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Abstract—Sleep is vital to our daily activity. Lack of proper 

sleep can impair functionality and overall health. While 
stress is known for its detrimental impact on sleep quality, 
the precise effect of pre-sleep stress on subsequent sleep 
structure remains unknown. This study introduced a novel 
approach to study the pre-sleep stress effect on sleep 
structure, specifically slow-wave sleep (SWS) deficiency. To 
achieve this, we selected forehead resting EEG immediately 
before and upon sleep onset to extract stress-related 
neurological markers through power spectra and entropy 
analysis. These markers include beta/delta correlation, alpha 
asymmetry, fuzzy entropy (FuzzEn) and spectral entropy 
(SpEn). Fifteen subjects were included in this study. Our 
results showed that subjects lacking SWS often exhibited 
signs of stress in EEG, such as an increased beta/delta 
correlation, higher alpha asymmetry, and increased FuzzEn 
in frontal EEG. Conversely, individuals with ample SWS 
displayed a weak beta/delta correlation and reduced FuzzEn. 
Finally, we employed several supervised learning models 
and found that the selected neurological markers can predict 
subsequent SWS deficiency. Our investigation 
demonstrated that the classifiers could effectively predict 
varying levels of slow-wave sleep (SWS) from pre-sleep EEG 
segments, achieving a mean balanced accuracy surpassing 
0.75. The SMOTE-Tomek resampling method could improve 
the performance to 0.77. This study suggests that stress-
related neurological markers derived from pre-sleep EEG can 
effectively predict SWS deficiency. Such information can be 
integrated with existing sleep-improving techniques to 
provide a personalized sleep forecasting and improvement 
solution. 
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I. INTRODUCTION 

Sleep is a crucial aspect of our lives. A healthy adult needs 

6-8 hours of sleep per day, accounting for one-third of their life. 

In addition to cognitive impairment [1], lack of sleep and poor 

sleep quality are known to contribute to a wide range of issues, 

including compromised immunity [2], [3], obesity [4], [5], and 

cardiovascular disorders [6]. During sleep, the human brain 

undergoes several stages of activity, which can be distinguished 

through electroencephalography (EEG). These stages can be 

roughly classified into two major stages: non-rapid-eye 

movement (NREM) sleep and rapid-eye-movement (REM) 

sleep. NREM sleep can be further divided into three stages: 

NREM1 (N1), NREM2 (N2), and NREM3 (N3). N1 is the 

lightest stage, while N3 is the deepest. As human sleep 

progresses from N1 to N3, the amplitude of EEG gradually 

increases while the frequency decreases. N3 sleep is also known 

as slow-wave sleep (sleep), because its EEG pattern in mostly 

in delta frequency Healthy adult sleep cycles through different 

stages, starting with N1, then progressing to N2 and N3, before 

transitioning to REM and back to N1. Each sleep stage has its 

own cognitive and physiological importance. For example, N2 

sleep is associated with synapse formation and learning, while 

SWS is associated with brain metabolism. Therefore, healthy 

sleep should include sufficient time spent in all stages. While 
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the nature of sleep and its structure have been studied 

extensively in recent decades, predicting sleep quality or 

patterns remains challenging. Previous studies on sleep quality 

or pattern prediction have used either wrist-mounted 

accelerometers [7] or gait sensors embedded in carpets [8]. The 

latter method correlated 0.71 with the Pittsburgh Sleep Quality 

Index (PSQI) questionnaire reported by subjects. 

Stress is the body’s response to potential threats and 

challenges. While stress can help us to adapt to changing 

environments and situations, it can also lead to various health 

problems, including sleep difficulties [9], [10], [11]. Previous 

studies have provided conflicting results regarding how stress 

affects sleep structure. On the one hand, stress from social 

conflict has consistently been reported to induce NREM sleep 

and SWS in rodent models [12], [13], [14], [15], [16]. On the 

other hand, the anticipation of future stress, sometimes referred 

to as repetitive negative thinking [17] or cognitive arousal, has 

been reported to negatively impact sleep quality and reduce 

NREM sleep [18], [19], [20]. Several large population studies 

of sleep patterns during the COVID-19 pandemic have reported 

that the stress caused by involuntary lifestyle changes and fear 

of infection have led to increased sleep onset latency (SOL) and 

decreased subjective sleep quality [21], [22], [23]. Regarding 

sleep patterns, research has shown that anticipating early 

awakening or a challenging workday can lead to decreased 

NREM sleep [24] or SWS [25]. Other studies that artificially 

induce cognitive arousal before sleep have found that 

anticipated stress before sleep can cause an increase in sleep 

onset latency and reduced slow-wave activity during SWS [26], 

[27]. A recent study by Beck et al. [28] also reported that 

anticipatory stress resulted in reduced SWS and sleep spindle 

in naps, even when the subjects did not report decreased 

subjective sleep quality. Similarly, rodent studies have also 

found that both daily electric shock and physical restraint can 

lead to decreased SWS in rats [29] [30]. On the other hand, 

studies on various relaxation methods, such as hypnosis [31-32] 

and progressive muscle relaxation [33], have found that pre-

sleep relaxation increases SWS in human adults. These findings 

suggest a negative relationship between psychological stress 

before sleep and SWS, as well as overall sleep quality.  

