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Abstract—Combining electrophysiological and hemodynamic
features is a novel approach for improving current performance
of brain switches based on sensorimotor rhythms (SMR). This
study was conducted with a dual purpose: to test the feasibility
of using a combined electroencephalogram/functional near-in-
frared spectroscopy (EEG-fNIRS) SMR-based brain switch in
patients with tetraplegia, and to examine the performance dif-
ference between motor imagery and motor attempt for this user
group. A general improvement was found when using both EEG
and fNIRS features for classification as compared to using the
single-modality EEG classifier, with average classification rates of
79% for attempted movement and 70% for imagined movement.
For the control group, rates of 87% and 79% were obtained,
respectively, where the “attempted movement” condition was re-
placed with “actual movement.” A combined EEG-fNIRS system
might be especially beneficial for users who lack sufficient control
of current EEG-based brain switches. The average classifica-
tion performance in the patient group for attempted movement
was significantly higher than for imagined movement using the
EEG-only as well as the combined classifier, arguing for the case
of a paradigm shift in current brain switch research.

Index Terms—Brain switch, electroencephalography (EEG),
functional near-infrared spectroscopy (fNIRS), tetraplegia.
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I. INTRODUCTION

M OTOR-IMPAIRED individuals, such as tetraplegia
patients, could potentially benefit from the use of a

brain–computer interface (BCI). Such a system would enable
them to control e.g., a wheelchair or orthosis, driven partially
or completely by mental actions [1], [2]. Many BCIs are based
on changes in sensorimotor rhythms: event-related desynchro-
nization (ERD) and-synchronization (ERS) [3], which can be
detected in the electroencephalogram (EEG) of an individual
who is intending, imagining or executing movement.
“Brain switch”-type BCIs detect one specific mental state

from ongoing brain activity, i.e., the default or “rest” state.
Therefore, their output is limited to a binary decision: either
keeping the system in its current state or switching it to the
second state. However, this drawback comes with the benefit of
a low level of complexity on the part of both the system and the
user. The user is only required to perform a certain task when
there is an intention for communication or system change. In
the remaining time the user can relax or focus on a different
task. As for the detection performance, the distinction between
one motor task and a baseline state may be more robust than
the distinction between two different types of motor task, thus
limiting the number of errors [4]. A brain switch could also
function as the “on/off button” of a regular BCI, which in
turn may have a more complex set of tasks or instructions and
therefore a larger range of outputs [5].
Although brain switch systems driven by motor tasks are

typically based on electrophysiological signals, some studies
have shown the feasibility of using functional near-infrared
spectroscopy (fNIRS) instead [6], [7]. Optical BCIs make use
of concentration changes in the cerebral blood flow during
increased neural activity, for instance motor tasks during which
an increase of oxygenated hemoglobin (oxy-Hb) along with
a decrease in deoxygenated hemoglobin (deoxy-Hb) occurs
[8]. Recently a few studies have looked into the possibility of
combining these hemodynamic responses with their electro-
physiological counterparts, in a multimodal or “hybrid” BCI
[9]. Fazli et al. showed promising classification performance
in healthy participants when combining features from both
modalities [10]. In the current study, we examined whether this
principle works in patients with tetraplegia, an important target
user group of brain switch technology.
Secondly, we tested the difference in performance between

attempted and imagined movement. In most BCI studies,
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Fig. 1. Visualization of experimental sequences. Sequences consisted of two trials of each condition: “executed/attempted movement,” “imagined movement,”
and “no movement.” The 5 s before each movement period were used as a baseline for computing grand average plots of the brain responses.

healthy subjects as well as patients are instructed to perform
motor imagery only, regardless of their motor abilities. How-
ever, motor imagery requires active inhibition of motor neural
activation. Apart from the fact that brain patterns during motor
imagery are less distinguishable from rest than motor execution
patterns [4], the task may also feel less natural, and therefore
more difficult, to perform. Therefore, letting a motor-impaired
individual attempt rather than imagine a certain movement may
result in higher performance rates. Here, using EEG and fNIRS
separately as well as in combination, we test the feasibility of
using motor attempt instead of motor imagery as a task for
brain switch control.

