirstEggToPan
— BringPanToStove — ReachForSecondEgg
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Fig.3. VOTA is organized a hierarchy of activities, tasks, and sub-tasks that are
categorized as motor (MOTORSCORE), cognitive (COGSCORE), or unscored
elements.

Virtual ADL activities are decomposed into tasks and
sub-task elements that target a wide range of functional move-
ments, enabling software to automatically parse and process
activity segments into aggregate metrics. Each activity is
constructed as a hierarchy of tasks and sub-tasks (see Fig. 3).
For example, Meal Preparation includes a Get Pan task (one
of 14 tasks in that activity). Get Pan includes a Bring Pan to
Stove sub-task (one of four sub-tasks in that task). Tasks and
sub-tasks are completed sequentially, each contributing to the
desired end-state of the activity. Each level in the hierarchy
includes attributes that define configurable elements in the
interactive simulation (e.g., verbal instructions, position/orien-
tation of objects and avatars, level of cueing provided, goals,
and rewards). At the lowest level, sub-tasks are categorized
as motor (MOTORSCORE), cognitive (COGSCORE), or
unscored elements. MOTORSCORE sub-tasks are used in
generation of VOTA motor function metrics. COGSCORE
sub-tasks relate to success in tasks involving recall, sequencing,
and situation awareness. As this paper focuses on the criterion
validity of MOTORSCORE metrics, COGSCORE results are
not presented or discussed.

In MOTORSCORE sub-tasks, the VOTA application pro-
vides both visual and verbal cues that are intended to mini-
mize the impact of cognition on derived metrics. These sub-
tasks incorporate point-to-point movements, with arrested mo-
tion (near-zero wrist speed in Cartesian space) at well-defined
start and stop locations in the virtual task space. For example,
the Bring Pan to Stove sub-task begins when the user moves the
avatar's hand to the location of the pan's handle, and ends when

the pan is placed on a burner on the stove top. By arranging
the position and orientation of objects in the virtual environ-
ment, sub-tasks can be designed to target specific functional UE
movements and ranges of motion. For example, in a Reach for
Pan sub-task, the height of a cabinet determines the amount of
shoulder flexion required to successfully complete the move-
ment. Note that the VOTA task-space is mirror-imaged when
activities are performed left-handed, thus the range of motions
required to accomplish each task is consistent.

The combination of human motion tracking and a virtual
world-based game enables activities to be tailored in ways that
would be difficult to achieve in real life. For example, although
VOTA tracks both right and left arms as well as torso motion,
the virtual (avatar) manifestation of the patient's unimpaired
limb and torso are typically fixed (not animated) during practice
of virtual ADLs. Undesired compensatory movement by a
patient, such as forward trunk motion, is not realized in the
virtual world. Individuals are thus required to use only the
affected UE to complete the task.

B. UE Tracking Filter

At the time of writing, the Kinect™ software development
kit (SDK) includes general purpose, low-overhead filtering soft-
ware that works well on a wide range of applications, particu-
larly for gaming. However, it does not provide all information
needed by the VOTA application. For kinematic tracking and
smooth avatar animation, VOTA requires estimates of joint ve-
locities and angular rates, which are not directly measured by the
sensor nor provided by the SDK. The SDK quantifies measure-
ment confidence only in categorical terms (high, low, none) and
exposes only a limited set of variables for tuning the behavior of
the filtering, smoothing, and outlier rejection algorithms. These
provide a critical starting point for the application but do not
constitute a sufficient solution for VOTA.

VOTA kinematic pose estimation algorithms are based on an
adaptation of an unscented Kalman filter (UKF) [20], [21]. The
UKF-based solution to the inverse kinematics problem produces
angles and angular rates defining shoulder and arm motion, em-
ploying only Kinect™ measurements. The real-time generated
variables support both avatar animation, to immerse the patient
in the virtual ADL activity, and recording of kinematic informa-
tion for assessing motor outcomes. The tracking filter enforces
realistic arm kinematics and joint angle constraints, and han-
dles noisy measurements and sensor dropout. Bone lengths are
estimated jointly as a by-product of filtering and therefore no
manual measurement or calibration is required. The filter ac-
counts for these factors by weighting the relative confidence in
new measurements versus prior estimates, allowing it to opti-
mally fuse the two sources of information.

