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Sliding HDCA: Single-Trial EEG Classification to
Overcome and Quantify Temporal Variability
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Abstract—Patterns of neural data obtained from electroen-
cephalography (EEG) can be classified by machine learning
techniques to increase human-system performance. In controlled
laboratory settings this classification approach works well;
however, transitioning these approaches into more dynamic,
unconstrained environments will present several significant chal-
lenges. One such challenge is an increase in temporal variability
in measured behavioral and neural responses, which often results
in suboptimal classification performance. Previously, we reported
a novel classification method designed to account for temporal
variability in the neural response in order to improve classification
performance by using sliding windows in hierarchical discrimi-
nant component analysis (HDCA), and demonstrated a decrease in
classification error by over 50% when compared to the standard
HDCA method (Marathe et al., 2013). Here, we expand upon this
approach and show that embedded within this new method is a
novel signal transformation that, when applied to EEG signals,
significantly improves the signal-to-noise ratio and thereby enables
more accurate single-trial analysis. The results presented here
have significant implications for both brain–computer interaction
technologies and basic science research into neural processes.

Index Terms—Brain–computer interface (BCI), electroen-
cephalography (EEG), hierarchical discriminant component anal-
ysis (HDCA) rapid serial visual presentation (RSVP), real-world
environment, single-trial, sliding HDCA, temporal variability.

I. INTRODUCTION

I N RECENT years, various methods for single-trial elec-
troencephalography (EEG) analysis have been developed

[1]–[3]. Such single trial analysis methods have enabled the
development of various brain–computer interaction (BCI) sys-
tems that use a person’s EEG signals to directly interact with a
computer or the external environment. BCI systems have been
shown to work in controlled laboratory and medical settings;
however, transitioning these approaches intomore uncontrolled,
complex, “real-world” environments presents several signifi-
cant challenges. One such challenge is that dynamic, uncon-
strained environments often introduce additional temporal vari-
ability into the recorded EEG signal from several sources. The
human brain is incredibly complex and the task of generating a
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response to a given stimulus involves several complex interre-
lated processes that can each be delayed for a variety of reasons.
For example, temporal variability of the measured EEG signal
has been shown to be influenced by endogenous process related
to brain state (e.g., fatigue, attention), and exogenous factors
such as stimulus properties [4]–[7].
Historically, trial to trial variability has been overcome by

constraining experimental conditions and by averaging data
across trials based on assumptions of signal stationarity. That
is, data from time-locked events are averaged over time to
capture an imperfect but representative sample of the activity
that is time-locked to the stimulus of interest and remove
activity that is not in phase with the stimulus. However, trial
averaging does not account for or quantify any trial-to-trial
temporal variability.
Single-trial EEG analysis methods have made significant

progress in dealing with temporal variability in the neural
signal by asking if a particular response occurred in response to
a stimulus rather than how does the brain respond to a particular
stimulus. Thus, by addressing this fundamentally different
question, single-trial EEG analysis methods have fueled the
development of a wide range of BCI technologies.
Methods for single-trial EEG classification can be divided

into two basic categories. The first category of algorithms ap-
plies a spatial filtering algorithm to transform the multi-channel
EEG signal into a new signal that contains more task-relevant
information prior to applying a standard machine-learning
classifier. Common spatial pattern (CSP) is an approach that
looks for spatial filters that maximize the variance across two
known conditions (e.g., target and nontarget) [8]. Variants of
CSP, such as Common Spatio-Spectral Patterns [9], Common
Sparse Spatio-Spectral Patterns [10], Common Spatio-Tem-
poral Patterns [11], and Bilinear Common Spatial Patterns
[12] are designed to look at combinations of spatial, temporal,
and/or spectral features that aid in classification, and typically
can outperform the basic CSP in specific circumstances. xDawn
is another spatial filtering approach that seeks to maximize the
difference in signal-to-noise ratio between the target class and
nontarget class [13]. Best Lambda is another approach that
uses a variance based spatial filter (similar to CSP) to reduce
dimensionality, coupled with a linear discriminant analysis for
classification purposes [14]. Importantly, Best Lambda forces
an additional scarcity constraint which penalizes non-zero
weights and typically leads to more robust classification.
The second category of classification algorithms are ampli-

tude based time-domain approaches. These approaches began
by using a simple logistic regression or Fischer linear discrim-
inant to maximize the separation between classes [1], [15],
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[16]. Hierarchical discriminant components analysis (HDCA),
built upon these methods to include both spatial and temporal
features of the signals to improve classification [16]–[19];
however, HDCA relies on temporal features that are consistent
within a given time window.
Each of these existing methods has been shown to perform

well on exemplar EEG data sets. Since temporal variability is
inherent in all EEG data, it follows that each of these methods
can handle temporal variability to some degree. In fact, many of
the spatial filtering approaches typically work well in the face
of temporal variability; however they are unable to quantify the
temporal variability in the neural response.
Here we characterize the components of sliding HDCA

(sHDCA), a recently developed method for single trial classifi-
cation [20], and demonstrate their utility to quantify temporal
variability in the neural response. Drawing on two previous
studies [20], [21], we demonstrate how temporal variability of
the neural response can negatively affect classification accuracy,
and show that using a classifier designed to specifically account
for temporal variability can significantly improve classification
accuracy. Furthermore, we show that sHDCA includes a signal
transformation that enables the quantification of trial-to-trial
temporal variability through neural feature detection.
Participants performed a rapid serial visual presentation

(RSVP) target detection task in which they were asked to
identify specific targets from a sequence of rapidly presented
visual stimuli. In a previous study, we reported that EEG
recorded during this task resulted in large amounts of temporal
variability in the peak latency of target-related neural activity
that could largely be removed by aligning trials to the button
response [21]. This study demonstrates that aligning the trials
to the button to reduce the temporal variability decreases clas-
sification error by 75%. Previously, we showed that sHDCA
reduces classification error by over 50% in the face of temporal
variability in the neural response without needing information
related to behavioral response time [20]. Here, we characterize
the novel signal transformation contained within sHDCA and
show that it enables single trial feature detection.

