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Guest Editorial

P ROSTHETIC legs are vital devices to functional rehabil-
itation of people with lower limb loss. The use of lower

limb prostheses is essential for restoring mobility, maintaining
personal independence, and more effective inclusion in society.
Over the past several decades, there have been many improve-
ments in materials, control systems, and interfaces of artificial
legs; e.g., running at near world record speeds has become
possible with prosthetic legs. Unfortunately, our progress has
not been as remarkable with upper-limb prostheses. Many
people with upper limb loss choose not to wear a prosthesis
[1] with a key reason being that upper limb prostheses do
not provide enough function. Current commercial prostheses
offer control of only one or two degrees-of-freedom at a time
(e.g., hand open/close) with control methods that are highly
unnatural for the users. For example, control of multiple joints
often requires sequential control of individual joints with cum-
bersome switching techniques that can tire the user after a short
while. However, in the past few years, exciting developments
to improve the function of upper limb prostheses have been
seen in laboratories around the world and are starting to be
realized for patients. Biomedical instrumentation and signal
processing methods are also evolving to improve the control
of upper-limb prostheses [2]. Efforts in academia and industry
have resulted in advanced robotic arms and much more highly
dextrous robotic hands that combined with better and more
intuitive control systems hold great promise for enhancing the
ability of amputees. In addition, biologically-inspired feedback
systems have enabled people with upper limb loss to actually
feel appropriate sensations in their missing hands [3], [4].
However, to become fully integrated into a user’s sensorimotor
repertoire, the performance of upper-limb prostheses must still
improve greatly.
This special section of IEEE TRANSACTIONS ON NEURAL

SYSTEMS AND REHABILITATION ENGINEERING is focused on
recent scientific and engineering developments in control of
upper-limb prostheses, ranging from novel signal processing
and machine learning strategies for enhancing and extracting
movement intention-related features from the inter-muscular
and surface electromyogram (EMG) signals to advanced sur-
gical and experimental procedures for targeted muscle and
sensory re-innervation. The illustration in Fig. 1 is the artistic
view of a bionic man, as represented in the society’s collective
imagination. It presents an unaccomplished dream for this
research community: restoring amputees’ sensorimotor control
of the natural arms and hands movement to enable them to
perform complex bimanual tasks such as playing a piano. This
illustration retells the gap between academic research and
commercial adoption towards delivering real clinical benefit
to the end users. The work described in this special section is
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Fig. 1. Illustration of a musician playing the piano by means of multi-articu-
lated upper limb prostheses. Will this become a reality? Artist: Alessio Tom-
masetti -D’ARC Studio—Rome, Italy.

still far from the illustrated situation. Nonetheless, it represents
some of the necessary, albeit relatively small, scientific, and
engineering steps.
We start this special issue with a review paper by Farina et

al. [5] in which the authors first explain generative models of
EMG and their application for prosthesis control. They will then
offer a fresh look at current approaches for myoelectric con-
trol: 1) pattern recognition as well as 2) regression and 3) direct
or abstract control. They suggest that simultaneous and propor-
tional control over multiple degrees-of-freedom (e.g., concur-
rent grasp and wrist flexion), that is not yet possible in commer-
cial prostheses, is more likely to be achieved via by adopting
the latter two approaches. Farina et al. [5] conclude this review
by discussing practical challenges that are yet to be overcome.
Five studies in this special issue examine the suitability

and sensitivity of current pattern recognition algorithms for
use in prosthesis control or develop novel machine learning
algorithms. Ortiz–Catalan et al. [6] offers a complete account
for pattern recognition algorithms and compare different clas-
sifiers and topologies. They show that neural network-based
classifiers, such as the multi-layer perceptron (MLP) in contrast
to the conventional linear discriminant analysis, can enable
classification of simultaneous movements.
Despite advancements in pattern recognition-based control of

myoelectric prosthesis in laboratory environment, there are a
considerable number of challenges in translating research find-
ings into a clinically viable implementation. One such challenge
is that reliable and error-free EMG signal classification usu-
ally requires a large training time. To shorten training time, re-
cent machine-learning research has proposed user-independent
EMG classification [7] in which a pool of pre-trained EMG-
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movement pairs are stored in the memory of a prosthesis. When
a new user wears the prosthesis, the prosthesis finds and up-
dates the best matched model from a pool of stored datasets to
fit a new subject. However, this exhaustive search process in a
high-dimensional feature space consumes a lot of power, takes
a long time, and usually requires a large amount of training data
that may not be possible to collect easily in a clinical setting. Ex-
tending the bilinear decomposition approach [8], in this special
issue, Khushaba [9] presents an efficient and model-free canon-
ical correlation analysis (CCA)-based algorithm for multi-user
EMG classification and tests it in two scenarios: 1) within-sub-
ject, in which the classifier is trained on data recorded from
the able arm of the amputees and adapts to data recorded from
the lost limb and 2) between-subject, in which the classifier is
trained with the data from all but one users and evaluated on the
remaining test dataset (the leave-one-out approach).
Two other challenges of EMG classification that are often

overlooked in clinical translation of the pattern recognition al-
gorithms are: 1) how one could predict the real-time perfor-
mance of a classifier by looking at its offline performance and
2) how to identify and deal with noise in real-time. The work of
Gijsberts et al. [10] focuses on the former and, inspired by the
automated speech recognition literature, introduces the notion
of movement error rate as an alternative for performance mea-
surement based on window-based classification accuracy. Mc-
Cool et al. [11] offer a comprehensive account of EMG signal
contaminant classification and discuss their effect on movement
classification accuracy.
In 2009, Kuiken et al. [12] proposed the technique of tar-