Let us denote the dynamic state and measurements of the
system as Z(¢) and y(t), respectively. For clarity, the temporal
notation is omitted throughout the remaining discussion but is
always implied. The state vector is comprised of four primary
sub-vectors

A
r= {a‘left right U° € } (1)
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where superscript-T indicates vector transpose. The “arm” state
vectors, dlery and drigns, denote UE joint angles, rates, and ac-
celerations of the left and right arms, respectively. Thus

. . T
a:{ﬁf’ i §T} 2)

employing Newton's (dot) notation to indicate differentiation
with respect to time. UE joint angles are estimated in a swing-
twist parameterization that is described fully in [22], [23]

52 {eswing.y sting.z atwist 0elbow}T- (3)

The sub-vector b denotes distances between joints, which we
abstractly refer to as “bone” lengths, defined as

7 T
b = {bcollarbone bhumerus bforearm} . (4)

For convenience we use the term “collarbone” to indicate the
line segment connecting the shoulder joints, “humerus” to indi-
cate the segment connecting shoulder to elbow, and “forearm” to
indicate the segment connecting elbow to wrist. Including bone
lengths in the state vector allows them to be estimated jointly
with the other quantities, eliminating the need to manually cal-
ibrate the filter for each user. Finally, the sub-vector ¢ denotes
the pose (position, yaw, and pitch) of the “collarbone” line seg-
ment that connects the shoulder joints

o T
c= {Cposl Cpos2 Cpos3 Cyaw Cpitch} . (5)

The collarbone line segment forms part of a right-hand coor-
dinate system from which the shoulder angles are referenced
and therefore must be filtered jointly with arm state. The global
(sensor-fixed) coordinate system can be chosen arbitrarily, so
the collarbone's three translational degrees of freedom are de-
noted generically. For the results presented here, the global ref-
erence frame is defined with the origin at the sensor focal plane,
and the x, vy, and z axes pointing in the user's right, up, and rear
directions, respectively.

To facilitate interpretation of tracking results in terms that are
more intuitive (and consistent with common use in the med-
ical community) arm motion can also be represented as a series
of right-handed Euler angle rotations about the axes defined in
Fig. 4

OBuler = {‘91 O 03 04}T (6)

Positive (negative) rotation of the upper arm around Axis 1 by
angle 64 corresponds to shoulder flexion (extension). Positive
(negative) rotation by angle 85 about Axis 2 corresponds to
shoulder abduction (adduction). Positive (negative) rotation
by angle 5 about Axis 3 corresponds to internal (external)
shoulder rotation. Positive (negative) rotation of the forearm by
84 about Axis 4 corresponds to elbow flexion (extension). Note
that forearm pronation/supination, wrist, and hand articulation
are not included in this model due to the limitations of the
Kinect™ sensor.

The swing-twist parameterization [22], [23] generated by the
UKCF filter solution is locally diffeomorphic to this Euler param-
eterization, and therefore joint angles (and their derivatives) can

Fig. 4. UE motion can be defined as a series of Euler angle rotations applied
sequentially about Axes 1 to 4. Illustrated pose represents all four angles set to
Zero.

be freely transformed between the two representations. The an-
gular mapping is

‘91 - a'ta'nQ (Oswingyy _eswingz) (7)
s P

92 = 5 - '\/ngingy + gszwingz (8)

93 = 01 + etwist (9)

94 = aelbow . (10)

The process model of the UKF describes how the state vector
evolves over time. For this application, bone length is assumed
constant and collarbone motion is modeled as a random walk

d - d

Eb:()’ EC:’IUC (11)

where w, denotes a zero-mean random noise vector whose co-
variance defines the rate of the random walk. UE motion is mod-
eled as a kinematic linkage with damped joints, soft mechan-
ical limits, and acceleration biases that randomly walk (roughly
modeling muscle activity)

) g
(9“swing.y - Spswing.yaiswing.yf'sting.y (5)
iFL — GS\Viqg.z - ‘pswing.zoiswing.zf’sting.z (56) + .uj‘a
dt _.Htwist - ‘ptwistetwistf’ytwist (5)
eelbow - <)Oelbovvgelbowf’}/elbow (5:)