II. METHODS

A. Participants

Fifteen participants (nine male, average age 39.5, 14 right
handed) provided voluntary, fully informed consent in the cur-
rent study as required by U.S. Army human use regulations [22],
[23]. Participants reported normal or corrected-to-normal vision
and reported no history of neurological problems.
The investigator adhered to the policies for the protection of

human subjects as prescribed in U.S. Army human use regu-
lations [22], and all procedures were performed in accordance
to protocol ARL-20098-10025 approved by the U.S. Army Re-
search Laboratory Institutional Review Board.

B. Stimuli and Procedure

As described previously, participants were shown short video
clips in a RSVP paradigm [20], [21], [24] that either contained
people or vehicles on background scenes, or only background
scenes (Fig. 1). Observers were instructed to make a manual

Fig. 1. Stimulus overview. Sequence of short videos RSVP. Stimuli were pre-
sented at 2 Hz. Participants were required to make a button press when a target
was detected. Examples of target stimuli are shown to the right, and a nontarget
stimulus is shown as the last frame in the sequence to the left.

button press with their dominant hand when they detected a
person or vehicle (targets), and to abstain from responding when
a background scene (distracter) was presented. While a motor
response was used in this task, previous work in RSVP based
neural classification using HDCA has shown similar perfor-
mance between motor and nonmotor tasks [16].
Video clips consisted of five consecutive images each 100 ms

in duration; each video clip was presented for 500ms. This study
treated the five 100 ms images as a single stimulus, thus while
individual images were displayed at 10 Hz, videos consisting of
five consecutive images were presented at 2 Hz. There was no
interval between videos such that the first frame was presented
immediately after the last frame of the prior video. If a target
appeared in the video clip it was present on each 100 ms image.
The distracter to target ratio was 90/10. RSVP sequences were
presented in 2-min blocks after which time participants were
given a short break. Participants completed a total of 25 blocks.

C. EEG Recording and Analysis

Electrophysiological recordings were taken from 64 scalp
electrodes arranged in a 10-10 montage using a BioSemi Active
Two system (Amsterdam, Netherlands) and sampled at 512
Hz. To record EOG, external leads were placed on the outer
canthus and below the orbital fossa of both eyes. Continuous
EEG data were referenced offline to the average of the left and
right earlobes and digitally filtered 0.1–55 Hz. We removed
EOG and EMG artifacts using independent component analysis
(ICA) [25] to reduce muscle and ocular artifacts in the EEG
signal and potential contamination with brain-based signals.
After the ICA cleaning, we were left with 332 27 (mean
std) target epochs and 1753 152 nontarget epochs.
1) ERP Analysis: ERP analyses were previously described

in Ries and Larkin (2012) [21] and were used to illustrate the
variability of the neural response. EEG data were processed and
analyzed using EEGLAB [26] and ERPLab [27]. Continuous,
artifact free data were epoched 1500 to 1500 ms around target
and response onset. Target epochs followed by a button press
within 200 to 1000 ms and nontarget epochs not followed by
a response were included in the analysis. Averaging across all
trials in a given condition may mask meaningful brain dynamics
associated with performance especially in perceptually difficult
tasks where the variance in ERP latency and reaction time (RT)
increases [28]. Therefore, in order to assess the brain dynamics
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Fig. 2. Temporal variability in EEG of a single participant (S10). (A) Single
trial EEG response at Pz when activity is aligned to the stimulus onset and sorted
by response time. (B) Single trial EEG response at Pz when activity is aligned to
the button press and sorted by stimulus onset time. Images (C) and (D) show trial
averaged ERP wave forms calculated from (A) and (B), respectively. Adapted
from [21] with permission.

associated with varying levels of RT performance, target epochs
were sorted into bins corresponding to an individual participant’s
reaction time quartile [29]. Grand averages across all subjects
were thencreated for each stimulusand response-lockedquartile.
For each subject, peak latency of target-related neural activity

was calculated for stimulus-locked and response-locked aver-
ages in each quartile. Peak latencywasmeasured at electrode Pz.
Peak latency was designated as the time at which the waveform
reached maximum positivity between 300 and 900 ms in stim-
ulus-locked averages andbetween 200 and400ms in response-
locked averages. Analyses from a previous study demonstrated
the existence of temporal variability in the neural response as
shown in Figs. 2 and 3. The results highlight temporal variability
in the dataset, which makes it an appropriate dataset to demon-
strate the effectiveness of sHDCA relative to other approaches.
2) Effect of Temporal Variability on Single Trial Classifi-

cation: We extend the previous ERP analysis to demonstrate
the effect of the temporal variability on single-trial classifica-
tion. EEG data were binned into quartiles based on reaction
time as described above. HDCA classifiers were then trained on
target-evoked EEG data from one quartile and a random 75% of
nontargets. The classifiers were then tested on data from each of
the remaining three target quartiles and the remaining 25% of
nontargets. This process was repeated four times such that each
25% of the nontargets were used as the test set. Performance
measures were averaged across the four tests for each subject.
In this scheme, whenever the training quartile of the targets

was not the same as the testing quartile of targets, all data in the
test were completely novel to the classifier. In the case where the
data were trained on the same quartile of targets as in the test set,
the classifier performance was extraordinarily high as expected
due to overfitting. These data, while presented for continuity of
the graphs, were not used to demonstrate the effect of temporal
variability on classification accuracy.

