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Abstract— The functional architecture undergoes alterations
during the preclinical phase of Alzheimer’s disease. Conse-
quently, the primary research focus has shifted towards identi-
fying Alzheimer’s disease and its early stages by constructing a
functional connectivity network based on resting-state fMRI data.
Recent investigations show that as Alzheimer’s Disease (AD) pro-
gresses, modular tissue and connections in the core brain areas of
AD patients diminish. Sparse learning methods are powerful tools
for understanding Functional Brain Networks (FBNs) with Regions
of Interest (ROIs) and a connectivity matrix measuring functional
coherence between them. However, these tools often focus exclu-
sively on functional connectivity measures, neglecting the brain
network’s modularity. Modularity orchestrates dynamic activities
within the FBN to execute intricate cognitive tasks. To provide
a comprehensive delineation of the FBN, we propose a local
similarity-constrained low-rank sparse representation (LSLRSR)
method that encodes modularity information under a manifold-
regularized network learning framework and further formulate it as
a low-rank sparse graph learning problem, which can be solved
by an efficient optimization algorithm. Specifically, for each mod-
ularity structure, the Schatten p-norm regularizer reduces the
reconstruction error and provides a better approximation of the
low-rank constraint. Furthermore, we adopt a manifold-regularized
local similarity prior to infer the intricate relationship between
subnetwork similarity and modularity, guiding the modeling of
FBN. Additionally, the proximal average method approximates
the joint solution’s proximal map, and the resulting nonconvex
optimization problems are solved using the alternating direction
multiplier method (ADMM). Compared to state-of-the-art methods
for constructing FBNs, our algorithm generates a more modular
FBN. This lays the groundwork for further research into alterations
in brain network modularity resulting from diseases.

Index Terms— Functional brain network; modularity; low
rank; manifold-regularized; subnetwork similarity; sparsity

I. INTRODUCTION

Alzheimer’s disease (AD) is an irreversible neurodegenerative
disorder, affecting approximately 47 million people worldwide, with
expectations of the number tripling by 2050 [1]–[3]. Alzheimer’s
disease is related to changes in structural and functional connectivity
within the brain regions [4], [5]. One approach to quantify complex
brain interactions is to view the brain as a network of subnetworks
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or modules, namely Functional Brain Networks (FBNs). FBNs con-
structed from high-dimensional functional magnetic resonance imag-
ing (fMRI) plays a crucial role in AD detection [4]–[7]. Constructing
a high-quality Functional Brain Network (FBN) is challenging due
to limited understanding of the human brain and the presence of
significant noise in observed data.

Despite these challenges, many FBN estimation methods have
been developed in recent years [8]–[10]. The Pearson correlation
(PC) coefficient [11], [12] is widely used to measure the corre-
lation between brain regions. However, the PC only models the
full correlations without excluding confounding effects from other
brain regions, resulting in a large number of misconnections in the
FBN [13]–[15]. In contrast, partial correlation methods [16], [17]
address the perturbation of noise by regressing the confounding
effects of other brain regions, and the resulting connections may be
ill-posed due to the curse of dimensionality. To solve this problem, the
regularization term is typically introduced to stabilize the statistical
estimation when building the FBN [18]–[20], and a method of
incorporating a priori information into the graph learning framework
is provided [21], [22]. For instance, Huang et al. [23] estimated FBN
by constructing a sparse graph using a Gaussian graph model with
l1 regularization, also known as a graphical lasso (GL). Ryali et al.
[24] developed the sparse partial correlations elastic net penalty (SPC-
EN), which combines l1 and l2 norms to determine the connections
between brain regions. Yu et al. [25] proposed the strength-weighted
sparse group representation (WSGR) method in which subnetworks
with similar connections share regularization weights. This method
cannot differentiate easily between the patient and control groups. To
solve this problem, Zhang et al. [26] used temporal correlation and
intersubject correlation as a priori knowledge to guide group sparse
representation (GSR)-based network modeling.

Existing FBN estimation methods typically focus solely on node
similarity, neglecting the brain’s modular organization [27], [28]. It
is noteworthy that in recent work, Varoquaux et al. [29] described
an FBN by identifying its modular structure in a decomposable
graphical model. However, the modular structure identified by the
greedy algorithm depends on the initial graph and is prone to local
optimization. To solve this problem, Yu et al. [30] formulated FBN
estimation as a sparse low-rank graph learning problem. However,
this method ignores the complex relationship between subnetwork
similarity and modular structure. Research has shown that there is
a close relationship between subnetwork similarity and modularity
in brain networks [31], [32]. Specifically, regions within the same
module show higher subnetwork similarity, while those in different
modules show lower similarity levels.