—

0
(12)
where w, is random noise that represents modeling imperfec-
tions and defines the rate at which the biases randomly walk.
The terms in each row represent the kinematic relationship be-
tween positions, velocities, and accelerations. Joint damping is
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modeled using the linear w*é* terms, and joint limits are de-

noted with the nonlinear 4, (d) terms. Limits are modeled as

ideal springs that apply a restoring torque only when the respec-

tive joint reaches an upper or lower mechanical limit, as in
below lower limit

k* |‘9* - olower‘
Vs (@) = § ke |0e — Oupper| above upper limit
0 between limits

(13)

where k, represents the stiffness of the mechanical limits, and
Bower and Bupper are the joint limit angles.

The measurement model defines the mapping from the state,
Z, to the outputs of the Kinect™ sensor, 3. The measurement
is comprised of the user's shoulder, elbow, and wrist joint posi-
tions, as in

(14)

where P, indicates the three-element position vector of each
joint in global coordinates. The measurement model is thus the
set of forward kinematic equations that relate joint angles and
bone lengths to positions in world space. Though lengthy, these
equations are straightforward to derive using standard trigono-
metric constructions. In the interest of brevity, the equations are
denoted simply as

- (4T 7 =T T
Y= {pshoulder Pelbow pwrist}

= hkin (Z) + W, 15)

where hyin (¥) represents the nonlinear kinematic (trigono-
metric) mapping and 1, represents random measurement noise.

With the state space modeled as described above, the re-
mainder of the UKF implementation follows the standard
formulation described in [20] and [21].

=y

C. UE Motor Performance Metrics

For each MOTORSCORE sub-task, VOTA parses the kine-
matic data provided by the UKF solution to calculate metrics
that represent motor performance. If these measures can be es-
tablished as valid indicators of UE motor performance, then they
may provide an automated means to assess patient status and
progress during practice of virtual ADLs. Motor function-re-
lated metrics considered in this study include:

a) duration, sub-task completion time in seconds;

b) normalized speed (NS) (percent)—mean speed achieved
divided by peak speed during performance of each sub-
task;

¢) movement arrest period ratio (MAPR) (percent)—per-
centage of time that speed exceeds a threshold percentage
of peak speed during performance of each sub-task.

Metrics were chosen for incorporation in the VOTA study
based on two factors: 1) previous evidence of correlation to
UE motor function and 2) compatibility with automated calcu-
lation during virtual ADL practice. Task completion time (dura-
tion) is a commonly used measure in well-accepted assessments
such as the WMFT [15], [16] and the Arm Motor Ability Test
(AMAT) [24]. The inclusion of NS and MAPR in this study was
inspired by the work of Rohrer ef al. [25]. In trials involving 31
stroke patients, these two metrics were the most strongly corre-
lated to a clinical scale of upper extremity function from among
five candidate measures related to smoothness of motion, which
also included a jerk metric, a peaks metric, and a tent metric.
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TABLE 1
STUDY CHARACTERISTICS
Subjects Gender Age(median) Age(range)
14 4M/10F 69 48-87
Months since Months since Dominant Impaired arm
stroke (median) | stroke (range) hand
30 0.5-96 14R/0L 7R/7L

Both of the selected smoothness-related measures rely on the
notion that impaired motion in point-to-point UE movements
tends to be characterized by an episodic speed profile. NS is
based on the presumption that non-smooth motion will have a
speed profile with a mean value that is significantly less than
peak speed. MAPR is based on the supposition that speed pro-
files characteristic of episodic motion will spend a greater per-
centage of total duration below a threshold value than smooth
profiles. A threshold of 30% of peak is used in this study (com-
pared to the 10% threshold selected by Rohrer et al.) to increase
the sensitivity of the MAPR metric to speed fluctuations [25],
[26]. Both smoothness-related measures are calculated such that
higher values suggest better motor performance and thus are ex-
pected to be negatively correlated to duration. In all cases, speed
is defined as the instantaneous magnitude of the Cartesian-space
velocity vector of the user's wrist, as estimated by the real-time
UKEF tracking filter.