Using EEG to assess stress levels and related emotional 

responses has been studied extensively over the past two 

decades. EEG has several advantages over more traditional 

approaches, such as questionnaires. Firstly, EEG signals are 

more objective and suffer less from bias caused by cultural 

differences. Secondly, EEG can be passively recorded with 

high time resolution, making it possible to track the subject's 

mental state while performing various tasks. A popular method 

for estimating stress using EEG is based on early findings by 

Davidson regarding approach-versus-avoidance behavior  [34], 

[35]. These studies compared participants' left frontal activity 

with their right frontal activity. Participants with stronger right 

frontal activity prefer avoidance behavior, whereas those with 

stronger left frontal activity lean towards approach behavior. As 

alpha (8-13 Hz) power is inversely related to task-related 

activity in the frontal lobe, we can measure the asymmetry of 

left/right frontal activity by observing the absence of alpha 

power [36, 37, 38]. Another commonly used method is based 

on the theory of the fear network model theory [39, 40]. 

According to this theory, anxiety and fear are mediated by 

cross-linking between the cortical (middle prefrontal cortex) 

and the subcortical (amygdala and hippocampus) regions. Fast 

beta-band EEG activity originating from the middle prefrontal 

cortex correlates with slow delta-band EEG activity originating 

from the amygdala. Harrewijn et al. [41] showed that subjects 

who reported higher social anxiety after a stressful social 

performance task showed a strong negative correlation between 

these regions. Using these methods, one can estimate subject’s 

stress level with minimal EEG electrodes in the frontal region. 

In addition to power spectra, entropy has become an 

increasingly popular analytical tool for human emotion and 

mental state. In biomedical signal analysis, entropy is used to 

assess the complexity and non-stationarity of a given signal. In 

EEG, this allows for the identification of sudden, short-lived 

signal signatures that are much harder to detect through power 

spectrum decomposition. Several variants of entropy have been 

adapted for emotion detection in the last decade. For instance, 

Martínez-Rodrigo et al. [42] used several variations of 

permutation entropy (PE) to discriminate between calm and 

distress. In another study, García-Martínez et al. [43] employed 

a variant of Shannon entropy to analyze brain dynamics with 

and without negative stress. They discovered that psychological 

stress increases signal entropy in the brain, particularly in the 

left frontal lobe (F3) and right parietal lobe (P4). This indicates 

that EEG entropy in the frontal region could be a potential 

biomarker for stress detection. 

The present study examines the relationship between pre-

sleep psychological stress and SWS deficiency based on 

established work on stress and sleep. We took a novel approach 

by using EEG analysis techniques based on both power spectra 

and complexity analysis to extract stress-related neurological 

markers immediately before sleep onset. We then investigated 

the relationship between these markers and SWS deficiency in 

subsequent sleep. Finally, we proposed a proof-of-concept 

SWS deficiency prediction system based on said neurological 

markers using different supervised learning models (Fig. 1). In 

doing so, we aimed to test the feasibility of using frontal EEG-

based biomarkers to predict sleep structure for personalized 

sleep monitoring and improvement. 

II. HYPOTHESIS & LIMITATION 

This study hypothesizes that subjects with stronger stress-

related neural patterns in pre-sleep resting EEG will experience 

SWS deficiency in the upcoming sleep. Based on this 

hypothesis, one can build a classification system to predict 

SWS deficiency with pre-sleep EEG. This study serves as a 

proof-of-concept, which should be validated with large, diverse 

samples before broad real-world deployment. 
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Fig. 1. The proposed approach to predict SWS deficiency. Pre-sleep 

EEG was collected until sleep onset. We derived stress-related 

neuromarkers through spectral and complexity analysis to predict 

potential SWS deficiency.  

 

III. MATERIAL & METHODS 

A. Subject and Data Acquisition 

We collected PSG records from eighteen healthy human 

participants working in a high-stress environment (professional 

nurses) who had no sleep disorder. The recordings were done 

with one of the following systems: NicoletOne v44 (Natus 

Medical, Middleton, Wisconsin, United States) (sampling rate: 

125Hz; n=5), Alice 6 LDx (Philips, Amsterdam, Netherlands) 

(sampling rate: 200Hz; n=6), or Grael PSG (Compumedics, 

Abbotsford, Victoria, Australia) (sampling rate: 1024Hz; n=7). 

Sleep technicians reviewed all records and labelled sleep stages. 

Among the eighteen records, two (No. 8, No. 9) were excluded 

due to severe muscle noise contamination in pre-sleep EEG and 

one (No.14) was excluded because it did not capture pre-sleep 

EEG. The records included three males (age: 31±7) and twelve 

females (age: 37±9). Table S1 lists the detailed data collection 

conditions. 