Fig. 3. Temporal variability in EEG across all participants. (A) Grand-aver-
aged ERPs for data binned by reaction time quartiles for stimulus-locked data.
The ERPs illustrate that the peak latency of target-related neural activity varies
with reaction time. (B) Grand-averaged ERPs for data binned by reaction time
quartiles for response-locked data. The ERPs illustrate that aligning to the re-
sponse largely removes peak latency variability of target-related neural activity.
Adapted from [21] with permission.

3) Single Trial Classification: The next step in the analyses
was to apply single trial classification methods to the EEG data.
The novel classification approach presented previously was a
modification of HDCA. Consequently, HDCA served as an ideal
baseline measure of classification performance for this study.
Details of HDCA can be found in [16]–[19].
For classification purposes, EEG data were epoched 500 to

1600 ms around stimulus onset. Epoched EEG data were base-
line corrected by removing the average of activity occurring be-
tween 500 and stimulus onset. Target epochs followed by a
button press within 200 to 1000 ms and all nontarget epochs
were included in the classification analysis.

a) Sliding Hierarchical Discriminant Components Anal-
ysis: As described inMarathe et al. 2012, sliding sHDCA builds
upon the standard HDCA algorithm in an attempt to extract
more information from temporally scattered events. sHDCA
starts by using a standard HDCA classifier trained to discrim-
inate targets versus nontargets (see Fig. 4). In this implemen-
tation of HDCA, the epoched data is divided into 50 ms time
slices, and logistic regression (LR) classifiers are trained to dis-
criminate targets from nontargets from each of the individual
time slices between 300 and 800 ms after stimulus onset. In the
standard HDCA algorithm, this initial classifier is typically a
Fischer linear discriminant (FLD) classifier. We saw no signifi-
cant differences between the FLD and LR implementation that
we used. Each data point within the 50 ms time slice is treated as
a repeated measure to train the individual classifiers. The output
of each of the LR classifiers is then fed into another logistic
regression classifier. In the standard HDCA, this second level
LR classifier is used to make the final determination of target or
nontarget. In sHDCA, rather than simply statically applying this
classifier to each epoch, this initial classifier, which was created
using data from 300–800 ms, is applied in a sliding fashion such
that the leading edge of the HDCA classifier is applied at all time
points between 100 and 1100 ms poststimulus. This sliding step
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Fig. 4. Sliding HDCAmethod described previously [20]. Sliding HDCA starts
with a standard HDCA classifier that uses ten 50 ms time windows that are
trained on data that spans from 300 ms to 800 ms after stimulus onset as high-
lighted in yellow (step 1). That classifier slides in time such that the leading edge
of the HDCA classifier is applied at all time points between 100 and 1100 ms to
produce a 1000 ms sequence of scores (step 2–3). A logistic regression classi-
fier is then applied to ten 100 ms time windows to produce a final interest score
for the given epoch based on the 1000 ms score sequence (step 3–4). The final
interest score is used to discriminate targets from nontargets. This study extends
and validates the classification results of the entire sHDCA method and charac-
terizes novel applications of the score space transformation shown in dark gray.

means that the sHDCA classifier is using epoch data from 100
ms poststimulus to 1600 ms poststimulus, which matches the
data used by the standard HDCA algorithm.
Importantly, the parameter settings (e.g., number of temporal

windows, window sizes, etc.) were not matched for the two
methods. Instead, parameters were chosen that optimized per-
formance for each method independently as a means to compare
the best possible performance levels for each algorithm. For
sHDCA, a limited sensitivity analysis was performed to iden-
tify parameters that maximized performance.
Since each application of the standard HDCA algorithm pro-

duces a single score, sliding the HDCA classifier in time pro-
duces a single score per application (per time point). When the
sliding process is complete, we are left with a score signal that
is 1000 ms in duration. From this score signal, a LR classifier
is trained to discriminate targets versus nontargets based on the
score signal. This LR classifier used for our second level clas-
sification divides the score signal into ten 100 ms time slices.
The result of this LR classifier is the final score assigned to the
epoch which is used to make the ultimate decision of whether
the current epoch is a target or nontarget (see Fig. 4).

