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Stability Radius as a Method for Comparing
the Dynamics of Neuromechanical Systems

Jeffrey T. Bingham and Lena H. Ting

Abstract—Robust motor behaviors emerge from neuromechan-
ical interactions that are nonlinear, have delays, and contain re-
dundant neural and biomechanical components. For example, in
standing balance a subject’s muscle activity (neural control) de-
creases as stance width (biomechanics) increases when responding
to a lateral perturbation, yet the center-of-mass motion (behavior)
is nearly identical regardless of stance width. We present stability
radius, a technique from robust control theory, to overcome the
limitations of classical stability analysis tools, such as gain margin,
which are insufficient for predicting how concurrent changes in
both biomechanics (plant) and neural control (controller) affect
system behavior. We first present the theory and then an applica-
tion to a neuromechanical model of frontal-plane standing balance
with delayed feedback. We show that stability radius can quan-
tify differences in the sensitivity of system behavior to parameter
changes, and predict that narrowing stance width increases system
robustness. We further demonstrate that selecting combinations of
stance width (biomechanics) and feedback gains (neural control)
that have the same stability radius produce similar center-of-mass
behavior in simulation. Therefore, stability radius may provide
a useful tool for understanding neuromechanical interactions in
movement and could aid in the design of devices and therapies for
improving motor function.

Index Terms—Biomechanics, delay systems, neural engineering,
neurofeedback, robust control.

I. INTRODUCTION

B IOLOGICAL systems are composed of many complex,
interacting components and as Aristotle remarked over

two millennia ago “…the whole is something beside the parts.”
Even with sophisticated computational models, behaviors
resulting from such interactions are difficult to analyze and
compare using tools from classical control theory that divide
a system’s dynamics into components that are to be controlled
(plant) and those that are added to achieve a desired behavior
(controller). For example, neuromechanical models of human
movement contain redundant biomechanical and inherently
delayed neural feedback control components that can change
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concurrently in order to achieve a desired behavior. Unfortu-
nately, classical stability analysis tools, such as gain margin [1],
cannot be used to compare behavior across neuromechanical
conditions where both biomechanics (plant) and neural control
(controller) change during a task. To overcome these challenges
we introduce the technique of stability radius, an approach that
builds upon eigenvalue analysis as a compact representation of
dynamical behavior.
The technique of stability radius is useful for identifying dif-

ferent sets of parameter values that can produce similar behav-
iors, or quantifying the sensitivity of a system’s stability to pa-
rameter changes. The mathematical theory is derived from the
fields of pseudospectral analysis [2], [3] and robust control [4],
[5]. Initially developed for linear time invariant systems, it has
been expanded to systems with feedback delays [6]–[8]. Many
techniques for stability analysis, such as Lyapunov’s indirect
method, utilize eigenvalues to classify the stability of dynamical
behavior. However, the eigenvalues by themselves do not indi-
cate sensitivity of stability to perturbations, modeling errors or
parameter changes. Furthermore, it may be difficult to calculate
eigenvalues for some systems, e.g., delayed systems having an
infinite number of eigenvalues. Instead of using eigenvalues di-
rectly to characterize stability, the stability radius gives a scalar
measure of the smallest change to any system parameter that
would result in instability. This provides a single measure to
compare stability of one system against itself as parameters
change, as well as against entirely different systems. Stability
radius can also be used to test the sensitivity of system stability
to model parameters. This single number can be used to classify
a system’s dynamical behavior on a relative scale of stability
and to predict system responses across different modeling con-
ditions.
Given these characteristics, stability radius may be well

suited to quantify changes in stability due to changes in biome-
chanical and neural feedback parameters in neuromechanical
systems. Neuromechanical systems in different biomechanical
contexts can achieve similar motor performance by altering
biomechanical configuration, neural strategy, or both [9].
Experiments in the upper extremity suggest that changes in
biomechanical configuration and neural control are the result
of a neural strategy to maximize stability in the presence of
a disturbance [10]–[12]. Here, our application of the stability
radius to the control of frontal-plane balance control is moti-
vated by the experimental observation that subjects respond
to support surface translations in the frontal-plane with nearly
identical center-of-mass motion regardless of their stance
width [13]; however, muscle activity is observed to decrease as
stance width increases, demonstrating a concurrent change in
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neural control [13]–[15]. We propose that the similar behavior
observed across stance widths during standing balance may
be the result of a neural strategy to select feedback gains that
maximize stability for a given stance width. Previously, we
developed a model of frontal-plane balance that demonstrated
increasing stance width necessitates decreasing delayed feed-
back gains to maintain stability [16]. However, using classical
stability analysis we were not able to compare stability across
biomechanical contexts and could not quantify the contribution
of neural versus biomechanical parameters in achieving a given
behavior. This was because traditional tools to compare sta-
bility, such as gain margin, are formulated based on the premise
that the stability of the plant, or musculoskeletal system in our
case, is fixed and only alterations to control affect stability.
Here, we present the theoretical background and context to