II. METHODS

A. Participants

Ten male patients with tetraplegia (mean age 48.9 years) and
12 male controls (mean age 45.9 years) participated in the study.
Nine patients had a complete lesion at C5-C6, one patient had
a complete lesion at level C4-C5. Impairments had all been
caused by traumatic spinal cord injury (SCI). The time since the
injury varied between 11 and 40 years (mean 25.2 years). The
protocol was approved by the institutional review board and all
participants gave informed consent. After data collection, data
from three patients and four controls were excluded from further
analysis due to insufficient signal quality and excessive artifacts
in one or both modalities.

B. Materials and Procedures

Subjects were presented with six sequences of movement
tasks with visual instructions, each sequence consisting of six
task trials (Fig. 1). Each trial lasted 15 s. The three types of task
participants were asked to perform were “rest” (do nothing),
“movement” (tap your fingers and thumb continuously), and
“imaginedmovement” (imagine tapping your fingers and thumb
continuously).When patients received the instruction of “move-
ment” they were asked to attempt performing the actual move-
ment even though the movement could not truly be executed.
Each type of movement was performed 12 times with the trials
equally divided over all sequences. Instructions were presented
randomly, with the restriction that the first sequence trial was
always “rest.” Intervals between trials lasted between 27 and
33 s to ensure sufficient recovery time (i.e., return to baseline
levels) for the hemodynamic responses. After “no movement”
trials however, the return to baseline period lasted only 5 s as no
significant deviation from baseline should have occurred. Total

Fig. 2. EEG and fNIRS channel configuration.

recording time per participant, including short breaks, was ap-
proximately 30 min.
EEG was recorded with an 8-channel passive Porti system

(TMSi, Enschede, the Netherlands), the electrodes placed on
positions C3, FC3, C5, CP3, C4, FC4, C6, and CP4 according
to the international 10/20 system. Data was sampled at 2048 Hz
and acquired with the Fieldtrip toolbox in MATLAB [11].
Two fNIRS channels were recorded with a continuous-wave

system (OxymonMK III, Artinis, Zetten, The Netherlands). Six
optical fibers with straight ends were used: two transmitters
(wavelengths 764 and 858 nm) and one receiver per channel.
For each channel, an inter-optode distance between the target
transmitter and the receiver of 35 mm was chosen, whereas the
reference transmitter was placed at 10 mm from the receiver
in order to correct for hemodynamic noise from e.g., the scalp
and skull [12]. The channels were positioned around C3 and C4.
Data was sampled at 250 Hz and acquired with Oxysoft version
3.0.43.
EEG electrodes and fNIRS optodes were mounted side-by-

side on a specially constructed cap. Fig. 2 shows the full con-
figuration.
All patient recordings and two control recordings took place

at the participants’ homes, the remaining control experiments
were conducted at the institutional lab.

C. Analyses

1) EEG: After downsampling the EEG data to 256 Hz and
removing the DC offset, linear detrending was performed to re-
move slow drifts. Visual inspection of the data revealed class-
specific data contamination in a very low number of trials and
channels, which were therefore excluded from further analysis.
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Spectral features were averaged over all subjects in order to
compute a grand average time-frequency plot visualizing the
power decrease (ERD) during the movement tasks.
2) fNIRS: The optical signals from the fNIRS acquisition

device were converted to hemoglobin changes using the mod-
ified Beer Lambert law [13]. This converts the optical density
changes to oxygenated and deoxygenated (HHb) con-
centration changes (in the literature, and HHb are some-
times referred to as HbO and HbR, respectively). The differen-
tial pathlength factor (DPF) was selected individually for each
subject according to their age [14]. Slow drifts were removed
with a 0.01 Hz high pass filter. In order to enhance the signal to
noise ratio, the concentration changes for the reference trans-
mitter were scaled to fit the obtained concentration changes
from the target transmitter with a least squares approach [15].
Subsequently, the scaled concentration changes of the refer-
ence transmitter were subtracted from the far transmitter. This
was done to correct for systemic noise, including hemodynamic
changes from scalp and skull, and was performed for and
HHb and both channels. Since activities faster than 0.2 Hz were
not expected the concentration changes were further low pass
filtered to 0.2 Hz and were baselined for each trial and channel
to the period from 5 to 0 s before task onset. The filtered
and HHb changes were used as the features for classification.
Computation of the grand average plots included two further