b) Alternative methods and comparison: Sliding HDCA
classification performance was compared to other methods of
single trial classification in an effort to validate the efficacy of
this new method. Each method tested was applied to the exact
same data as sHDCA, and we used specific parameter values
that maximized the performance of each individual classifier

across the population of participants. In addition to the stan-
dard HDCA, we chose two other alternative methods to com-
pare against the sHDCA results. Cross correlation is a measure
of similarity of two waveforms as a function of a time lag ap-
plied to one of them. In the context of single trial classification,
cross correlation provides a simple means of pattern matching
over time. A method for potentially addressing temporal vari-
ability is to simply use cross correlation to match the ERP pat-
tern seen in a training set. For each subject, the response-locked
ERP was calculated from the training set for all 64 channels. A
cross correlation was calculated for each channel with its corre-
sponding response-locked ERP, which resulted in 64 time series
signals. HDCA was then applied to the 64 signals to discrimi-
nate targets from nontargets. The accuracy of this classification
scheme was compared to both HDCA and sHDCA.
Another alternative method is to apply a standard HDCA to

smoothed EEG data. Sliding an HDCA classifier in time might
simply smooth the input space for the second level LR classi-
fier used in sHDCA. If this were true, smoothing the raw EEG
signals prior to applying a standard HDCA should achieve sim-
ilar results to sHDCA. We applied a running average mean to
the EEG data prior to training and testing and HDCA classi-
fier to test this theory. The optimal amount of prior smoothing
is unknown, therefore we experimented with running average
means of 62.5, 125, 250, 500, and 1000 ms. Of these, 125 ms
smoothing performed the best and was compared to the both
standard HDCA and sliding HDCA.
4) Cross Validation: A 10-fold cross validation was used to

determine the accuracy for all classification methods applied in
this study. Data from each subject were divided into 10 equal
sized blocks of trials. Classifiers were trained on nine of the 10
blocks, and then tested on the block left out. This process was re-
peated 10 times such that each of the 10 blocks of trials was used
as the independent testing set once. Each training block was fur-
ther divided into two equal and independent parts. The first part
was used to train the initial HDCA algorithm. That HDCA al-
gorithm is then applied (in sliding fashion) to the second part of
the training set to produce a score signal, and the second level
LR classifier that was then trained from that score signal. Fi-
nally, the entire two-step process was applied to the indepen-
dent test set. Performance was evaluated based on the area under
the receiver operating characteristic curve (AUC). Each partic-
ipant’s performance was calculated as the average AUC calcu-
lated across all 10 cross validation sets. Statistical analyses for
each classification method were performed on the average AUC
for each participant.
5) Signal-to-Noise Ratio: Sliding HDCA classification

transforms multi-channel EEG signals into a single score signal
before using a classifier to discriminate targets from nontargets.
This transformation from a multi-channel EEG signal to a
score signal serves to accentuate discriminating features of
the EEG signal. This effect is best quantified by comparing
the signal-to-noise ratio (SNR) for the EEG signal with the
SNR for the score signal. In each epoch of data, 1 s of data
was designated as “signal” and 1 s of data was designated as
“noise.” The SNR was calculated as follows:

(1)
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where rms is the root mean square as defined below

(2)

SNR was calculated epoch by epoch for both the EEG signal
at electrode Pz and the score signal generated by sHDCA. The
SNR values were averaged for each signal type and compared
using a Wilcoxon sign rank test. The SNR analysis was po-
tentially confounded by the fact that we were directly com-
paring SNR from the score signal, which incorporates informa-
tion from all electrode sites, to a single channel of EEG. To en-
sure that we were not unfairly biasing our results, we also cal-
culated the SNR from the average signal across all EEG elec-
trodes. No significant differences were found between the SNR
of the average EEG signal compared to the SNR of the signal at
Pz; thus, for purposes of reporting only information related to
the SNR for the signal at Pz is presented.
6) Single Trial Feature Detection: As described in the pre-

vious section, the transformation of the multi-channel EEG sig-
nals into a score signal serves to accentuate discriminating fea-
tures of the EEG signal to improve single trial classification.
Accentuating these features also enables accurate detection of
neural features from single-trial data. For all subjects, the re-
action time was predicted from both the score signal and the
EEG signal recorded at Pz. For EEG signals, data from time
points ranging from 200 to 1000 ms after stimulus onset were
used for prediction. For score signals, data from 550 to 1350 ms
were used for prediction (note: the first score sample occurs at
350 ms (see Fig. 4), thus this time window is 200 to 800 ms
relative to the start of the score signal). The score signals were
produced using a 10-fold cross validation. Previous studies have
shown that P300 peak latency can be highly correlated with re-
action time for tasks that require simple stimulus discrimination
and produce fast reaction times [5], [21], [30], [31]. Because the
timing and scalp distribution of the target related neural activity
in this data was indicative of P300-related processes, the time
point at which the signal achieves its maximumwas taken as the
estimated reaction time. Future studies will fully explore alter-
native methods for predicting the peak latency.
An important consideration is the difference in the time scale

between EEG space and score space. Each time point in the
score signal is derived from 500 ms of data from the original
EEG signal. Thus, an 800 ms score signal is derived from 1300
ms of the original EEG data. Thus comparing measures derived
from 800 ms of EEG signal to measures derived from 800 ms of
score signal as we have described above, presents a mismatch
in terms of the time span considered by each method.
We quantified the accuracy of our single trial reaction time

estimates by comparing them to the participants’ reaction time
on a trial by trial basis. The accuracy was quantified as follows.
Accuracy was measured as the percent error for each peak

latency prediction as given below

(3)

where is the actual reaction time and is the predicted
reaction time. To quantify the overall accuracy of all reaction

Fig. 5. Effect of response latency on classification performance for stimulus-
locked (gray) and response-locked (black) data. An HDCA classifier was built
on 25% of the trials based on response times, and then tested on each block of
25% of trials (sorted by response time). Classification performance declines as
the response time of the test set deviates from the response time of the training
set. Each panel shows results from training the classifier on data from the four
quartiles of response time. Error bars show standard deviation across subjects.

time predictions for a given subject, we calculated the distribu-
tion of prediction errors (DPE) for each subject

(4)

DPE was a 101 element vector that was calculated for each
participant. The vectors were then averaged across all 15 par-
ticipants and the mean and standard deviations of these vectors
were reported as the accuracy of reaction time estimates from
EEG and score signals. An area under the curve (AUC) mea-
surement was used to quantify the overall accuracy of reaction
time estimates. A Wilcoxon sign rank test compared the AUC
between EEG and score signals.