introduce the stability radius technique for a linearized system
with and without delays. Next, we apply this technique to
our frontal-plane model of balance control [16] to illustrate
its utility in characterizing changes in stability from different
delayed feedback gains (controller parameters) and stance
widths (plant parameters). We use stability radius to identify
feedback gains that produce either maximum stability or similar
performance across stance widths, i.e., postural configurations.
We show that model feedback parameters that have the same
stability radius across postural configurations also produce
similar trajectories in simulations. The stability radius therefore
predicts how neural control and biomechanical parameters
interact to produce a desired behavior.

II. THEORY

We introduce stability radius as a robust measure of the sen-
sitivity of a system’s asymptotic stability to parameter changes.
Starting with the linearized equations of motion we provide a
brief overview of how to identify the characteristic equation and
the eigenvalues for nondelayed and delayed systems. Next, we
introduce -pseudospectra as a method to analyze the sensitivity
of eigenvalues to parameter changes. Finally, we connect the
concepts of stability and -pseudospectra to give a definition of
stability radius.

A. Characteristic Equation

Here, we show how to generate a characteristic equation for
a large class of ordinary differential equations (ODEs) with
delays. We start our discussion assuming the dynamic equations
are linear and first order. This can be achieved for nonlinear
systems by linearizing the ODE about an equilibrium point
using Taylor-series expansion and converting higher-order
linear ODEs into a system of first-order ODEs [17]. We first
show how to generate the characteristic equation for a linear
system of first-order ODEs without delays and then expand this
to delayed systems.
A system of linear, constant-coefficient, first-order ODEs can

be described with a system matrix, , and state vector,

(1)

The deterministic solution for this system is a matrix exponen-
tial (2), which can be evaluated by writing the system as (3)
where the new matrices are the result of the eigenvalue decom-
position,

(2)

(3)

The matrix, , is a diagonal matrix whose elements are the
eigenvalues of the matrix, , and are found algebraically by
solving for the roots of the characteristic (4) [17]

(4)

A similar method can be applied to linear, constant-coeffi-
cient, delayed differential equations (DDE) of the retarded type
(5). A retarded DDE has delays only in differential terms whose
order is less than the maximum differential order of the system.
This form of equation can be written where the terms collected
in matrix, , are associated with the th delay,

(5)

The characteristic equation for the delayed system (6) now
includes exponential terms [18]. The addition of transcendental
functions results in an infinite number of solutions to this char-
acteristic equation [19]; therefore, DDEs of this form will have
an infinite number of eigenvalues

(6)

B. System Stability

Eigenvalues are critical descriptors of a dynamical system’s
stability. We first give an overview of the definition of eigen-
values of a matrix, show how this leads to a characteristic equa-
tion and then define asymptotic stability.
The eigenvalues of a system are the set of complex values,

, for a matrix, , associated with eigenvectors,
, that satisfy

(7)

After rewriting (7) we require that solutions for eigenvalues
and eigenvectors nontrivially satisfy the following relation:

(8)

For (8) to hold and satisfy , then the resulting matrix of
must be singular. In other words, if the inverse existed

(i.e., the matrix was nonsingular) then , which violates
the definition of the eigenvector. Thus, to ensure that the matrix
is singular its determinant must be zero. This leads to the char-
acteristic equation for a matrix, which is identical in form to the
characteristic equation of an ODE (4)

(9)
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In linear ODEs, with or without delays, eigenvalues are
the exponential constants that define the time evolution of
the system behavior. Eigenvalues with positive real part are
considered unstable, because as time advances the eventual
behavior of the system will tend to depart from equilibrium.
Thus, asymptotic stability of a linear system is defined by all
eigenvalues having strictly negative real part. Similarly, this
definition of asymptotic stability may be extended to the class
of nonlinear ODEs with Lyapunov’s Indirect Method, which
states that the eigenvalues of the linearized system about an
equilibrium point describe the system’s stability if the eigen-
values are not identically zero [20].