preprocessing steps. First, because of the large individual vari-
ations in and HHb, the concentration changes were nor-
malized so that the actual/attempted movement condition had
unit power. Subsequently, the imagined movement condition
was normalized for each subject with the same scaling factor
as for the actual/attempted movement condition.
3) Classification: For both modalities, trials were split into

3-s segments. This increases the number of training examples
to 60 per movement condition and allows for estimation of the
classifier performance for a specific segment and hence time
period. For EEG classification power spectral features between
8 and 24 Hz (5 frequency bins 8 channels) were used, which
were computed using Welch’s method with a 4 Hz frequency
resolution [16]. For fNIRS, three separate classifiers were
trained: an classifier using the average concen-
tration change for both channels (1 average 2 channels), an
HHb classifier using the respective HHb concentration changes
and an classifier using both the and HHb
average concentration changes for both channels (2 averages
2 channels). The EEG classifier was evaluated on the time

period of 0–15 s while the fNIRS classifiers were evaluated on
the time period of 3–18 s, since a slower response was expected
for the latter.
Performance of an -regularized linear logistic regression

classifier [17] was computed for both EEG and fNIRS for
three binary problems to distinguish each individual move-
ment condition from the “rest” condition: 1) “executed move-
ment” versus “rest” (controls only), 2) “attempted movement”
versus “rest’” (patients only), and 3) “imagined movement”
versus “rest” (both groups). Classification performance was
evaluated with a chronological (block-wise) 12-fold cross-val-
idation where a block corresponded to one 15-s trial, i.e., five
consecutive 3-s segments. For each fold two blocks (one per

condition) were removed from the training set to make the test
examples.
In order to facilitate a probabilistic combination of the EEG

and each of the three fNIRS classifiers, the obtained linear pre-
dictions were calibrated separately for each classifier. The cal-
ibration was performed by fitting the classifiers’ linear predic-
tions to the logistic function so each classifier returns valid prob-
abilities [18]. For any set of single predictions [here, we con-
sider the prediction of the EEG classifier and the prediction of
the fNIRS classifier(s)] the class membership decision of the
segment was based on simple addition of each classifier’s linear
predictions. This corresponds to a naive Bayesian combination
of the predictions, irrespective of the modality (see the Ap-
pendix).
The binomial confidence with the Agresti–Coull correction

[19] was used to test for performance significantly higher than
chance. The statistical significance between the obtained clas-
sification rates of different classifiers and task conditions was
evaluated using a one-tailed dependent samples t-test. Statistical
significance between the control group and the patient group
was determined by means of a two-tailed independent samples
t-test.

III. RESULTS

Group average responses for all movement conditions show
expected patterns in both measuring modalities. Time-fre-
quency plots visualizing spectral features from the EEG during
and after the movement tasks (Fig. 3) show a clear ERD/ERS
pattern in the control group for actual movement and a rela-
tively similar though weaker pattern for imagined movement,
whereas for the patient group only ERD is clearly visible in
either condition. In Fig. 4, normalized fNIRS group averages
for and HHb are shown, with the two fNIRS channels
averaged. A typical increase in can be observed for both
groups and movement types. The expected decrease in HHb is
observed in all conditions except for attempted movement in
the patient group.
The individual classification results for each movement type

and measuring modality are shown in Table I (control group)
and Table II (patient group). The EEG single-segment classi-
fication rates for the healthy subjects are on average 84% and
77% for actual and imagined movement, respectively. For the
patient group the average rates are significantly lower