 To explore the relation between SWS deficiency and pre-

sleep resting EEG, we divided these records into three groups 

based on [44], which indicates that a young adult’s normal 

SWS percentage is around 13-23% per sleep. Therefore, we 

defined records with less than 13% of SWS as Low SWS 

subjects, records with 13%-23% of SWS as Mid SWS subjects, 

and records with over 23% of SWS as High SWS subjects. We 

calculated the SWS percentage of each PSG record by dividing 

the total time spent in N3 sleep by the total sleep time (TST). 

The average TST of the subjects was 5.38±1.75 hours. Among 

the included records, six were in the Low SWS group, six were 

in the Mid SWS group, and four were in the High SWS group. 

No significant differences in TST were found between groups.  

We collected the data at Kaohsiung Medical University 

Hospital after receiving approval from the local ethics board 

(Institutional Review Board of Kaohsiung Medical University 

Hospital, Kaohsiung City, Taiwan; approval code: KMUHIRB-

E(II)-20190371; approval granted on Jul. 14th, 2021). All 

records were collected with fully informed consent. 

B. EEG selection and processing 

Figure 2 shows the data selection flowchart. EEG signals 

from the forehead region (F3 and F4 channels) were used to 

extract stress-related neurological markers. For each PSG 

record, 5 minutes (ten 30-second epochs) of EEG data before 

sleep onset was selected first. If a subject’s SOL was shorter 

than 5 minutes, the first 5 minute of EEG data was selected 

instead. The selected EEG epochs were down-sampled to 

125Hz and filtered with a Butterworth bandpass filter (1.0-35 

Hz). Epochs labelled as either NREM or REM sleep were 

rejected so that only Wake epochs remained. Each Wake epoch 

was then divided into six non-overlapping 5-second segments. 

Finally, segments with strong muscle noises in either channel 

were further rejected by eye. The remaining segments would 

represent resting EEG before and upon sleep onset. After the 

data selection process, the Low SWS group had 190 segments, 

the Mid SWS group had 237 segments, and the High SWS 

group had 119 segments. 
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Fig. 2. EEG data selection and processing flowchart. First, the first 5 

minutes of EEG data from the F3 and F4 channel were selected and 

filtered before being divided into 30-second epochs. Epochs labeled as 

REM or NREM sleep were rejected so that only Wake EEG remained. 

Then, each epoch was divided into 5-second segments. Finally, 

segments with heavy muscle noises were rejected. The remaining 

segments were used to derive power spectra, signal entropy and 

spectral entropy. 

 

 

C. Stress-Related EEG Pattern Extraction 

This study used spectral power trends such as left-to-right 

alpha asymmetry and beta-delta correlation in the frontal lobe 

as neuromarkers related to stress. To do this, we extracted alpha, 

beta, delta, and theta band power from each 5-second segment 

through Fast Fourier transform (FFT) using Welch’s method[45] 

with a 1-second window. For  delta and beta band, relative 

power values were derived by dividing the raw power by  the 

sum of total spectral power. Using Pearson's R value, we 

estimated the correlation between beta and delta power. As for 

the alpha asymmetry, we subtracted the F4 alpha power from 

the F3 alpha power:  

 

𝐴𝑙𝑝ℎ𝑎𝐴𝑠𝑦𝑚(𝑡) = 𝑃𝐹4(𝑡) − 𝑃𝐹3(𝑡)                 (1) 

 

The 𝑃𝐹4 and 𝑃𝐹3 are raw alpha power from the F4 and F3 

channel respectively. Stronger F4 alpha activity over F3 

indicates a lack of stress and vice versa. In a previous study, we 

formulated the AlphaAsym value into a scale of stress levels 

from 0 to 10 with the following equation [36]: 

𝑆𝑡𝑟𝑒𝑠𝑠(t) = 5 − 𝐴𝑙𝑝ℎ𝑎𝐴𝑠𝑦𝑚(𝑡)/2                 (2) 

 

Aside from power spectra, we also calculated the entropy 

of each segment to see the differences in signal and spectral 

complexity between groups. For signal entropy, we used Fuzzy 

Entropy (FuzzEn) [46] to estimate the complexity of each 

segment. We chose FuzzEn because it is less sensitive to noise 

by introducing a fuzzy membership function. FuzzEn depends 

on two variables: embedding dimension (m) and time delay 

(Tau). We set m at 2 and Tau at 12 (equivalent to a shifting 

window of 0.096 seconds, in the alpha-band range). A previous 

study [43] observed the asymmetry of signal entropy at the  

forehead increased in stressful scenarios. Therefore, we also 

calculated the FuzzEn asymmetry using the following equation: 

 

𝐹𝑢𝑧𝑧𝐸𝑛𝐴𝑠𝑦𝑚(𝑡) = 𝐹𝑢𝑧𝑧𝐸𝑛𝐹4(𝑡)−𝐹𝑢𝑧𝑧𝐸𝑛𝐹3(𝑡)       (3) 