C. -Pseudospectra

Here, we define -pseudospectra and show its relationship to
eigenvalues. We give equations for calculating -pseudospectra
and then describe how this gives a measure of sensitivity of
eigenvalues to parameter changes.
The sensitivity of an eigenvalue to parameter change can be

found by comparing eigenvalues of the original system to new
eigenvalues calculated from a system with altered parameters.
For a specified magnitude of parameter change there are a set
of new eigenvalues, which are displaced by some amount com-
pared to the eigenvalues of the original system. This set of new
eigenvalues (10) is the -pseudospectra for a corresponding set
of parameter perturbations, , whose magnitude is less
than a specified value, . The magnitude of the perturbation ma-
trix, , can be evaluated using any matrix norm and we will
use the Frobenius norm, or two-norm. Thus, the distribution of
-pseudospectra about the eigenvalue give a measure of sensi-
tivity to a specified amount of parameter change

with (10)

An alternate definition, to avoid calculating eigenvalues di-
rectly, is to use the knowledge that the -pseudospectra are the
perturbed eigenvalues, . First, consider the definition
of the new eigenvalues, with normalized eigenvectors,

(11)

Next, the parameter perturbation matrix is defined as,
, with , and . Here, we use the

notation of a superscript asterisk to designate the complex
conjugate of as . Then, we introduce the resolvent (12) of
the matrix, , at a scalar value, [3]

(12)

Note that the resolvent evaluated at the eigenvalues of will
produce a singular matrix having a norm with infinite magni-
tude. Furthermore, the norm of the resolvent evaluated away
from the eigenvalues will, by definition, be nonsingular and
finite. Using these definitions (11) can be rewritten as (13e)
in terms of the resolvent and the definition of the parameter

perturbation

(13a)

(13b)

(13c)

(13d)

(13e)

Taking the norm of (13e) relates the magnitude of the resol-
vent to the magnitude of the parameter change. This is accom-
plished by using the property of a norm that

(14a)

(14b)

(14c)

Finally, the -pseudospectra are now defined as the values
for which the inverse of the resolvent is less than a specified
magnitude of parameter perturbation

(15)

This form also allows for a compact extension to ODEs with
delays by using the resolvent for delayed differential equations
[8]

(16)

Simplified calculation of the -pseudospectra can be achieved
by using the Frobenius norm, or matrix two-norm, in conjunc-
tion with properties of singular value decomposition (SVD). A
property of the SVD is that the largest singular value, , of
a matrix, , is equivalent to the matrix’s Frobenius norm. In ad-
dition, the largest singular value, , of a matrix’s inverse is
equal to the inverse of the smallest singular value,

(17)

Substituting (16) into (15) and using the relations of (17) results
in a compact and stable method to numerically calculate the
-pseudospectra for nondelayed and delayed
systems

(18)

The -pseudospectra are the values of that satisfy (18). The
value of the resolvent can be computed by evaluating the left-
hand side of (18) at a desired grid of values over a region of
the complex plane. The resulting surface will have valleys with
a minimum zero value about the eigenvalues. Narrow valleys
suggest eigenvalues that are less sensitive to parameter change
while wide valleys correspond to the eigenvalues that are most
sensitive to parameter change. Therefore, the -pseudospectra
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correspond to the open subset of the complex plane bounded by
the level curve formed by the norm of the resolvent equal to .

D. Stability Radius

We now present the complex stability radius with unstruc-
tured parameter perturbation using the concepts of stability and
-pseudospectra. The mathematical definition is extended to the
delayed case and presented in a form that can be implemented
numerically.
Stability radius is defined as the smallest change to a system

parameter that results in shifting eigenvalues so that the cor-
responding system is unstable. In terms of the -pseudospectra
this is equivalent to finding the smallest magnitude of parameter
change where the pseudospectral set is grown to just contain part
of the positive right-half complex plane. When the parameter
perturbation is allowed to be a complex value the mathematical
definition of stability radius is

(19)

This can be further simplified byminimizing in place
of . In addition, we can restrict the minimization to only pseu-
dospectral values strictly on the boundary of stability,

(20)