III. METHODS

A. Participants

Participants were hemiparetic stroke patients meeting study
inclusion criteria including: antigravity strength at the elbow
to at least 45 degrees of active flexion; antigravity shoulder
strength to at least 30 degrees each in active flexion, abduc-
tion/adduction; and 15 degrees in active shoulder rotation from
an upright seated position. Participants included individuals in
in-patient rehabilitation care and outpatient rehabilitation. As
the intent of the study was to investigate concurrent validity of
VOTA metrics to existing clinical measures, study participation
did not replace or interfere with any prescribed course of treat-
ment. The protocol was administered by licensed occupational
therapists under the approval and supervision of University of
Virginia (UVa) Institutional Review Board for Health Sciences
Research (IRB-HSR). All study activity took place in the clin-
ical facilities of the UVa-HealthSouth Rehabilitation Hospital,
Charlottesville, VA, USA. Study characteristics are shown in
Table I. A total of 14 individuals enrolled in and completed the
study between September and December 2013. All consented
individuals completed the study; there were no dropouts.

B. Protocol

In each of four visits, participants were asked to use their
stroke-affected arm to practice a Meal Preparation activity
that included 17 MOTORSCORE sub-tasks (see Table II)
performed while making a breakfast of eggs, toast, and juice.
During system use, participants remained seated at all times in
a chair centered in front of the computer display at a distance
of two meters. When possible, the four visits were scheduled
to occur within a two week window. The first three visits
provided patients with the opportunity to become familiar with
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TABLE 11
VOTA MEAL PREPARATION MOTORSCORE SUB-TASKS
Sub-task Description
1 Bring Pan To Stove
2 Bring Oil To Pan
3 Bring First Egg To Pan
4 Bring Second Egg To Pan
5 Bring First Slice To Toaster
6 Bring Second Slice To Toaster
7 Reach For Pepper
8 Bring Pepper To Pan
9 Bring Plate To Counter
10 Bring Glass To Counter
11 Bring Spatula To Pan
12 Bring Spatula To Plate
13 Put Spatula In Sink
14 Put Pan In Sink
15 Bring Pitcher To Glass
16 Bring First Slice To Plate
17 Bring Second Slice To Plate

VOTA system and the Meal Preparation activity. For this
protocol, task difficulty level was fixed both between subjects
and between sessions.

It was expected that during initial VOTA sessions, lack of
familiarity with the virtual world, the motion tracking interface,
and the Meal Preparation activity would result in significant
variability in user performance. The first three VOTA sessions
thus served as training, permitting participants to become
familiar with the VOTA system and the constituent tasks.
Based on the authors' previous observations on learning in
manual task performance system [27], it was hypothesized
that performance change due to learning would plateau by the
fourth session. Participants' performance in the fourth visit
(with training completed) therefore served as the basis for
assessment of the concurrent validity of VOTA measures of UE
motor performance. VOTA Duration, NS, and MAPR metrics
collected in the fourth session were aggregated over the set
of all MOTORSCORE sub-tasks to create a record of each
patient's performance in completing the Meal Preparation ac-
tivity. VOTA-Duration, VOTA-NS, and VOTA-MAPR scores
were calculated as the median values over all MOTORSCORE
sub-tasks.

Fig. 5 shows an example of participant data captured and
processed by VOTA in the fourth session. The record of speed
versus time for a Bring Second Slice To Toaster sub-task within
the Meal Preparation activity is typical for a MOTORSCORE
element. The point-to-point UE movement begins at near-zero
speed at a starting position (location of a loaf of bread on a
counter top), accelerates to some peak speed, and then decel-
erates back to near-zero speed at the target position (location
of toaster). This particular profile appears to include two sub-
movements, hypothesized by Rohrer ez al. to constitute building
blocks of more complex UE motion [25], [28].