Studies show that incorporating standardized prior biological and
physiological knowledge of the brain [33] enhances FBN modeling.
We guided modular FBN modeling through prior subnetwork sim-
ilarity and completed FBN coding under the manifold-regularized
framework. The proximal average method simplifies the algorithm,
offering valuable insights into the brain’s structure, organization, and
implications for understanding function and pathology. The main
contributions of this study are threefold:

(1) More modular FBNs were generated by combining the man-
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ifold regularization learning method and introducing the similarity
prior of sub networks for structuring networks.

(2) Local popular regularization constraints enable the model to
better capture local patterns and features in the data, reduce the
sensitivity of the model to noisy data, and make the model more
robust and stable.

(3)We have developed a learning framework based on LSLRSR for
the use of RS-fMRI data for automatic brain disease identification.
Finally, we validate our method using different RS-fMRI datasets.

The rest of this paper is organized as follows. In Section II, we
introduce the related work. In Section III, we first introduce material
and data preprocessing methods. Then, our proposed method and
optimization model are introduced. In Section IV, we describe the
experimental setup and evaluate our proposed method through AD
recognition experiments. At the end of this section, we also discuss
our findings and work prospects. In Section V, we summarize the
paper.

II. RELATED WORK

A. Matrix-regularized network learning framework
Studies show that the trade-off between fitting data efficiently and

encoding biological or physical prior knowledge can be formulated
using a regularized framework, extensively studied in statistics and
machine learning. [24], [34], [35]. Based on previous studies, Qiao et
al. [30] formulated a matrix-regularized network learning framework
as follows:

min
Z

f(X, Z) + λR(Z) s.t. Z ∈ ∆∗ (1)

where X = [x1, x2, · · · , xn] ∈ Rm×n is the mean time series of the
ith subject, n is the number of ROIs in each subjects, the matrix Z
encodes the strength of connections between different brain regions
or ROIs. The regularization term λR(Z) is designed to incorporate
prior knowledge about the brain’s functional or structural properties.
This regularization can encourage specific patterns of connectivity or
sparsity in the network, which might be informed by biological or
physical insights. ∆ is a set of additional constraints on the network.
FBN has modules in the network in which the nodes are densely
connected within groups and in which the connections between
these groups are sparse. Therefore, Qiao et al. [30] proposed a
regularization framework based on modular prior knowledge, defined
as follows:

min
Zi

∥X−XZ∥2F + λ∥Z∥1 + β∥Z∥∗ (2)

where λ and β are regularization balance parameters, ∥X−XZ∥2F
is the data-fitting term, ∥Z∥1 measures the sparsity of the network,
and ∥Z∥∗ represents modular modeling with Mate ∥Z∥1.

III. MATERIAL AND METHOD

The pipeline of the proposed LSLRSR framework (see Fig. 1 )
is as follows: (1) First, the Data Processing Assistant for Resting-
State fMRI (DPARSF) is applied to preprocess raw fMRI data and
extract the signals of the brain region of interest (ROIs) according to
the AAL template [36]; (2) Second, the FBN is constructed by the
proposed LSLRSR method. (3) Last, the most discriminative features
are selected by t test, and SVM is used for final classification.

A total of 219 right-handed subjects participated in the study,
including 67 AD patients, 64 MCI (Mild Cognitive Impairment (MCI)
is a transitional stage between normal age-related cognitive decline
and more serious conditions such as dementia. Individuals with MCI
may experience noticeable cognitive changes but generally maintain

their ability to perform daily activities.) patients and 88 HCs. The
protocol was approved by the Medical Research Ethics Committee
and consent was obtained in accordance with the Declaration of
Helsinki.

All participants underwent a complete physical and neuropsy-
chological assessment, including the mini-mental state examination
(MMSE) and clinical dementia rating (CDR). The AD and MCI
patients met the new research criteria for possible or probable AD
and MCI, respectively [37].

The controls met the following criteria: (a) no visual loss or
hearing loss, as well as other neurological deficiencies; (b) no stroke,
depression or epilepsy, and no other neurological or psychiatric
disorders; (c) no abnormal findings on routine brain MRI; (d) no
cognition or memory complaints; and (e) a CDR score of 0.

A. fMRI acquisition

he resting-state fMRI data were acquired axially using echo-planar
imaging (EPI) with the following parameters: repetition time (TR)
/ echo time (TE) / flip angle (FA) / field of view ( FOV ) =
2000 ms/40 ms/90◦/24 cm, image matrix = 64×64, slice number
= 33, thickness = 3 mm, gap = 1 mm, band width = 2232 Hz/
pixel.