Finally, using properties of the SVD (17) and the extended re-
solvent (16) we can write a compact and stable method to nu-
merically calculate the complex stability radius for nondelayed

and delayed systems. Therefore, minimization
can be achieved quickly by evaluating the SVD of the charac-
teristic equation only over values on the imaginary axis

(21)

III. APPLICATION

We present an application of stability radius to identify how
changes in delayed feedback gains and stance width affect
frontal-plane balance control. Subjects during standing balance
respond to support surface translations in the frontal-plane
with nearly identical center-of-mass motion regardless of their
stance width [14]; however, muscle activity is observed to
decrease as stance width increases, demonstrating a change
in neural control [13]. We used stability radius as a tool to
analyze the changes in stability due to different stance widths
and delayed feedback gains.
First, we give an overview of a mathematical model of

frontal-plane standing balance. Using this model we show the
steps necessary to calculate the stability radius for a set of pa-
rameters. Then, we use stability radius to identify the feedback
gains that produce the maximum stability at nominal stance
width and the feedback gains that produce similar stability
radius at narrow and wide stance width. Finally, we compare
simulated center-of-mass responses at narrow and wide stance

Fig. 1. Frontal-plane model of human mediolateral balance control. Frontal-
plane motion of the body was modeled as a four-bar linkage. Two bars repre-
sented the legs, the third bar was the torso, and the fourth bar was the ground.
Perturbations were applied as initial conditions in lieu of ground translations.
Important parameters of the model were the hip width , stance width ,
and ankle angle .

width using the feedback gains identified to have the same
stability radius.

A. Model

We examined a delayed second-order system that modeled
human frontal-plane standing balance as a four-bar linkage
(Fig. 1) with ankle angle, , using scaled anthropometric pa-
rameters based on healthy adults

(22)

Inertial, , coriolis, , and gravitational, , terms were in-
cluded in the closed-chain, nonlinear equations of motion.
Total joint torque applied at the hips necessary to maintain
the initial configuration was generated by feedback gains of
position, , and velocity, , with a delay, , and geometric
scaling, ( is stance width, is hip width).
Nominal parameters for the model were selected based on
average anthropometric values of height (1.8 m), mass (72 kg),
and delay (100 ms). Further details of the model can be found
in Bingham et al. 2011 [16].

B. Analysis

The system (22) was first linearized about the symmetric
equilibrium condition to generate a linear system of first-order
equations with states,

(23)

Next, using (6) the characteristic equation for the system was
formed

(24)

We explored the stability of the system at the nominal stance
width by computing the dominant eigenvalues
across all feasible pairs of delayed feedback gains. Previously
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identified stability boundaries were used to restrict feedback
gains that produced unstable dynamics [16]. Across this region,
we examined each stable gain pair in a 100 100 grid. First, we
verified stability by ensuring that none of the roots of the char-
acteristic equation had a positive real part, which was accom-
plished by using the Cauchy residue theorem and evaluating a
path integral over the right-half plane to determine that there
was no residual [21]. To numerically evaluate the path integral
and to determine the values of a limited set of eigenvalues for
each solution we used Cauchy’s argument principle and a mod-
ification to the Lehmer polynomial root finding algorithm [19],
[22].
For representative cases, we computed the -pseudospectra to

investigate the sensitivity of the dominant eigenvalues to per-
turbations. For each case, the magnitude of the resolvent was
evaluated across a grid of complex values and these magnitudes
were plotted as level sets to illustrate the pseudospectral varia-
tions across the level of perturbation .
The stability radius (25) for each stable, delayed feedback

gain pair was also calculated for each of 16 stance widths
ranging from to 2.0. Each stability radius result
was solved using a bisection line search over the set of complex
values along the imaginary axis to identify the minimum value
of the argument

(25)
To compare the relative stability of feedback gain pairs within

the same stance width the stability radius was compared across
all feasible gain values at the nominal stance width (
). A single pair of delayed feedback gains was selected that

resulted in the maximum stability radius for the model at nom-
inal stance width.
To compare the relative stability of feedback gain pairs across

stance widths, and gains were found that resulted in the
same stability radius across stance widths. Across the range of
stance ratios the largest common stability radius was identified
and for each stance width the associated delayed feedback gain
pair was recorded.
Finally, to test the behaviors resulting from the selected feed-

back gains, we simulated the motions of the COM using the
fully nonlinear equations of motion in both narrow and wide
stances. An initial velocity disturbance was imposed

to the model at narrow and
wide stance widths using the respective delayed
feedback gain pairs associated with the same stability radius
value.