at 73% and 63% for the two movement types. The fNIRS
single-segment classification rates for the healthy subjects are
77% for actual and 59% for imagined movement, whereas for
the patients the rates are 70% and 65% for attempted and imag-
ined movement, respectively. Contrary to EEG-classification,
the performance of the fNIRS classifiers is not significantly dif-
ferent between the control group and the patient group. For
EEG, the difference in classification rates between actual/at-
tempted and imagined movement is significant
while for fNIRS in the control group actual movement rates are
significantly higher than imagined movement rates ,
but in the patient group the difference between attempted and
imagined movement does not reach significance .
When the EEG classifier is combined with the fNIRS clas-

sifier, a significant increase as compared to EEG classification
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Fig. 3. Average time-frequency plots from the EEG, channel CP3. Blue represents a power decrease, red a power increase. “AM” is the attempted or actual
movement condition, “IM” is the imagined movement condition. (a) Controls AM. (b) Controls IM. (c) Patients AM. (d) Patients IM.

only is observed in the classification performance for each con-
dition , except for motor imagery in the control group

. Utilizing both modalities the classification rates for
the control subjects rise to 87% (actual) and 79% (imagined).
For the patients the combined rates are 79% (attempted) and
70% (imagined). Also for the combined classifier the perfor-
mance is significantly higher in the actual and attempted move-
ment condition than in the imagined movement condition

.

IV. DISCUSSION

Adding hemodynamic information to the more commonly
used electrophysiological features may improve brain switch
performance. Here, for an important target user group of such
systems, namely patients with tetraplegia, it was shown that a
combination of both modalities indeed improves classification
performance as compared to an EEG-only BCI. Secondly, for
both EEG alone and the combined EEG-fNIRS classifier it was
shown that classification performance is higher when patients
are asked to attempt their movement rather than perform motor
imagery.
For every condition except the motor imagery condition in

the control group, the combined classifier yielded a significantly

better performance. Interestingly, Fazli et al. [10] found signif-
icant improvement for motor imagery but not motor execution.
However, that study differs in two major respects as compared
to the study presented here. Firstly, classification was based on
a traditional left-versus right hand paradigm, rather than the
brain-switch approach we adopted here, i.e., movement versus
no movement. Secondly the number of channels used was much
higher in that study: 24 fNIRS channels and 37 EEG channels,
as compared to two fNIRS channels and eight EEG channels in
our study.
The fact that performance improves by adding an additional

modality, indicates that the decisions made by the individual
classifiers are at least to some degree uncorrelated, even though
they are derived from the same underlying neurological pro-
cesses. Indeed, the mean correlation of the decision values be-
tween EEG and fNIRS over all groups and conditions turns out
to be as low as 0.07. The gain of the combined classifier is ap-
parent for most users whose classification performance based on
only EEG is relatively low. This could mean that several users
who have been considered to be “BCI illiterate” [20] until now
based on low EEG-BCI performance, may in fact turn out to be
able to control a BCI relatively well, using the same task, but by
expanding the hardware with (or replacing it by) fNIRS chan-
nels.
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Fig. 4. Grand average normalized concentration changes for both fNIRS channels. (black) and HHb (gray) are shown, along with the variance over subjects
(shaded area, one standard deviation from the mean). (a) Controls AM. (b) Controls IM. (c) Patients AM. (d) Patients IM.

We obtained the classification performance reported here
with a relatively low number of channels, which has important
implications for practical usability as it allows for a very quick
setup. Further research might provide insight into whether a
simple montage consisting of any low number (4–10) of com-
bined EEG and fNIRS channels means an improvement over
using the same number of channels from a single modality.
If that proves to be the case, simply replacing certain EEG
channels with fNIRS rather than adding extra channels would
mean performance increase of the brain switch without com-
promising too much on setup time.
The current performance might be improved by using more