III. RESULTS

A. Effect of Temporal Variability on Classification

Fig. 5 illustrates that temporal variability causes a decline in
classification performance using existing methods. In Fig. 5(a),
an HDCA classifier was built on the 25% of the trials with the
fastest response times, i.e., first quartile (Q1) for each partici-
pant, and then tested on each quartile of trials (sorted and binned
by response times) independently. When the Q1 classifier is
applied to Q1 trials, performance is predictably high since the
classifier is tested and trained on the same data. However, com-
paring the results of applying the Q1 classifier to Q2, Q3, and
Q4 trials, classification accuracy drops off linearly as the av-
erage reaction time of the test set deviates from the average re-
action time of the training set when using the stimulus-locked
epochs (gray lines). The response-locked epochs have largely
reduced the temporal variability, and applying the Q1 classifier
to Q2, Q3, and Q4 in these data results in a much smaller drop
in performance than in the stimulus-locked data. It is important
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to note, however; that classification performance does still drop
when using the response locked data. This supports the idea that
there exists neural variability that is not linearly related to or
separate from the response time variability or that there is sig-
nificant variability within each quartile.
A two-way analysis of variance (ANOVA) shows that the

main effects of test set ( , )
and event locking method ( , )
are both significant. Furthermore, the interaction between
test set and event locking method was also significant
( , ), which supports the idea
that the classification performance declines more for stim-
ulus-locked data than for response-locked data. This suggests
that temporal variability in the neural response leads to a
decline in classification performance. Fig. 5(b) shows results
when Q2 is used as the training set. Again as the average
reaction time of the test set deviates from the average reaction
time of the training set—performance rapidly declines for
the stimulus-locked epochs. Response locked epochs again
show a similar, but much smaller decline in performance.
Just as with Fig. 5(a), a two-way ANOVA shows that effects
of test set ( , ), event locking
( , ) and the interaction term
( , are all significant. This pattern
continues in Fig. 5(c) and (d) where the classifier was trained
on Q3, and Q4 trials, respectively.
Fig. 6 provides further evidence that temporal variability

causes dramatic declines in classification performance. The left
two boxes show the classification performance for the standard
HDCA classifiers under the stimulus-locked (Mean AUC
Std: 0.8691 0.0359) and response-locked epochs (Mean
AUC Std: 0.9667 0.0173), respectively. Reducing the
temporal variability resulted in a 75% decrease in classification
error.

B. Classification in the Face of Temporal Variability

Temporal variability exists in the neural signals and has a
large negative impact on single trial classification accuracy. The
question remains: is there a classification scheme that can over-
come the loss of performance caused by the neural temporal
variability without needing to align trials to a physical response?
Sliding HDCA was able to regain most of the accuracy lost due
to temporal variability of the neural response. Fig. 6 presents
a box and whisker plot of the classification results across all
15 subjects. The maroon and blue boxes show the classification
performance for the standard HDCA classifiers under the stim-
ulus-locked and response-locked conditions as described above.
The cyan box represents the classification accuracy seen using
the sHDCA on stimulus-locked epochs. The classification accu-
racy of sHDCA was 0.9365 0.0223 (mean std AUC). As
reported before [20], this represents a 51.5% reduction of classi-
fication error over the standard stimulus-locked HDCA and the
overall difference is statistically different (Wilcoxon Sign Rank
Test ).
Several alternative classification schemes were also applied

to these data. First, sHDCA was applied to response-locked
epochs to evaluate the effect of sHDCA on data with little or no

Fig. 6. Classification results across 15 subjects. Horizontal lines in each box
represent the median and the dot represents the mean. The first (left-most) bar
shows the classification accuracy when using the standard HDCA algorithm on
stimulus-locked data. Reducing the temporal variability by aligning trials by
the response time dramatically improves classification accuracy (second bar).
Applying sHDCA to the stimulus-locked data improves classification accuracy
over the stimulus-locked HDCA, but not to the same degree as when the re-
sponse-locked data was used. Applying sHDCA to response-locked data (fourth
bar) does not change the overall classification accuracy when compared to the
HDCA on response-locked data (second blue). Using a cross correlation based
classification (fifth bar) and a smoothed HDCA (sixth bar) does not improve
classification performance over the standard HDCA on stimulus-locked data
(see text for details on these methods). A portion of these results were presented
at the HCII 2013 Conference [20].