geted muscle innervation (TMR) in which nerves that would
naturally innervate the distal muscles of the amputated limb are
redirected surgically to more proximal and intact muscles that
are biomechanically nonfunctional after the amputation. With
TMR, the surface EMG signal recorded from proximal muscles
can be used to infer user’s movement intention. Three papers
in this special issue report further progress in the application
of TMR. First, Tkach et al. [13] bring experimental evidence
that a generic electrode grid with wider inter-electrode spacing
can yield comparable, or even better prosthesis controllability
and EMG classification accuracy when compared to targeted
(and optimal) electrode placement in both offline and real-time
implementations. Farina et al. [14] uses the convolution kernel
compensation (CKC) algorithm [15] to estimate the spiking ac-
tivity of the motor units that generate the EMG signals recorded
from re-innervated muscles using multi-channel elec-
trode-grids. They show that with this approach it is possible to
estimate the neural code underlying an attempted limb move-
ment. In addition, one could envisage that the discharge patterns
of these extracted motor units can be used not only for move-
ment classification but also to estimate the intended force.
Control of current commercial upper-limb prostheses largely

relies on visual as the main source of feedback about the state
of the device. There have been several academic attempts
to deliver sensory feedback noninvasively about the state of
the prosthesis, such as grip force feedback via vibro-tactile
or haptic stimulation [16]. An unexpected result of Kuiken’s
surgical TMR method [3] was partial restoration of cutaneous
sensation due to re-innervation of afferents from the main nerve

trunks into the denervated skin. Hebert et al. [17] report the
result of a proof-of-principle targeted sensory re-innervation
surgical technique in one amputee and subject’s performance
in different tasks, e.g., a single versus dual tactor and force
discrimination.
Recent exploratory work with the EMG signals has resulted

in the exciting notion of direct (AKA abstract) control of upper-
limb prosthesis [18]–[22]. In fact, direct control has its concep-
tual roots in the bio-feedback experiments in early 1960s that
demonstrated that the relationship between cell activity and be-
havior can be altered with operant conditioning [23]. In [23] and
its more recent version [24], nonhuman primates were rewarded
for producing arbitrary combinations of cell and/or muscle ac-
tivity and rapidly learned to dissociate their normal neuromotor
patterns. Their results suggested that there is considerable flexi-
bility to neural encoding which may enable learning novel neu-
romotor associations [25].
Whether the biofeedback approach can be translated into

clinically viable solutions for upper-limb prostheses is a topic
of current research. Two of the studies in this special issue ex-
amine the possibility of direct control of a myoelectric inter-
face. Cipriani et al. [26], building upon [27], shows for the
first time that able-bodied subjects can control four indepen-
dent degrees-of-freedom of a desktop hand prosthesis by using
the intramuscular EMG signals that are recorded from their ex-
trinsic hand muscles. An important consideration in designing
such invasive myoelectric interfaces is to maximize indepen-
dence of neural drives to muscle by setting system to work
at relatively weak muscle contractions levels, e.g., of
the maximum voluntary contractions. The immediate technical
challenge that stems from this setting would be the degradation
of the EMG signal-to-noise ratio (SNR). Although increasing
the contraction level enhances the SNR, there is evidence that
during maximal contractions of individual fingers, neighboring
digits (and their controlling muscles) can become enslaved [28]
and hence can impede independent control of prosthesis fin-
gers. Another open question is whether myoelectric interfaces
can be used to control abstract interfaces such as exoskele-
tons and robotic tele-operation in addition to prostheses. Ear-
lier work [18]–[22] showed that subjects could learn to control
a cursor in two dimensions on a computer screen through EMG
activity recorded noninvasively during isometric contractions
of multiple upper-limb muscles. In this special issue, Antuvan
et al. [29] provide further evidence that once subjects learned
the mapping between the muscle activity and the task require-
ments, they can retain and generalize it to a different motor
task.
The final contribution in this special issue is by McMullen

et al. [30] in which they report proof-of-principle results of
a hybrid approach to control a prosthesis. In their method,
to overcome the limitations of current prosthetic arms con-
trollers, they combine eye tracking, computer vision, invasively
recorded brain signals to control an intelligent robotic arm.
The proposed hybrid system could allow patients to efficiently
control (simultaneously) multiple degrees-of-freedom of a
robot without extensive training. However, it would take many
years of development and refinement before such sophisticated
systems can be translated into any clinical benefit.
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The papers collected in this special issue demonstrate impor-
tant advances in myocontrol that have been achieved in recent
years. In addition, they show new views and the identification
of new research pathways in this field, after a relatively long
period in which the focus was mainly limited to improving the
classification accuracy in laboratory offline tests that are very
different from real user scenarios. The recent efforts have the
common denominator of identifying specific gaps between aca-
demic results and real clinical impact [31] and trying to fill these
gaps either building on the classic pattern recognition scheme
or starting from completely different approaches. We are confi-
dent, that some of these approaches will soon allow progress in
the industrial (and thus clinical) state-of-the-art in myocontrol,
after several decades of use of extremely simple, (but robust)
control systems which are often rejected by the users, because
the functional gain is overruled by the cognitive burden of a very
unnatural control system.
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