B. Data preprocessing

fMRI data processing was performed using DPARSF
(http//rfmri.org/DPARSF) [36]. The procedure included the
following: (1) The first 10 volumes were removed. (2) Slice timing
and head motion correction was performed; subjects with maximum
head movements > 2 mm in translation or > 2◦ in rotation were
excluded; (3) The realigned volumes were spatially normalized in
the MNI space using the T1 template, and the functional images
were resampled into a voxel size of 3 × 3 × 3 mm3; (4) The data
were smoothed with a Gaussian filter of 4-mm FWHM to reduce
noise and residual differences in gyral anatomy; (5) Regressing out
the Friston-24 parameters, their first time-derivatives, and global,
WM, and CSF signals; (6) Time band-pass filtering (0.01−0.08 Hz)
was performed to reduce the effects of low-frequency drift and
highfrequency physiological noise.

C. Proposed Method

The community structure of brain networks is portrayed as a
hierarchy of modules, each comprising densely connected regional
nodes. The similarity between brain subnetworks supports the mod-
ular structure, implying similar regions or modules may exist across
individuals. However, current FBN modeling methods often overlook
this inter-subnetwork similarity.

Exploring the link between subnetwork similarity and modularity
enhances our understanding of brain function, cognitive processes,
and disease progression. In many cases, a subnetwork is seen as
a distinct structure within the network. When a subnetwork shares
similarities with others, it forms an autonomous module. Quantify-
ing subnetwork similarity involves measuring and transforming the
distance between them into a similarity score. Incorporating prior
knowledge provides effective guidance for modeling FBNs.

P
(PC)
ij =

(xi − x̄i)
T (xj − x̄j

)√
(xi − x̄i)

T (xi − x̄i)

√(
xj − x̄j

)T (
xj − x̄j

) (3)

where P
(PC)
ij ∈ P (PC) represents the Pearson correlation between

two-time series xi and xj refer to the time series data from two
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Fig. 1. Illustration of the proposed LSLRSR method.

distinct brain regions. P (PC) = [p1, p2, · · · , pl] ∈ Rn×n is the
FBN based on Pearson correlation. i and j = (1, 2, · · · , n) indicate
the respective nodes in a brain network.

C = exp

(∥∥pi − pj
∥∥2

−2σ2

)
(4)

where pi and pj ∈ P (PC) is the i-th and j-th column in P (PC)

that represent the correlation vectors between the corresponding
ROI and all other ROIs, C represents a measure of similarity or
connection strength between pi and pj , in the functional brain
network(FBN)P

(PC)
ij .

Previous research has shown a strong correlation between the
similarity of subnetworks and their modularity [38], [39]. Taking
inspiration from recent developments in manifold learning, we have
integrated a locality-constrained factor into our approach, which ex-
plicitly considers the similarity among subnetworks within functional
brain networks (FBNs). The majority of manifold learning algorithms
[40], [41] employ the concept of local invariance. In essence, if two
subnetworks share similar topological features, a significant weight
is assigned between these two subnetworks. Following the approach
outlined in [42], we utilize the following local constraints to reveal
the similarity among subnetworks:

∥C ⊗ Z∥0 (5)

where ⊗ denotes the Hadamard product, and the C local similarity
constraint.

Existing studies describe modularity by combining low-rank with
sparse representation. Modularity imposes stronger constraints on
network structure compared to sparsity, as modularity implies spar-
sity. Integrating brain sparsity and modularity priors aids in estimat-
ing more reasonable brain networks. The similarity between brain
modules reflects the brain’s separation and integration, while the
similarity of sub-networks within modules indicates module density.
Introducing similarity priors to the brain network helps represent the
brain more realistically. Combining formulas (2) and (5), we can

express the FBN estimation model as:

min
Zi

∥X−XZ∥2F + λ∥C ⊗ Z∥0 + β∥Z∥∗ (6)

where ∥0∥0 is L0-norm, and ∥·∥∗ is trace norm. However, because the
kernel norm is used to approximate the optimization model without
considering the suppression of the extremely large singular values of
the reconstructed data, there can be outliers in the eigenvalues. The
Schatten-p [43], [44] norm can suppress singular values to a smaller
range and is more able to approximate the rank. Thus, (6) becomes:

min
Z

∥X−XZ∥2F + λ∥C ⊗ Z∥0 + β∥Z∥S0 diag(Z) = 0 (7)

where diag(Z) = 0 is the constraint that is used to avoid the trivial
solution of representing a data point as a linear combination of itself,
and ∥ ∗ ∥S0 is the Schatten-0 norm. The Schatten-0 norm exhibits
more robustness to noise and outliers and can better learn similarities
between data [45], [46].