temporal variability. If sHDCA were to improve performance
over the standard HDCA (on response-locked data), then
sHDCA would be improving performance based on factors
other than temporal variability. If sHDCAwere to exhibit worse
classification performance than HDCA, then the use of sHDCA
would be limited to situations where temporal variability could
be predicted a priori. Performance on the response-locked
epochs was almost identical to the HDCA performance on
response-locked data (sHDCA: 0.97 0.02 AUC, HDCA:
0.9667 0.01, Wilcoxon Sign Rank Test ).
Another method applied here was to use the cross correlation

measure as a means of addressing temporal variability. The fifth
box in Fig. 6 shows the classification accuracy of the cross cor-
relation classification. Performance is statistically worse than
sHDCA (Wilcoxon Sign Rank test, ) and not signifi-
cantly different fromHDCA on stimulus-locked data (Wilcoxon
sign rank test, ). The final method was to apply a stan-
dard HDCA to smoothed EEG data. Sliding an HDCA classifier
in timemight simply smooth the input space for the LR classifier
used in sHDCA. If this were true, smoothing the raw EEG sig-
nals prior to applying a standard HDCA should achieve similar
results to sHDCA. The last box in Fig. 6 shows that the accu-
racy of smoothed HDCA actually is not significantly different
from HDCA (Wilcoxon Sign Rank Test, ).

C. Effect of Sliding HDCA

The power of sHDCA stems from its ability to transform the
highly variable EEG signal into a more stable score space signal
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Fig. 7. Effect of sliding HDCA on EEG signal. (A) Shows EEG data at Pz
sorted by the average amplitude calculated between 200 and 1000 ms post-stim-
ulus onset for a single subject (S10). (B) Shows the score signal sorted in the
same order as (A) for the same subject. (C) and (D) show the averaged ERP
waveform of the trials shown in the (A) and (B) respectively. (E) Compares the
signal to noise ratio across all 15 subjects of the raw EEG signal at Pz and the
score signal obtained by sliding an HDCA classifier in time. SNR was calcu-
lated as the rms of the signal (gray regions in C and D) divided by the rms of
the noise (white region in C and D).

that accentuates the most discriminating features of the neural
response (see Fig. 7).
Fig. 7(a) shows a raster plot of the EEG data collected from

subject S10 from electrode Pz for all behaviorally correct target
trials sorted by the average amplitude between 200 and 1000
ms poststimulus onset. Fig. 7(b) shows a raster plot of the score
signal produced by sliding the embedded HDCA classifier in
time. The trials are sorted in the same order as in Fig. 7(a). A
comparison of these two plots illustrates two main points. First,
the EEG signal contains a great deal of trial to trial variability in
the peak amplitude, while the score signal has much more con-
sistent peak amplitude across trials. Second, the score signal is
more stable in the periods away from the discriminating regions
( 0.5 to 0 and 1 to 1.5 s in EEG and 1.35 to 2.35 s in score
time). These effects are more apparent in the trial averaged sig-
nals shown in Fig. 7(c) and (d). This effect can be quantified
by calculating the overall signal-to-noise ratio (SNR) in the two
signal spaces. Score space significantly (Wilcoxon sign rank test

) increases SNR by an average of 18.4% across all 15
subjects [Fig. 7(e)]. To calculate the SNR, we defined the signal
as the areas shaded in gray in Fig. 7(c) and (d) (epoch times cor-
responding to 0 to 1 s in EEG space and 0.35 to 0.85 s in score
space). The region in white in those plots was taken to be the
noise (epoch times corresponding to 0.5 to 0 and 1 to 1.5 s in
EEG space and 1.3.5 to 2.35 s in score space).

Fig. 8. Neural feature prediction for two participants. In all plots, the white dots
represent the actual reaction time, and the black dots represent the predicted
reaction time. (A) Shows reaction time predictions for subject 09 using EEG
space. (B) Shows reaction time prediction for subject 10 using EEG space. (C)
Shows reaction time predictions for subject 09 using score space. (D) Shows
reaction time prediction for subject 10 using score space.

One apparent difference between EEG space and score space
is the shift in time. Recall that sHDCA slides a 500 ms HDCA
classifier in time to produce score space. The HDCA classifier is
first applied to data between 100 and 600 ms poststimulus onset.
This application of HDCA produces a single score, which is as-
signed to 350 ms time point (midpoint of the 100 to 600 ms
window). The HDCA classifier then slides in time sample by
sample producing a single score for each application. For pur-
poses of plotting rasters, the sliding step was carried out across
2 s of data; however only the first second of data was used for
classification (see Fig. 4).

D. Peak Latency Estimation

In addition to the improved classification performance,
sHDCA also enables estimation of reaction time from single
trial data. Here we employ a simple peak-picking method to
estimate the reaction time. Previous work has shown that neural
measures of the peak amplitude is strongly correlated with
reaction time for simple discrimination tasks that produce fast
responses [5], [21], [30], [31]. The same analysis was done with
both the EEG signal at electrode Pz and from the score signal
obtained in sHDCA to compare the quality of estimates from
each signal space. Fig. 8 provides a qualitative comparison
of reaction time estimates for two participants. Subject 09
provides an example where EEG based estimates [Fig. 8(a)]
are highly erratic from trial to trial, while score based estimates
[Fig. 8(c)] are more closely coupled to the reaction times (see
below for quantitative results). Subject 10 provides an example
where both EEG and score based estimates are closely coupled
to the actual reaction times. Fig. 9 provides a more quantitative
assessment of the accuracy of our estimates. Fig. 9(a) quantifies
the predictions seen in Fig. 8. For both participants (S09, S10),
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Fig. 9. Reaction time prediction accuracy is quantified by plotting the per-
centage of estimates (y-axis) that are within a given error window (x-axis). (A)
Shows the accuracy for subjects S09 (solid lines) and S10 (dashed lines) indi-
vidually for both EEG (blue) and score (red) based predictions. (B) Shows the
area under the curve across all 15 subjects. Score space based preditions were
significantly more accurate than EEG based predictions (Wilcoxon sign rank
test ).

the score based predictions had a larger proportion of estimates
with less error. Fig. 9(b) shows that across all 15 subjects, score
based predictions were significantly more accurate (Wilcoxon
sign rank test, ).