 

For spectral entropy, we selected alpha, beta, and delta 

band spectra for analysis [47], [48]. A power distribution was 

derived through Welch’s FFT for each EEG segment and then 

normalized. The normalized distribution is treated as a 

probability distribution. Then, Shannon entropy was estimated 

from the distribution of alpha, beta, theta, and gamma band. In 

spectral entropy, higher entropy values indicate relatively 

random, white-noise-like signal, while lower values indicate a 

more complex signal containing more information. 
Signal pre-processing and spectral decomposition were 

achieved with Scipy (1.9.0, The Scipy project)[49]. Fuzzy 

entropy and spectral entropy estimation were conducted 

through EntropyHub (v0.2, Matthew W. Flood)[50]. 

D. Statistics analysis 

For frontal beta/delta power correlation, we used Pearson’

s R value to measure the mean correlation of each group. For 

comparisons of other power spectra, entropy values, and sleep 

structure, since most of these results were not uniformly 

distributed amongst different groups, we employed 

nonparametric Krustal-Wallis test (for 3-group comparison) or 

Mann-Whitney U test (for 2-group comparison) to calculate the 

significance of inter-group differences. We implemented all 

statistical analyses using Scipy (v1.9.0, The Scipy project) [49]. 

E. Supervised learning models 

We used various supervised models to determine whether 

the band power and complexity features we selected were 

capable of predicting the amount of SWS in subsequent sleep. 

The applied models were k-nearest neighbours (KNN)[51], 

random forest (RF), linear support vector machine (SVM), and 

Gaussian SVM. For each 5-second EEG segment, spectral 

power and entropy patterns were extracted as features. The 

prediction target was the degree of SWS deficiency in the PSG 

record that an EEG segment came from. Three-fourths of 

included EEG segments were randomly selected as training 

data, while the rest were used as testing data. All supervised 

learning models were implemented using Scikit-learn (v. 1.11.2, 

scikit-learn developers) [52]. 
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Because there are participant imbalances between 

different groups, we conducted a parallel training routine using 

over-sampling and under-sampling techniques to balance the 

training data [53]. First, additional data points of minority 

classes were generated through the synthetic minority over-

sampling technique (SMOTE) [54] so that their number 

matched the largest class. Then, noisy and borderline data 

points were removed using Tomek’s links [55]. We then trained 

supervised classification models using the re-sampled training 

data and evaluated them using unprocessed testing data. The 

SMOTE-Tomek technique was implemented with Imbalanced-

learn (0.10.1, The imbalanced-learn developers)[56].  

IV. RESULTS 

A. Sleep Structure 

Table 1 shows the general sleep structures of each group. 

There was no significant difference in TST (318.40±88.74 vs. 

316.67±112.13 vs. 337.50±119.89 minutes; p>0.05), indicating 

that the sleep opportunity was the same among the groups. 

There was no significant difference in WASO either (29.10±

17.49 vs. 28.90 ± 17.78 vs. 31.63 ± 18.72 minutes, p>0.05). 

Curiously, we observed that the degree of SWS deficiency was 

negatively related to sleep onset latency (10.40±7.16 vs. 7.33±

4.30 vs. 2.40±1.24 minutes, p=0.048). Specifically, the Low 

SWS group showed a significantly longer SOL than the High 

SWS group (p=0.036). This suggests that the High SWS group 

had an easier time falling asleep than the Low SWS group. On 

the other hand, the correlation between SOL and SWS 

percentage was not significant among the subjects (p=0.180). 

This suggests that the reduced SOL is not directly related to 

increased SWS. Overall, while the High SWS group showed 

shorter SOL, no significant between-group differences in sleep 

duration exist. 
 

Table 1.  

GENERAL SLEEP STRUCTURE OF INCLUDED PSG RECORDS GROUPED BY 

SWS PERCENTAGE.  

  
Low SWS 

(n=5) 

Mid SWS 

(n=6) 

High SWS 

(n=4) 

TST (min) 318.40±88.74 316.67±112.13 337.50±119.89 

SOL (min) 10.40±7.16 7.33±4.30 2.40±1.24 

SWS (%) 10.02±2.88 16.88±1.80 34.14±8.69 

WASO (min) 29.10±17.49 28.90±17.78 31.63±18.72 

 

B. Power Analysis 

Figure 3 shows the results of the power spectrum analysis. 

When evaluating the frontal beta/delta correlation, we found 

that segments from the Low SWS group exhibited the strongest 

negative correlation in the F3 channel (r=-0.66). In contrast, 

segments from the Mid SWS and High SWS groups showed 

much weaker correlations (r=-0.29 and r=-0.33, respectively) 

(Fig. 3a). A similar phenomenon was observed in the F4 

channel (Fig. 3b). The low SWS group showed the strongest 

negative correlation (r=-0.46). The Mid and High SWS groups 

showed progressively weaker correlations (-r=-0.34 vs. -0.24). 