advanced methods of combining the EEG and fNIRS features as
well as by optimizing the experimental paradigm. In this offline
study, trials were split into 3-s segments. Additional analysis of
the full 15-s trials of the current data set showed a large perfor-
mance increase when delaying the time until a decision is made.
When the combined EEG-fNIRS classifier decides after the full
15 s, accuracy for the patient group is 90% for attempted move-
ment and 82% for imagined movement. To fully determine the
possible speed/accuracy tradeoff of brain switch control with
the paradigm presented here, an online study using the full trials
is required. Furthermore, a limitation of the current study is
the relatively low number of trials per participant. Therefore,
a more extensive study with larger amounts of data per partici-
pant would be an important step towards validation of the setup

proposed here. However, a longer experimental duration would
be needed, making participation more strenuous for the patients.
As a result of the inherent slowness of the BOLD response

[21] detection of and HHb concentration changes is
slightly delayed as compared to detection of ERD. For the same
reason, it is also sustained until after movement has stopped.
ERD on the other hand disappears almost instantly after move-
ment has stopped and is replaced by ERS. Until a few seconds
after movement offset, fNIRS features could continue to be
classified in a similar fashion as during the movement, while
the post-movement ERS could be incorporated as an extra
EEG feature. With a more efficient use of data like this, the
movement period could possibly be shortened to e.g., 5 or 10 s
without performance loss. Although in the time-frequency plots
of the current data set ERS is not clearly visible for the patient
group, more extensive analysis would need to be performed to
quantify the actual benefit of a combined ERD/ERS classifier
for this group.
An issue that has not been addressed in the current study is

intersession variability. Ideally, a brain switch such as the one
proposed here would not require recalibration prior to every
single use. As hemodynamic responses especially suffer from
variations over time, sophisticated methods for reducing or even
eliminating recalibration time are of great importance [22].
Although traditionally SMR-based BCIs exploit signals

induced by motor imagery, a few studies have adopted motor
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TABLE I
INDIVIDUAL AND MEAN CLASSIFICATION RATES BASED ON SINGLE 3-S SEGMENTS FOR THE CONTROL GROUP. EACH SUBCOLUMN OF THE FNIRS COLUMN
REPRESENTS THE SINGLE-SEGMENT CLASSIFICATION RATES FOR ONLY OXY FEATURES , ONLY DEOXY FEATURES (HHB) AND WHEN BOTH

CHROMOPHORES ARE USED FOR CLASSIFICATION . EEG+ SUBCOLUMNS REPRESENT THE COMBINATION OF THE CLASSIFIER OUTPUTS OF THE
EEG CLASSIFIER WHEN COMBINED WITH EITHER THE , HHB OR THE CLASSIFIERS. FOR EEG CLASSIFICATION THE SEGMENTS BETWEEN
0 AND 15 S AFTER TASK ONSET WERE USED, FOR FNIRS THE SEGMENTS BETWEEN 3 AND 18 S AFTER TASK ONSET. COMBINATION WAS PERFORMED BY

ADDING THE PREDICTIONS OF THE EEG CLASSIFIER FOR THE WHOLE TIME RANGE (0–15 S) AND THE NIRS CLASSIFIER FOR A REDUCED TIME RANGE (3–15 S).
CLASSIFICATION RATES ABOVE 62% ARE SIGNIFICANTLY HIGHER THAN CHANCE

TABLE II
INDIVIDUAL AND MEAN CLASSIFICATION RATES BASED ON SINGLE 3-S SEGMENTS FOR THE PATIENT GROUP. SEE TABLE I FOR FURTHER DETAILS. FOR P2, EEG