IV. DISCUSSION

The current study employed a dynamic RSVP task in which
participants were asked to identify the presence of people
and vehicles in rapidly presented short-duration videos. Av-
eraged ERP analyses demonstrated the existence of temporal
variability in the neural response. Previously, we have demon-
strated that a novel classification method that can overcome
temporal variability in the neural response at the single-trial
level [20]. Here, we extended and validated those results and
demonstrated novel applications for components of the sHDCA
classifier.
We showed that the temporal variability in the neural re-

sponse was largely removed by aligning trials to the button
response (see Figs. 2 and 3 [21]. State-of-the-art classification
methods showed a dramatic decrease in classification accuracy
with increased temporal variability in stimulus-locked data.
Sliding HDCA classification is a novel classification method
described here that reduces classification error by over 50%
over a standard HDCA classifier using the same amount of data.
The improvement in performance was characterized using the

parameter values described in Section II. In addition to those pa-
rameter settings, we also performed a limited sensitivity anal-
ysis to determine the optimal parameter set for this data set.
In particular we varied the size and start time of the temporal
window used by the embedded HDCA classifier. In this anal-
ysis, we compared classification performance by varying the
temporal window start time between 0 and 400 ms, and tem-
poral window end time between 600 and 1000 ms. Based on this
analysis, we chose to present the results from using the smallest
window that maximized performance (i.e., 300 to 800 ms). Sim-
ilarly, the window size for the sliding step was varied in terms
of its start time and end time. Performance plateaus with win-
dows of 1 s or more. The smallest such window that maximized
performance was chosen for analysis ( 200 to 800 ms).
Finally, the sliding interval was also varied. We tested sliding

the initial HDCA classifier by a single time point, every two time
points, every five time points and every 10 time points. In this

test, performance fell off dramatically when the sliding interval
was increased beyond a single time point.
Based on our initial results, we presumed that sliding HDCA

improved classification performance over standard HDCA on
stimulus locked data by accounting for temporal variability in
the neural response. We then applied sHDCA and HDCA to re-
sponse locked data, where temporal variability was largely re-
moved. In this test, had sHDCA performance been substantially
worse than HDCA on the response locked data, then it would in-
dicate that on data with little or no temporal variability, sHDCA
would cause a drop in performance. Alternatively, if perfor-
mance had been substantially higher with sHDCA on response
locked data, then it would indicate that sHDCA was dealing
with something other than temporal variability. Since sHDCA
performance was neither better nor worse than HDCA on re-
sponse locked data, we can conclude that the improvement seen
in sHDCA is primarily due to its ability to address temporal vari-
ability in the neural response. It is important to note however;
that response locked classification accuracy was at 0.97 (Az),
thus there was little room for sHDCA to improve performance.
Thus it is technically possible that there are other factors outside
of temporal variability that enabled sHDCA to improve perfor-
mance.
Another important issue is whether or not this method could

work on data without overt motor responses. This issue is not
addressed directly in this paper because the primary purpose
was to demonstrate effective classification in the face of tem-
poral variability. However, given that tradition BCIs are often
expected to function without overt responses, it is important to
consider whether this method could be effective in such appli-
cations. Previous work has shown that HDCA can effectively
classify neural responses in the absence of motor responses [16].
Since sHDCA is based on, and more importantly directly uses,
HDCA it follows that sHDCA should also be able to effectively
classify neural responses in the absence ofmotor responses. Val-
idation of this claim is warranted, and is currently underway in
a separate study.
The process of transforming a signal from EEG space to score

space by sliding an HDCA classifier in time served to improve
the overall SNR of the signal by an average of 18.4%. This not
only improved classification accuracy, but also enabled more
accurate estimates of reaction time from single trial data using
a simple peak picking method. The results obtained from ap-
plying this method in score space were compared against re-
sults obtained from applying the samemethod to the EEG signal
recorded at Pz. Analysis revealed that score-based estimates
were more accurate than EEG-based estimates.
The reaction time estimates performed in this study yielded

accurate predictions by simply picking the maximum point in an
epoch of score data. Approximately 40% of the estimates were
within 10% of the actual reaction time, and nearly 70% of es-
timates were within 20%. Several previous studies have devel-
oped methods to pick the peak of the neural response [32]–[44].
However, most of these methods either only worked on simu-
lated data or are not able to function on a single trial level. One
previous study has demonstrated the ability to estimate stimulus
onset time based on single trial data [45]. To our knowledge,
no other study has estimated reaction times based on single
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trial data. Others have correlated various features of the ERP
to the response time [4] without explicitly estimating the reac-
tion time.
The reaction time estimation performed in this study com-