These differences suggest strong cortical-subcortical crosslinks 

in subjects lacking SWS but not those with sufficient SWS. Our 

findings indicate that the fear network was most active in the 

Low SWS group, while it was least active in the High SWS 

group. 

Regarding the stress level derived from frontal alpha 

asymmetry, we found that the Low SWS group showed the 

highest stress level. In contrast, the Mid and High SWS groups 

showed progressively lower levels (4.74±0.76 vs. 4.55±0.91 vs. 

4.53±0.73, respectively, p<0.05) (Fig. 3c). Upon analyzing 

individual subjects, we observed a trend where the Low SWS 

subjects tended to have higher stress levels In contrast, the Mid 

& High SWS subjects tended to show lower values (Fig. 3d). 

These results are consistent with the beta/delta correlation 

findings. The group with less SWS showed higher stress levels, 

while the group with more SWS showed the opposite. 

In addition to examining the well-defined alpha 

asymmetry and beta/delta correlations, we also investigated the 

power of other EEG bands to identify potential biomarkers. 

Aside from differences in the alpha, beta, and delta bands, we 

found that activities in the theta band also differed among 

groups. The Low SWS group exhibited significantly stronger 

theta power than the Mid and High SWS groups in the F3 

channel (32.85 ± 25.79 vs. 24.45 ± 46.85 vs. 26.75 ± 20.32, 

p<0.005) (Fig. 3e). A similar phenomenon also existed in the 

F4 channel (36.07±25.27 vs. 29.95±28.02 vs. 30.28±24.70, 

p<0.05) (Fig. 3f). Theta activity in the frontal lobe is known to 

be related to motor inhibition and conflict [57]. The higher theta 

activity in Low SWS subjects may be linked to restlessness and 

the need to consciously inhibit body movement before falling 

asleep, which is consistent with their longer SOL. Overall, the 

power analysis shows that subjects who experienced SWS 

deficiency tended to show stronger signs of pre-sleep stress, 

while those with sufficient SWS showed the opposite. 
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Fig. 3. Pre-sleep EEG power characteristics analysis between SWS 

groups. 

(a) Correlation between relative delta and beta power in the F3 

channel. The Low SWS group showed a stronger correlation than the 

other groups (b) Correlation between relative delta and beta power in 

the F4 channel. The Low SWS group showed the strongest correlation, 

while the High SWS group showed the weakest. (c) Estimated stress 

level. The Low SWS group showed the highest stress level among the 

three groups (p<0.05). (d) Estimated stress levels of each subject. (e) 

Theta power of the F3 channel. The Low SWS group showed stronger 

theta activity than the other groups (p<0.01) (f) Theta power of the F4 

channel. The Low SWS group showed stronger theta activity than the 

other groups (p<0.05). 

 

C. Entropy analysis 

Figure 4 shows the results of the signal entropy analysis. 

The Low SWS group showed significantly higher signal 

entropy in the F3 channel, while the Mid and High SWS group 

showed lower values (1.71±0.25 vs. 1.61±0.34 vs. 1.64±0.30, 

p<0.005) (Fig. 4a). The F4 channel also exhibited the same 

trend, with the Low SWS group showing significantly higher 

signal entropy compared to the Mid and High SWS groups 

(1.76±0.22 vs. 1.70±0.30 vs. 1.67±0.31) (p<0.005) (Fig. 4b). In 

addition, we observed that in the Low and Mid SWS groups, 

the right frontal region showed a higher signal entropy than the 

left frontal region. In contrast, the left-right signal entropy 

difference in the High SWS group is much smaller. (0.06±0.16 

vs. 0.10±0.21 vs. 0.04±0.13, respectively; p<0.05) (Fig. 4c). 

The increased FuzzEn values in the Low SWS group might be 

related to the stronger cortical and subcortical cross-linking we 

found in the power analysis. In contrast, the High SWS group 

had weaker cross-linking, which resulted in a lower entropy 

value and decreased FuzzEn asymmetry. 

 
 
Fig. 4. Signal entropy of pre-sleep EEG between SWS groups.  
(a) The signal entropy in the F3 channel. The Low SWS group 

showed much higher signal entropy than the other two groups (p<0.001) 

(b) The signal entropy in the F4 channel. The Low SWS group showed 

much higher signal entropy than the other two groups (p<0.001) (c) The 

signal entropy right-over-left asymmetry. The Low and Mid SWS group 

showed higher entropy in the right frontal region than in the left (p<0.05). 

 

Figure 5 shows the results of the spectral entropy analysis. 

We found significant differences in the alpha and theta bands 

between the groups. Specifically in the alpha band, while there 

was no significant difference in the F3 channel (0.83±0.06 vs. 

0.83±0.07 vs. 0.83±0.08, p>0.05) (Fig. 5a), we observed that 

the Low SWS group showed higher SpEn than the other groups 

in the F4 channel (0.85±0.06 vs. 0.82±0.08 vs. 0.82±0.08, 

p<0.005) (Figure 5b). This indicates that the Low SWS group 

showed less frequent alpha activity in the right frontal cortex. 