CHANNELS FC3 AND CP3 WERE REMOVED. THEREFORE, EEG CLASSIFICATION RATES FOR THIS SUBJECT ARE BASED ON SIX CHANNELS ONLY

attempt instead [23], [24]. BCI paradigms are commonly tested
with healthy users, whose actual movements might induce
confounding factors as compared to patients in whom no true
muscle activation may be present. Motor imagery is considered
a relatively representative task of eventual application use:
if a patient cannot use actual movement to control the BCI,
neither should a healthy user when testing the feasibility of
the BCI. However, why the complex task of motor imagery is
often retained when moving from healthy subjects to potential
users remains unclear. In the current study we compared BCI
performance for both types of movement within the same
subjects. Here we have shown that for both the individual EEG
classifier and the combined classifier attempted movement
yields a significantly higher average classification rate than
imagined movement. This may partly be explained by the fact
that all patients had retained at least some form of movement
in their upper extremities, mostly their wrists. Even though the
fingertapping movement could not be executed, the attempt
may have triggered slight activation of other arm muscles.
In the future, a systematic comparison between patients with
different levels of impairment may provide insight into the in-
fluence of residual activity in certain muscles on signal strength
and therefore chance of detection during attempted movement.
A second explanation could be that motor imagery and

attempt are intrinsically different tasks in one very important

respect: whereas during attempted movement the intention of
moving is in fact present, imagery requires suppression of true
movement (intention). Mentally, motor attempt is the exact
same task as motor execution, except for the lack of sensory
and visual feedback. Imagery on the other hand, although
requiring many of the same processes as execution, is driven
by a different intention.
Regardless of which of these or other factors mostly con-

tribute to stronger signals during attempted movement, this ad-
vantage could and should be exploited, as the gain in perfor-
mance is apparent. Without trying to generalize over every BCI
paradigm and user group, we conclude that at least for the par-
ticular application of a brain switch for patients with acquired
(rather than congenital) impairments, the actual source of the
signals is irrelevant as long as the user retains control. For pa-
tients with congenital impairments however, who were not in-
cluded in this study, somatosensory representations of limbs
may be different than for SCI patients.
In addition, EMG signals could be incorporated in the system,

thus introducing another component to the hybrid BCI. Instead
of using the residual movement and the brain signals for dif-
ferent control outputs, their signals could be merged in order to
increase brain switch performance [25]. Moreover, in an fMRI
study cortical activation patterns of attempted movement in pa-
tients with tetraplegia were shown to correspond well to those
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of executed movement in healthy controls [26], whereas another
study showed similar results in patients with paraplegia [27].
This might be an indication that if motor attempt will be used
by patients for BCI control, it is favorable to test the paradigm
with healthy users performing actual instead of imagined move-
ment.
On average, the patients in this study became paralyzed 25

years ago. Nevertheless, movement-related signatures could be
detected in every patient in at least one modality and most often
in both EEG and fNIRS. In the literature, both invasive and non-
invasive recording methods have been demonstrated to be fea-
sible for neuroprosthesis control in patients with tetraplegia [1],
[28]. The current evidence adds to the impression that nonin-
vasive methods, in this case a combined EEG-fNIRS system,
could provide adequate brain switch control for motor-impaired
individuals. Although noninvasive systems may not (yet) be
as robust as invasive alternatives, the advantage of avoiding
surgery makes it worthwhile exploring this area further.
Summarizing, we have shown that for an important target

group of brain switch technology, namely patients with
tetraplegia, a combined EEG-fNIRS classifier yields promising
performance rates, especially when the users are instructed to
attempt their movements rather than imagine them. Further re-
search is needed to shed light on the feasibility of this paradigm
in an online setting.

APPENDIX

For the EEG-fNIRS combined classifier, as well as for ob-
taining the predicted labels of the full 15-s trials (see discus-
sion), individual classifier predictions were summed. Here, we
show that this is equivalent to a naive Bayesian combination of
the single example (from now on: “trial”) probabilities.
The logistic regression classifier gives the posterior proba-

bility which is the probability that the true class
of trial is given the trial data . When considering multiple
predictions we get

(1)

Using Bayes theorem and the conditional independence of
given the class we get

(2)

assuming , using Bayes theorem on
and given that

gives

(3)

For logistic regression the mapping of linear predictions is done
through the logistic function

(4)

where are the linear predictions based on data . Using the
fact that

(5)

Combining (3) and (5) we obtain

(6)

showing that the naive Bayesian combination of single trial
probabilities is equal to the logistic transformation of the
summed linear classifier predictions.
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