pared the accuracy of estimates derived from an 800ms window
in EEG space with an 800 ms window in score space. Since
each time point in score space is calculated from 500 ms of data
from the underlying EEG, there is an apparent mismatch in the
amount of time used to estimate peak latency. A closer analysis
of the time windows reveals that the excess time points allotted
to the score signal is from 0 to 200 ms and 1000 to 1300 ms
in EEG time. Both of these time spans do not contain the peak
of the neural response, and thus serve as extra time which only
serves to add noise into the peak prediction. This extra time only
makes the decision harder for the score signal.
The alternative to this method would be to match the amount

of time in the underlying EEG. One could argue that matching
the temporal windows in such a manner would be a more correct
method for comparing accuracy. Such a time matched analysis
however; would compare a 1300 ms EEG time window against
an 800 ms score space window (or some window size where the
EEG window was 500 ms longer than the score window). All of
the excess time would simply add data points to the EEG signal
that do not contain the peak of the neural activity. These addi-
tional data points would only serve to add noise to the latency
estimates, and thus make it more difficult to accurately pick the
peak of the neural response. Based on these tradeoffs, we chose
to tip the scales towards the EEG in order to show that the even
when we tried to make it easier for the EEG based predictions;
the score based predictions were still more accurate.
The results of the current study provide several avenues for

future research. First, the score space transformationmay enable
the development of tools to enable a better understanding of
neural processing. Current methods for analyzing EEG signals
often rely on averaging several trials to overcome the variability
in the EEG signal. The score space transformation removes a
great deal of trial-to-trial variability from the underlying EEG
signal as shown in Fig. 7(a) and (b) and improves the signal-to-
noise ratio by 18.4%. This decreased variability and improved
SNR may allow for a clearer understanding of how the brain
functions in various situations. In particular, the improved SNR
may enable the detection of novel low amplitude neural features,
or may enable novel analyses to explore brain function based on
a smaller number of trials. Furthermore, using the score space
transformation, we were able to use an exceedingly simple peak
picking approach to estimate the reaction time on a trial-by-
trial basis which suggests that the score space transformation
enables greater information extraction. Such a method may be
generalized to identify other neural features from single-trial
EEG.
In the current data set, there are examples of trials where it

appears that the neural signals are fundamentally different for
trials in which the behavior is the same. In most trials, the brain
produces a prototypical response that corresponds to the data the
classifier was trained on when a target is seen, and these trials
usually lead to the participant pressing the button. However,
there are also trials where this relationship fails. Furthermore,
in some trials, the prototypical response is produced, enabling

the classifier to correctly identify the target; however the par-
ticipant fails to press the button. In other trials, the participant
correctly presses the button, but the neural activity is drastically
different from the “normal” activity and thus the classifier fails
to detect the target. Developing single-trial analysis tools that
can identify neural features will help investigate how the brain
works in these scenarios.
A second avenue of future research will be to continue the

development of single-trial classification methods that can over-
come temporal variability in the neural response. We were able
to develop a novel classification method that reduces classifi-
cation error by over 50% in the presence of temporally vari-
able neural signals. While this finding represents a significant
advancement over current state-of-the-art methods, even fur-
ther improvements may be possible. Initial analysis showed that
using the response-locked data in which most of the temporal
variability had been removed; classification error was decreased
by over 75%. If we are able to develop a method to accurately
identify neural features as described above, then we may be
able to use that method to align the trials in real-time in order
to reduce the temporal variability prior to classification. Such a
method could potentially reach or even exceed accuracy levels
of the response-locked classifier even on nonresponse tasks.
Finally, this study has broad implications for the future of

human–machine interactions. Recent advances in the computer
technology, signal processing, and neuroscience have led to the
development of a wide range of BCIs, and have the potential
for many future technologies [46]. In this study, we focus on
RSVP-based BCIs for target detection as one specific BCI that
has been developed. sHDCAmay enable various advancements
to current systems. By creating a method to enhance classifi-
cation in the face of temporal variability without using infor-
mation related to a behavioral button response, we enable the
development of applications that either replace behavioral re-
sponses with neural classification or use neural classification to
augment behavioral responses that may be unreliable. Further-
more, sHDCA may also enable identification of targets from a
continuous stream of EEG data, thereby removing the need to
perform all analyses time-locked to stimulus onset. Sliding the
initial HDCA classifier in time produces a single score signal
in time with a signal to noise ratio that is 18.4% greater than
the original EEG signal. From this continuous score signal, it
may be possible to identify the neural response to target stimuli
without epoching the data relative to stimulus onset. Removing
the need to time-lock analysis to specific events could enable fu-
ture image analysis paradigms that follow a more natural search
pattern (as opposed to an RSVP paradigm). Such advancements
will be necessary to move BCI technologies into “real-world”
environments.
The current study explicitly addressed classification in the

face of temporal variability. In a data set where variability
likely arose due to a combination of exogenous (varied stim-
ulus difficulty) and endogenous (changing attention/fatigue
levels through experiment) factors, we demonstrate that using a
method designed to account for temporal variability can reduce
classification error by over 50%. In more complex, “real-world”
environments, temporal variability is also likely to occur as a
result of system properties such as the inability to precisely
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synchronize EEG and event data and the inability to precisely
time the occurrences of events. While the source and amount
of the variability may be different, our results indicate that em-
ploying methods specifically designed to account for temporal
variability will dramatically improve classification accuracy in
these situations. Furthermore, this approach may also enable an
accurate prediction of neural features on a trial-by-trial basis,
which has implications for basic neuroscience research and
future BCI technologies.
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