IV. RESULTS

A pattern of three stable dominant eigenvalues was found for
all stable feedback gains for the model at the nominal stance
width (Fig. 2).
As the perturbation increased in the stable range from 0.0

to 0.8, the -pseudospectra of these eigenvalues demonstrated
that the most positive eigenvalue was often least sensitive to
parameter changes (Fig. 2). That is, an eigenvalue further from
the imaginary axis [Fig. 2(b)] was more sensitive to the imposed

Fig. 2. Eigenvalues and pseudospectra for a single feedback gain pair at the
nominal stance width. (a) Subset of the infinite number of eigenvalues for the
delayed four-bar linkage model ( , , and

). Shaded box is complex region surrounding the three
dominant eigenvalues and enlarged in (b). Pseudospectra corresponding to a
perturbation that caused the eigenvalues to go unstable is represented by dotted
lines. The value of the smallest perturbation to cause any of the eigenvalues
to go unstable was the stability radius for this system. For the neuromechanical
system modeled here, the more negative eigenvalue (unfilled dot) went unstable
at a lower level of perturbation than the dominant eigenvalues that were closer
to the imaginary axis (filled dots).

Fig. 3. Stability radius across all stable feedback gains at the nominal stance
width. The solid lines giving a D-shaped boundary encloses the range of all
stable feedback gains at the nominal stance width . Shaded inten-
sity represents the value of the stability radius for each stable gain pair. Lighter
values have greater stability radius and resulted in system behavior that was less
sensitive to parameter variations.

perturbation, crossing the imaginary axis first and rendering the
system unstable.
Across all stable feedback gain pairs in the nominal stance

width, the stability radius was found to be lowest at the
boundaries and highest for mid-range gain values (Fig. 3).
The maximum stability radius at the nominal
stance was found when
and . This stable feedback gain pair
produced system behavior that was least sensitive to changes
in system parameters.
Maximum stability radius was found to decrease as stance

width increased. Maximum stability radius at narrow stance
( at ) was associated with larger feedback
gains ( , ) and
stability radius at wide stance ( at )
had smaller feedback gains ( ,
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Fig. 4. Stable feedback gains across stance width. Shaded regions defined all
stable feedback gains across stance widths. Dotted line indicates the feedback
gain pairs that produced maximum stability radius across stance widths. Solid
line indicates the feedback gain values that produced the same stability radius

across stance widths.

) (dotted line in Fig. 4). Narrow
stance was found to be less sensitive to parameter perturbations
than wide stance.
The feedback gains and that maintained the same

stability radius increased by over from
wide ( and ) to narrow
( and ) stance
(solid line in Fig. 4). This similar level of stability radius
was found to be associated with gains that were within the
mid-range of feasible feedback gains.
Simulations of the model at narrow and wide stance using

feedback gains with the same stability radius pro-
duced similar center-of-mass kinematics (Fig. 5). Trajectories
of the center-of-mass position were characterized by a near crit-
ically damped response in both cases.

V. DISCUSSION

Here, we demonstrated that stability radius is a useful metric
for comparing behavior across neuromechanical conditions
where both biomechanics (plant) and neural control (controller)
change during a task. Similar to previous applications of
stability radius [4], [23] we identified the most robust neural
feedback gains (controller parameters) for a given stance width
(plant parameter). In addition, we used stability radius to quan-
tify and predict how concurrent changes in neural control and
biomechanical configuration affected system behavior. Using
stability radius we identified the underlying delayed neural
feedback gains associated with a stance width that produced
similar center-of-mass behavior. Stability radius may provide
insight into the neuromechanical interactions governing robust
balance control by identifying the neural control parameters
that yield the same stability radius across changes in biome-
chanical configuration. This type of analysis could be extended
to understanding general principles of neuromotor control.