In the theta band, we found that the Low SWS group showed 

significantly lower SpEn values both in the F3 channel (0.87±

0.04 vs. 0.89±0.03 vs. 0.88±0.03, p<0.005) (Fig. 5c) and the F4 

channel (0.86±0.05 vs. 0.89±0.03 vs. 0.88±0.04, p<0.005) (Fig. 

5d).     
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Fig. 5. Spectral entropy of pre-sleep EEG between SWS groups. 

(a) The spectral entropy of alpha band in the F3 channel. No 

significant difference existed between groups (b) The spectral entropy 

of alpha band in the F4 channel. The Low SWS group showed higher 

spectral entropy than the other two groups (p<0.001) (c) The spectral 

entropy of theta band in the F3 channel. The Low SWS group showed 

lower entropy than the other two groups (p<0.001) (d) The spectral 

entropy of theta band in the F4 channel. The Low SWS group showed 

lower entropy than the other two groups (p<0.001) 

D. Supervised Learning  

To investigate the potential for predicting SWS deficiency 

using pre-sleep frontal EEG, we selected several neural markers 

that showed significant inter-group differences: relative beta 

power, beta/delta power ratio, stress level, raw Theta power, 

FuzzEn, FuzzEn asymmetry, and SpEn (theta). We conducted 

two parallel training routines, one with SMOTE-Tomek 

resampling and one without. In the routine without resampling, 

the group size percentages between Low:Mid:High SWS 

groups were 40:42:18 (Fig 6a). In the routine with resampling, 

the percentages were 40:33:34 (Fig 6b), which was more 

balanced. 

 
Fig. 6. Group size percentages during training with and without 

resampling. (a) Percentages without resampling. The Mid SWS group 

had the most samples, while the Low SWS group had the least. (b) 

Percentages with resampling. The percentages were more balanced 

between groups after SMOTE-Tomek resampling. 

 

Fig. 7 shows the confusion matrices resulting from 

supervised learning without over-under sampling. The 

accuracies of the classifiers for the Mid SWS group, which 

contains the most samples, ranged from 0.75 (in linear SVM) to 

0.85 (in Gaussian SVM). The accuracies for the Low SWS 

group ranged from 0.74 (in KNN) to 0.81 (in the random forest). 

These results demonstrate that the selected markers can 

effectively identify EEG segments collected from SWS-

deficient subjects. On the other hand, EEG segments from the 

High SWS group were poorly classified, with accuracies 

ranging from 0.24 to 0.52. In both linear SVM and Gaussian 

SVM, segments from the High SWS group were largely 

misclassified as coming from the Mid SWS group. The 

suboptimal classification result for the High SWS group might 

be because of sample imbalance.  

 
Fig. 7. Classifications results with no resampling.  

(a) KNN classifier (b) random forest classifier (c) linear SVM classifier 

(d) Gaussian SVM classifier 

 

Fig. 8a-d shows the confusion matrices using the over-

under sampling routine. All classifiers showed increased 

accuracy in identifying the High SWS class but at the expense 

of decreased accuracy for the Mid SWS and the Low SWS 

classes. In particular, the KNN classifier (Fig. 8a) and the linear 

SVM classifier (Fig. 8c) showed accuracies below 0.7 for the 

Mid and Low SWS classes. On the other hand, the random 

forest classifier (Fig. 8b) showed the smallest decrease in the 

Low SWS group (from 0.83 to 0.76) while showing 

significantly increased accuracy for the High SWS group (from 

0.38 to 0.76). Fig. 8e shows the overall performance of all 

classifiers. With the SMOTE-Tomek routine, both the random 

forest classifier and the Gaussian SVM showed increased 

Cohen’s Kappa values. (Fig. 8e). The random forest classifier 

also showed an increased balanced accuracy of 0.77. Overall, 

our results show that stress-related neural markers can be used 

to predict SWS deficiency.  
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Fig. 8. Classifications results with SMOTE-Tomek resampling.  

(a) KNN classifier, (b) random forest classifier, (c) linear SVM 

classifier, (d) Gaussian SVM classifier, and (e) accuracy and Cohen’s 

Kappa values of various classifiers with and without resampling. Linear 

SVM showed reduced performance after resampling, while Gaussian 

SVM and random forest classifiers showed improved accuracy and 

Kappa value. 

V. DISCUSSION 

The importance and quality of sleep have garnered attention 

in the recent decades. Psychological stress is a major factor 

affecting sleep quality is stress, as it is known to cause 

decreased subjective sleep quality and prolonged SOL in 

humans. Previous studies have consistently reported that 

negative anticipation stress can lead to disrupted sleep patterns 

and reduced SWS. These impacts are especially detrimental to 

individuals working in high-stress environments with limited 

sleep opportunities and those who are experiencing traumatic 

events, such as the COVID-19 pandemic [3], [21], [22], [23]. 