Following completion of the fourth VOTA session, a thera-
pist administered the WMFT. WMFT is a well-accepted, func-
tionally oriented clinical and research UE assessment that has
been shown to have high inter-rater reliability, validity, and in-
ternal consistency [15], [16]. The full WFMT consists of 15
timed function-based and two strength-based tasks. Only the
timed tasks were administered in this study. Seven of these
tasks involve isolated movements of either the affected elbow or

mealPreparation|CookEggs|BringSecondEggToPan

0.4 1
mealPreparation|Make Toast|BringFirstSliceToToaster
0.35 0.4 1
mealPreparation|MakeToast|BringSecondSliceToToaster
o3} 035 04
0.3 duration: 1.867
= 0.25] NS: 0.606
F 0.25 MAPR: 0.860
< 20
3 0.2 E
(% 3 02
0.15} & >
P15} E
0.1 3
o1} &
2]
0.05
0.05)
é)g 0.1
18 S 108.5 109 109.5
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& H

MAPR Histogram

Frequency
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Fig. 5. UE tracking data captured during virtual ADL performance is parsed
by sub-task and used to generate motor performance metrics that are then ag-
gregated over an entire session.

shoulder. The remaining eight items are practical tasks that re-
quire coordinated UE movement (e.g., lifting can from table to
mouth). Performance in each task was timed using a stopwatch.
Maximum time permitted for any one task was 120 seconds.
Each participant's WMFT-TIME score was derived by taking
the median task completion time across all 15 elements [16].

IV. RESULTS

A. Task-Level Analysis of UE Involvement

Real-time tracking of UE kinematics by the above-described
UKF solution provides detailed histories of the actual move-
ments used by patients in accomplishing the virtual ADLs.
Recall that position/orientation of the user's avatar within
the virtual space and the location of involved objects for
MOTORSCORE sub-tasks were chosen to elicit a range of
functional UE movements and ranges of motion. Examples of
tracking results for three different VOTA sub-tasks performed
by a stroke patient in this study are shown in Fig. 6. Bring Oil
To Pan (sub-task 2) starts with acquisition of a bottle of olive
oil from a cabinet shelf and ends when the user brings the oil to
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Fig. 6. Examples of Euler angles and rates generated by real-time UE tracking of a stroke patient during performance of three different virtual ADL sub-tasks.
(a) Bring Pan To Stove generates active shoulder extension/flexion, shoulder internal rotation, and elbow flexion. (b) Bring Second Slice To Toaster produces
significant active shoulder external rotation. (c) Put Pan In Sink elicits active shoulder horizontal abduction with active shoulder external rotation and elbow

flexion.

the frying pan on the stove top. The resulting UE movement in-
volves significant active shoulder flexion and elbow extension,
as well as active internal shoulder rotation [Fig. 6(a)]. Bring
Second Slice To Toaster [sub-task 6, illustrated in Fig. 2(b)]
requires the user to acquire a piece of bread from a loaf on the
counter and move it laterally to an empty slot in a toaster. The
resulting UE motion shown in Fig. 6(b) includes active shoulder
extension and external rotation. Put Pan In Sink [sub-task 14,
illustrated in Fig. 2(c)] begins when the user acquires the frying
pan from the stove top and finishes when the pan is moved to a
sink in an adjacent countertop. The resulting motion is among
the more complex in the Meal Preparation activity, eliciting
both active shoulder horizontal abduction (rotation about Axis
2 with the shoulder in flexion) and active shoulder external
rotation and active elbow flexion [Fig. 6(c)].

Table III provides a summary of the median peak angular
speed achieved across all participants for individual sub-tasks.
Most virtual ADL sub-tasks involve some UE movement in all
three axes. This observation is consistent with characterization
of UE movements during performance of real-world ADLs by
Rosen et al. [29].

B. Primary Outcome

VOTA and WMFT-TIME metrics are interval variables
that can reasonably be expected to have a monotonic relation-
ship. We do not, however, have any expectation of linearity.
Spearman's rank-order correlation (rg) [30] is thus used to
analyze the bivariate correlations between VOTA measures and
WMFT-TIME. Table IV summarizes the results. VOTA-Du-
ration has a moderate and statistically significant correlation
with WMFT-TIME (r; = 0.56, p = 0.036). This degree of
correlation is within the range (0.54 < rg; < 0.68) previously
observed by Wolf ef al. [15] between WMFT and Fugl-Meyer
UE assessments of 19 stroke survivors.