In contrast to typical stability analyses that explore tolerable
delays, in our application the delay was a fixed parameter re-
flecting measured neural conduction and processing time. Stan-
dard delayed-system analyses pose a problem of finding the
maximum delay for which the system is stable [18], [24] or
the sensitivity of stability to delays [7]. In contrast, delays in
neuromechanical systems are remarkably invariant to system
changes [13], [25]. Thus, the problem is to identify how vari-
ations in system parameters, and not changes in delay, cause in-
stability. Stability radius is particularly useful for delayed sys-
tems, because it is not necessary to explicitly compute any of
the infinite number of eigenvalues associated with a delayed
system.
The application of stability radius to a simple neuromechan-

ical model of balance control with delayed neural feedback
improved our ability to compare postural behaviors across
biomechanical configurations. In our prior work using eigen-
value analysis, it was only possible to determine the set of
feedback gains that produced stable behaviors at each stance
width and to compare the relative stability of each solution
within a stance width using the gain margin [16]. However,
it was not possible to compare stability across stance widths
without performing explicit forward simulations of the system
using the different parameter values. This was because the gain
margin is computed with respect to the boundary of stability,
which was specific to each stance width. Thus, gain margin
does not take into account the changes in stability due to
changes in configuration, and provides only a relative measure
of stability within a stance width. In contrast, the stability
radius is an absolute measurement of system behavior which
allows comparisons of feedback gains across stance widths.
For example, whereas the maximum gain margin was identical
across stance widths, the stability radius demonstrated that
narrow stance widths are actually more robust to parameter
variations, consistent with our previous simulation results [16].
We show that changes in system behavior due to perturba-

tions to the state variables of the model are described by the sta-
bility radius. Previously we demonstrated that precise tuning of
delayed neural feedback gains were necessary to produce sim-
ilar behaviors across stance widths, but we lacked a method to
prospectively select the appropriate gains that generated a de-
sired behavior [16]. We replicated the experimentally-observed
similarity in center-of-mass kinematics across stance widths in
response to imposed motion of the support surface by selecting
feedback parameters with the same stability radii across stance
widths. Thus, feedback gains and stance widths that reduced the
sensitivity of the behavior to parameter variation were the same
as those that led to similar responses to physical perturbations.
Although the similarity in center-of-mass kinematics could be
the result of the nervous system selecting robust feedback gains
it is also possible that the nervous system selects the trajectory
itself to produce robust behaviors.
Our results support the hypothesis that the nervous system

may employ a neural strategy for selecting feedback gains and
biomechanical configurations that reduces the sensitivity to pa-
rameter variation arising from sensory noise or imperfect con-
trol. The feedback gains in the model that produced maximum
stability radius were in the mid-range of possible stable values,
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Fig. 5. Simulated center-of-mass position across stance widths using feedback gains that produce the same stability radius. (a) Although feedback gain values
differed substantially across stance widths, the resulting center-of-mass motion produced in response to a change in the initial state of the system was similar in
narrow (solid) and wide (dotted) stance widths when feedback gains with the same stability radius were used. (b) The resulting torque necessary to generate the
center-of-mass response was an order of magnitude smaller for the wide stance compared to the narrow stance.

consistent with the feedback gain values identified by fitting the
model to experimental data [16]. Similarly, research in upper-
extremity control also suggests that motor strategies are selected
that reduce sensitivity to parameter variation in dexterous tasks
[26], [27].
Our results corroborate the idea that stability is maximized in

unstable motor tasks, and stability radius could contribute to a
better understanding of how increased stability is achieved. Pre-
viously, arm impedance has been shown to increase by muscle
co-contraction when generating forces in an unstable environ-
ment [10], [28], [29]. However, limb impedance can be altered
by both muscle activity [30], as well as limb configuration [11].
Using stability radius, the contribution of muscle activity and
limb configuration on stability could be dissociated. This may
be useful for understanding modulation of feedback gains in a
given context, as well as the selection of a particular configura-
tion or strategy to achieve a desired behavior.
Our current formulation for stability radius assumes a con-

servative estimate of how parameters affect the stability of a
neuromechanical system. Our perturbation to the system, , as-
sumed that the musculoskeletal and neural feedback gain pa-
rameters were equally variable. In this unstructured case, all pa-
rameters contributed equally to the stability radius, leading to a
conservative estimate. It is possible to structure the parameter
perturbations so that only specific parameters are affected [2],
[23], [31]. Such a weighting may be useful in cases where some
parameters are known to a greater accuracy and are unlikely to
be perturbed, e.g., mass of the body, and could lead to a less con-
servative stability radius estimate. We also assumed that pertur-
bations to parameters could be complex valued, which begs the
question: When do real-world parameters have complex value?
While the perturbations to system parameters are almost always
real-valued, it is possible that imposing complex-valued pertur-
bations could reveal how transient changes in parameters, e.g.,
oscillations from sensory noise, may further alter stability [3],