While most studies on stress and sleep relied on subjective 

questionnaires to assess stress levels, recent advances in 

cognitive science and EEG analysis have allowed a more 

objective way to measure stress levels in human subjects. This 

approach also opens the possibility of using stress-related 

neuromarkers to predict changes in sleep patterns and, 

potentially, overall sleep quality. This study took a novel 

approach combining mental state assessment and sleep study by 

extracting stress-related neural markers in pre-sleep EEG. We 

found that subjects with SWS deficiency (<13%) exhibited 

higher stress levels and signs of restlessness in pre-sleep resting 

frontal EEG, while subjects with abundant SWS showed the 

opposite. These results suggest that an individual's pre-sleep 

mental state is linked to subsequent sleep structure and SWS 

percentage. Based on these findings, we show that neural 

markers from pre-sleep EEG can be used to predict SWS 

deficiency, with the highest accuracy of 0.77. Our result implies 

that pre-sleep mental state may affect more than just SOL and 

that pre-sleep EEG may be used to predict sleep quality.   

A. Stress-Related Power Differences Corresponds with 
Insufficient SWS 

The frontal lobe is crucial to many cognitive functions of the 

human brain. When comparing frontal spectra, we found that 

subjects showed SWS-deficient subjects exhibited several 

differences compared to other subjects. The first difference is 

the correlation between beta and delta power. We observed that 

EEG segments from SWS-deficient subjects showed a stronger 

correlation, while subjects with abundant SWS showed a 

weaker correlation. This difference may have resulted from the 

increased competition between the middle prefrontal cortex and 

subcortical regions, as suggested by traditional fear network 

theory [39], [40]. The increased correlation in the Low SWS 

group suggests a more active fear network, which could lead to 

experiences of stress and restlessness. Indeed, the Low SWS 

subjects showed the highest average stress level, while the High 

SWS subjects showed the lowest. Besides spectral signatures 

related to stress, we also found that Low SWS subjects tended 

to show stronger theta band activity than High SWS subjects.  

Theta activity in the prefrontal cortex (particularly the middle 

prefrontal cortex) is known to be related to motor and impulse 

inhibition [58], [59]. The increased motor inhibition suggests 

that the Low SWS subjects may have experienced greater 

restlessness and a greater need to inhibit body movement. The 

spectral differences suggest that the Low SWS group may have 

had more difficulty falling asleep, as reflected in their longer 

SOL. Overall, our findings in spectral power differences are 

consistent with previous studies showing that the presence of 

stress is negatively related to the SWS ratio.  

B. SWS Deficiency is Related to Increased EEG Signal 
Complexity  

Previous studies have shown that EEG signal complexity 

would increase during periods of stress [43] and decrease 

during relaxation [60], [61] in healthy humans. These findings 

suggest that entropy can be a biomarker for detecting 

psychological stress. Our study found that subjects in the Low 

SWS group tended to show higher FuzzEn values. The 

increased entropy value was more prominent in the F4 channel 

than in the F3 channel, consistent with a previous study by 

García-Martínez et al. [43]. Additionally, we observed that 

while the Low and Mid SWS groups showed a right-over-left 

bias in FuzzEn, the High SWS group did not. A previous study 

by Ren et al. suggests that right-over-left complexity 

asymmetry indicates the presence of negative emotion, while a 

lack of asymmetry indicates calmness [62]. Therefore, the 

absence of entropy asymmetry in the High SWS group indicates 

they were more composed and less agitated when falling asleep.  

Aside from signal entropy, we also noted differences in 

spectral entropy in the theta and alpha bands. The spectral 

entropy value is inversely proportional to how frequently 
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certain rhythms occur in a given signal. The Low SWS group 

showed decreased SpEn in the theta band, consistent with their 

overall increased theta activity. Curiously, the Low SWS group 

showed higher SpEn in right frontal cortex. This contrasts with 

their higher stress level, which is derived from right-to-left 

alpha power. A possible explanation is that while the alpha 

rhythm occurred less frequently in the right frontal cortex in the 

Low SWS subjects, it occurred in higher magnitude. This also 

implies that EEG in the Low SWS subjects was less stationary 

than in other subjects, which may be linked to increased fear 

network activity in these subjects. 

C. Potential Biological Link between Sleep and Stress 

While slow waves during NREM sleep are most prominent 

in the neocortex, several studies have suggested that they are 

likely regulated by the thalamus [63], [64], [65]. An earlier 

study by David et al. found that blocking the thalamic signal to 

the neocortex greatly diminished slow-wave activity in rats [64]. 

A later study by Gent et al. also found that centromedial 

thalamus (CMT) neurons are phase-advanced to cortical slow 

waves in mice [65]. Traditionally, the thalamus had been 

viewed as a passive relay for sensory inputs and subcortical 

signals to the cerebral cortex. However, studies in the last 

decade have revealed that the thalamus is critical in mediating 

complex cognitive functions in the human brain [66], [67], [68]. 