Of the two smoothness-related VOTA metrics, NS shows the
strongest correlation to WMFT-TIME. This result is consistent
with results from previous research showing a moderate corre-
lation between NS and MAPR and the Fugl-Meyer (\FM ) UE
assessment [25], with NS having the stronger correlation. These

TABLE III
SUB-TASK LEVEL SUMMARY ACROSS ALL PARTICIPANTS (n = 14) OF
MEDIAN PEAK ANGULAR SPEED (IN DEGREES PER SECOND) OBSERVED IN
EACH OF THE FOUR EULER ANGLES DEFINING UE MOVEMENT

Sub-task Axis 1 Axis 2 Axis 3 Axis 4
(deg/s) (deg/s) (deg/s) (deg/s)
1 23.5 314 374 20.5
2 49.4 39.7 51.9 49.2
3 24.4 344 28.6 23.5
4 17.9 37.7 33.8 19.1
5 42.1 40.6 38.3 26.2
6 439 29.4 33.6 31.7
7 38.9 19.0 38.6 314
8 25.8 459 51.7 34.0
9 33.1 474 63.9 46.5
10 69.3 58.8 70.2 53.3
11 40.7 29.7 56.4 31.8
12 49.2 33.1 56.6 449
13 55.6 33.0 68.7 36.3
14 47.2 37.5 59.0 38.7
15 18.8 29.9 19.3 19.1
16 25.0 50.0 54.9 20.3
17 32.0 43.6 66.9 21.1
TABLE IV

PRIMARY OUTCOME — BIVARIATE CORRELATIONS BETWEEN VOTA-DERIVED
METRICS AND WMFT-TIME

X Y Spear- Pvalue 95% confidence
man r.
VOTA- 1 WMFT- | 56 0.036 0.03 0.85
Duration TIME
WMFT-
VOTA-NS —0. 0.107 -0. 0.12
TIME 0.45 0.80
VOTA- WMFT-
-0. 2 -0. 2
MAPR TIME 0.34 0.233 0.75 0.25

results may indicate that smoothness-related metrics would be
more appropriately treated as adjuncts to, rather than predic-
tors of, more traditional measures of UE motor function. Dura-
tion of task completion may be generally indicative of strength,
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TABLE V
BIVARIATE CORRELATIONS BETWEEN VOTA-DERIVED METRICS
X Y Spear-man Pvalue 95% confidence
I
VOTA- | VOTA- ~0.84 <0.001 | -095 | -0.54
Duration NS
VOTA- VOTA-
—-0. 0.002 -0.92 —0.
Duration MAPR 0.75 0.9 035
VOTA- | VOTA- 0.91 <0001 | 073 | 097
NS MAPR
TABLE VI

MEAN VOTA-DERIVED SUMMARY METRICS
ACROSS ALL SUBJECTS BY STUDY SESSION

Sessi Mean Mean Mean
esston VOTA-Duration VOTA-NS VOTA-MAPR
1 6.05 0.40 057
2 5.08 0.43 0.61
3 3.94 0.49 0.70
4 3.70 0.48 0.70

TABLE VII
P-VALUES FOR MEAN DIFFERENCES IN VOTA-DERIVED METRICS
BETWEEN SESSIONS

Sessions VOTA-Duration VOTA-NS VOTA-MAPR
1-4 0.001 0.001 0.002
2-4 0.037 0.019 0.038
3-4 0.699 0.778 0.932

while smoothness-related measures may be better gauges of
coordination.

Analysis of Spearman's rank-order correlation between
VOTA-derived metrics, summarized in Table V reveals a strong
correlation between all metric pairings. The extremely high
correlation between NS and MAPR indicates that, in a practical
implementation, only one need be used.

C. Training Effects

A session-by-session summary of estimated mean metrics
across all subjects, shown in Table VI, reveals that all three
VOTA-derived measures of motor performance monotonically
improve in each of the four successive trials.

As hypothesized, by the fourth session, training-related im-
provement appears to have plateaued. Between-subject differ-
ences in VOTA-derived metrics are therefore expected to be
primarily reflective of UE motor status. For each metric, there
is a significant difference (with a p < 0.05 decision rule) in
the means between sessions 1 and 4, and between sessions 2
and 4, but no significant difference between sessions 3 and 4.
Table VII provides the associated p-values for the test of equal
means.

D. Intra-Subject Variability

Plotting the subject-specific estimated mean duration and as-
sociated 95% confidence intervals for the VOTA Meal Prepa-
ration activity (Fig. 7) reveals a strong correlation between in-
dividuals' mean completion time and variability in that metric.