[32]. In cases where it is reasonable to assume that parameter
perturbations are only achieved through real values, such as un-
certainty in knowing limb inertia, the perturbations can be re-
stricted to only real values using a slightly more complicated
minimization technique to identify the stability radius [4], [33].
Using stability radius to assess a system’s behavior is limited

to those systems that can be mathematically modeled and their
equilibria determined. This restricts the analysis to local be-
havior determined by the fixed points of the dynamical system.
Therefore, stability radius is only descriptive of the local sta-
bility and does not explain the global stability of a system. For-
tunately, this does not encumber the method anymore than other
traditional stability methods (e.g., Lyapunov’s indirect method)
when examining nonlinear systems as the local stability of the
nonlinear and linearized systems are equivalent at the equilibria
[20]. Furthermore, stability radius quantifies the sensitivity of
an equilibrium point to perturbations or modeling uncertainties,
which quantifies the degree to which the linearized system pre-
dicts behavior away from the equilibrium.
It is important to note that the application presented in this

paper is a first step in verifying stability radius as a useful
method for analyzing robustness of biological systems in
general. To fully validate this method, its applicability should
be verified across multiple tasks and conditions. We propose
that this method may be directly applied to station-keeping
behaviors, such as maintaining balance during standing [16],
maintaining a constant force in an unstable environment [34],
or fixating on a visual target [35]. Cyclical behaviors, such as
locomotion, breathing, or heartbeat, would require additional
steps in order to apply the stability radius technique such as the
application of Floquet theory; the resulting system could then
be analyzed using the methods presented in this paper.
It is important to note that the application presented is a first

step in verifying stability radius as a useful method for analyzing
robustness of biological systems. To fully validate this method,
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its applicability should be verified acrossmultiple tasks and con-
ditions. We propose that this method may be directly applied to
station-keeping behaviors, such as maintaining balance during
standing [16], maintaining a constant force in an unstable envi-
ronment [34], or fixating on a visual target [35]. Cyclical behav-
iors, such as locomotion, breathing or heartbeat, would require
additional steps in order to apply the stability radius technique.
We propose that cyclical systems could be transformed into the
necessary form using Floquet theory and the resulting system
could be analyzed using the methods presented in this paper.
To conclude, stability radius has many benefits over using

eigenvalues alone for analysis of neuromechanical systems.
Specifically, we were able to quantify the effect of both biome-
chanical and neural parameters on the stability of frontal-plane
standing balance. Stability radius is generalizable and can be
applied to a variety of complex systems that may be nonlinear
and have delays. Thus, stability radius lends itself to additional
applications that were not explored in the example presented in
this paper. Stability radius can be used as a tool for bifurcation
analysis to identify critical parameter values that cause large
changes in system behavior [36]. Often the parameters in
neuromechanical models are unknown, using stability radius
to determine the sensitivity of stability to these parameters can
help to identify error bounds and simulation accuracy [37].
Determining muscle activation and musculoskeletal parameters
that reproduce observed behaviors is often achieved through
optimization [38]–[40]. However, simulations based on the op-
timized parameters are often unstable, which affects the ability
to produce forward simulations over a long duration [41]. This
affects the ability to perform dynamic optimization of param-
eters that rely on completion of a movement [42]. In contrast,
selection of muscle activation patterns that produce a system
with stable eigenvalues generate simulations that are stable
and can be run for much longer simulation times [43], [44].
Further, parameters selected based on stability criteria result
in responses to perturbations that are more similar to experi-
mentally-measured responses than those found using minimum
muscle stress criteria alone [43]. Stability radius could be
used as an additional optimization criterion to identify pa-
rameters that generate stable behaviors, which would improve
both optimization speed, as well as identifying parameters
that could generate more physiologically-realistic behaviors.
In short, stability radius offers a metric for quantifying the
stability and dynamical responses of parameters within, and
across, individuals, which offers a useful tool for the analysis
of neuromechanical systems. In contrast to classical stability
analyses from control theory, stability radius can concurrently
evaluate the effect of active and passive mechanisms affecting
system stability; this could be an important tool for the design
of assistive and rehabilitative devices for improving motor
function.
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