While most studies have associated the stress response with the 

hypothalamic–pituitary–adrenal (HPA) axis, recent animal 

studies suggest that paraventricular thalamus is also involved in 

the stress response, including increased alertness [69] and binge 

eating [70]. This may provide a biological link between 

psychological stress and decreased slow-wave activity in 

mammals, although more studies are needed to confirm this 

hypothesis.  

 

D. Pre-Sleep Frontal EEG Predicts Lack of SWS for 
Sleep Monitoring and Improvement  

Based on our observations in the frontal EEG power spectra 

and complexity, we employed several supervised models (KNN, 

random forest, linear SVM, Gaussian SVM) to validate if the 

neurological metrics could discriminate EEG segments from 

subjects with SWS deficiency. Initially, all classifiers could 

identify EEG segments from the Low SWS subjects (accuracy 

ranging from 0.74 to 0.81) and the Mid SWS subjects (accuracy 

ranging from 0.75 to 0.85). However, the classifiers showed 

suboptimal performance in classifying High SWS subjects 

(accuracy ranging from 0.24 to 0.52). This is likely because of 

imbalanced sample sizes. Specifically, the High SWS group’

s size was less than half the size of the Mid SWS group. We 

used the SMOTE-Tomek resampling technique to address the 

imbalance issue As shown in Fig. 7b, the three groups became 

more balanced after the re-sampling procedure. In Fig. 8e, the 

Gaussian SVM and the random forest classifier showed 

improved performance. In particular, the random forest showed 

an accuracy of 0.77 in distinguishing EEG segments from 

subjects with different SWS levels. Overall, our study showed 

that EEG from the frontal lobe contains valuable information 

for predicting sleep structure. A proper hyperparameter tuning 

strategy and resampling strategy could further enhance the 

performance in the future.  

E. Stress Evaluation and SWS Deficiency Prediction 
May Be Utilized to Enhance Immediate Sleep quality and 
Long-Term Brain Health  

Studies on mammal brain metabolism in the last decade have 

suggested that SWS is crucial in removing excessive materials 

from the brain [71], [72]. Moreover, an animal model of 

Parkinson’s disease found that enhancing SWS promotes the 

removal of misfolded alpha-Syn protein and the expression of 

enzymes that prevent misfolding [73]. Psychological stress may 

have a larger implication on the brain's overall health as it 

diminishes SWS and crucial material exchange. On the other 

hand, various relaxation methods have been proposed to 

promote SWS in human adults, including aromatherapy [74], 

muscle relaxation [33], and acoustic hypnosis [31]. These 

methods offer opportunities to supplement SWS artificially in 

users experiencing a deficiency. 

 The present study establishes pre-sleep EEG as a reliable 

predictor of SWS deficiency. Its simplicity allows seamless 

integration with our team's existing frontal-EEG-based sleep 

stage classification algorithms [75, 76] , paving the way for an 

IoT system. This IoT system would assess stress levels and 

predict potential SWS deficiency, then, automatically activate 

activating relaxation protocols (e.g., speakers, aroma dispensers) 

when needed. Such automation promises a significant 

advancement in personalized sleep profiling and  improvement. 

F. Limitations 

Firstly, the study was done on a relatively small population 

who are majorly female. The presented findings need to be 

validated with a larger sample size to determine whether they 

are gender dependent. Secondly, this study did not use a 

questionnaire to evaluate the subjects' subjective stress levels. 

We omitted the questionnaire because we preferred to use the 

objective information from the subjects' EEG, which may differ 

from their conscious feelings. For future studies, we intend to 

increase our subject number so that we may develop a machine 

learning system that can automatically detect stress in real-time 

and develop it into a solution for sleep monitoring and profiling.. 

VI. CONCLUSION 

This study presents a novel approach to predict SWS 

deficiency through stress-related neurological markers in 

resting EEG. We did so by explicitly selecting frontal resting 

EEG immediately before  sleep onset and extracting stress-

related neurological markers through PSD and complexity 

analyses. Our study found that subjects with SWS deficiency 

showed longer SOL than others. They also showed strong 

beta/delta correlation, higher alpha asymmetry, increased theta 

band activity, higher signal complexity, and decreased spectral 

entropy in the theta band. These signs indicate restlessness and 

stress in these subjects. On the other hand, subjects with 

sufficient SWS showed the opposite trend in these neural 

markers. Based on these findings, we used several supervised 

learning classifiers to predict SWS deficiency.  The classifiers 

can detect segments from EEGs collected from subjects with 

SWS deficiency. The classifiers’ performance can be further 
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enhanced through the SMOTE-Tomek over-under-sampling 

technique, with the best model showing a mean balanced 

accuracy of 0.77. Overall, our results show that stress-related 

neurological markers in pre-sleep forehead EEG can be used as 

predictors for SWS deficiency. Future applications can use this 

information to realize personalized sleep monitoring and 

improvement. 
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