Calculation of the bivariate correlation between estimated
mean and standard deviation in VOTA sub-task completion
times by way of the Spearman test confirms the existence of a

-
n

wn

VOTA Sub-task Duration (s)
>
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Fig. 7. Mean subject-specific VOTA sub-task duration for the Meal Prepara-
tion activity. Circles denote the estimated mean duration, and vertical lines de-
note the 95% confidence interval for mean task duration.

very strong relationship (r; = 0.89, p < 0.001). Further inves-
tigation reveals a similar, even stronger, correlation between
estimated mean duration and standard deviation in the 15 task
completion times for the WMFT (r, = 0.95, p < 0.001). Note
that the relationship between estimated mean and variance is
much less pronounced in the smoothness-related metrics of NS
(rs = —0.12, p = 0.67) and MAPR (r, = —0.46, p = 0.09).

These results are consistent with findings by other researchers
that both response times and variability tend to increase with
level of impairment [31]. Increased variability has also been as-
sociated with deficits in executive control functions of the brain
[32]. In the context of the present study, the apparent impor-
tance of variance in task completion times may indicate that
variability-related metrics can provide complementary insight
into motor performance during practice of virtual ADLs.

V. DISCUSSION

To our knowledge, this work represents the first time a metric
derived during performance of ADLs in a virtual environment
has been shown to correlate to an established assessment of UE
motor performance. The implication is that it may be possible to
employ low-cost, off-the-shelf sensing technology and “smart”
software to systematically monitor a patient's progress over a
course of treatment. The game-embedded assessment does not
require wearable markers, calibration, or administration by a
specially-trained clinician.

Both VOTA-Duration and WMFT-TIME metrics are based
on median completion time over a set of tasks involving
point-to-point UE movements. It is therefore not surprising that
they exhibit a moderate, positive correlation. The importance
of this relationship lies in the provenance of the underlying
data. While WMFT metrics are the product of a traditional
assessment instrument, VOTA values are extracted “behind
the scenes” during virtual ADL practice. To the extent that a
VOTA metric is a valid measure of UE motor performance, it
may be used to automate tracking of patient progress over the
course of an intervention involving the VOTA system.

Virtual ADLs were designed to emulate real-world tasks. As
a consequence, the VOTA Meal Preparation activity (which
required numerous forward reaching movements to interact
with objects on virtual shelves) placed a greater demand on
anti-gravity shoulder strength and range of motion than the
WMEFT tasks (which primarily involve interacting with objects
on a planar table surface). This incongruity may have adversely
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impacted the observed degree of correlation between the two
tests—but it is unclear if the effect is undesired. Therapists
involved in the protocol observed that the sequenced VOTA
tasks elicited UE movements that better represent functional
use than the more isolated WMFT tasks.

Note that the absolute accuracy of the above-described
UKF-based tracking solution is limited by the accuracy of the
underlying Kinect sensor in providing UE joint positions. In a
study led by the University of California at Berkeley, researchers
found that mean errors for estimated shoulder, elbow, and wrist
joint positions ranged from 44 to 76 mm between a Kinect-based
measurement and an established marker-based tracking solu-
tion [33]. In the present study, the kinematic tracking solution
based on these measurements was found to be sufficient, both
to permit patients to successfully complete virtual ADL tasks
and to support derivation of speed-based motor performance
metrics. Future work will take advantage of improvements in
sensor technology (e.g., Kinect for Windows v2) and investigate
incorporation of multiple sensors to further improve tracking
performance.

Other planned future research includes investigation of the
efficacy of virtual ADL practice for post-stroke UE motor
recovery. Ongoing development will permit the physical and
cognitive challenge level of the virtual ADLSs to be adapted to the
capabilities of each patient. The difficulty level may be fixed by
the care provider, or adapted automatically by software (within a
prescribed range) in response to trends in VOTA-generated met-
rics. Alternative motor performance metrics to be investigated
include dimensionless jerk parameterizations that exhibit mono-
tonic correlation to sub-movement blending [26]. Future work
will also expand the depth and breadth of activities in the VOTA
application, benchmark accuracy and reliability of achieved
tracking performance, and explore the usability of the system
by patients and providers in multiple rehabilitation settings.
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