D. Optimization Algorithm

To solve Z, we need to introduce a new variable to decompose the
original problem into solving two variables J and Z. This leads us
to solve the following equation:

min
J,Z

1

2
∥X−JZ∥2F +λ∥C⊗Z∥0+β∥Z∥S0 s.t. J = Z−diag(Z)

(8)
the augmented lagrangian function of (8) is:

Lµ(J, Z,Λ) =
1

2
∥X−XJ∥2F + λ∥C ⊗ Z∥0 + β∥Z∥S0

+
µ

2
∥J − Z + diag(Z)∥2F

+ ⟨Λ, J − Z + diag(Z)⟩

(9)

where µ is the penalty parameter and Λ is the Lagrange multiplier.
After that, we calculate the unknown variables by fixing the remaining
variables.

This article has been accepted for publication in IEEE Transactions on Neural Systems and Rehabilitation Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSRE.2024.3355769

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



4 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2023

Step 1. Update Jk+1, Assuming that variable Zk+1, µk+1,Λk+1

is known, variable J can be solved by minimizing the following
problem:

Jk+1 =
[
XTX+ µk

]−1 [
XTX+ µkZk − Λk

]
(10)

Step 2. Update Zk+1, assuming that variable Jk+1, µk+1, and Λk+1

is known, the following problem can be solved:

min
zi

λ∥C ⊗ Z∥0 + β∥Z∥S0 +
µk

2

∥∥∥∥∥Jk+1 +
Λk

µk
− Z

∥∥∥∥∥
2

F

(11)

when λ = 0 the (11) can be expressed:

Pµ
g = min

Zi

β∥Z∥S0 +
µk

2

∥∥∥∥∥Jk+1 +
Λk

µk
− Z

∥∥∥∥∥
2

F

(12)

where Pµ
g is the proximal operator of ∥Z∥S0. Let UΣV T denote the

SVD of
(
Jk+1+ Λk

µk

)
. So the solution of (11) can be expressed:

Zk+1 = UH

(
Σ;

β

µk

)
V T (13)

when β = 0 proximal map can be expressed:

Pµ
f = min

Z
λ∥C ⊗ Z∥0 +

µk

2

∥∥∥∥∥Jk+1 +
Λk

µk
− Z

∥∥∥∥∥
2

F

(14)

where Pµ
g is the proximal operator of ∥C⊗Z∥0, the hard thresholding

operator H applied entry-wise to matrix
(
Jk+1 + Λk

µk

)
. Introducing

proximal averaging [47] in recent work allows us to efficiently solve
the problem in (11) when λ ̸= 0 and β ̸= 0 resolved proximal map
by averaging low-rank and sparse regularizer for proximal mapping
Pµ
if+g

:

Pµ
f+g ≈ λPµ

f + βPµ
g (15)

where λ+ β = 1.
Step3: Update Lagrange Multiplier Λk+1 and µk+1. Assuming

that variable Jk+1, Zk+1, and µk are known, the following problem
can be solved:

Λk+1 = Λk + µk
(
Jk+1 − Zk+1

)
(16)

µk+1 = min
(
ρµk, µmax

)
(17)

when the difference of J in two adjacent iterations is less than the
predefined threshold, the iteration process is terminated, and ρ > 1
is the step size for adaptive changes in µ.

E. Constructing low rank non-negative sparse graphs

Given a BOLD signal matrix X through Section 2.3, we can
optimize the coefficient matrix Z∗

i . The sparse constraint ensures that
each region of interest is associated with only a few brain regions, so
the graph from Z∗

i is naturally sparse. The low-rank time constraint
can ensure that the coefficients of samples from the same subspace
are highly correlated and fall into the same cluster, so Z∗

i can capture
the global correlation (i.e., cluster) of all the data. In fact, due to data
noise, the Z∗

i is usually dense and small. So we can normalize the
Z∗
i and set a threshold to control its sparsity:

Z∗
i = Z∗

i /
∥∥Z∗

i

∥∥
2
| (18)

Ẑ∗
l =

{
0 if Z∗

i < 0
Z∗
i if Z∗

i > 0
(19)

after (19) we can obtain Ẑ∗
l . Then we can define the graph weight

matrix W as:

W =
Ẑ∗
l +

(
Ẑ∗
l

)T
2

(20)

The main steps of the proposed algorithm are summarized in
Algorithm 1.

Algorithm 1 Locally constrained low-rank sparse
representation by ADMM Optimization
Input: ROI mean time series X, {λ, β} > 0, λ+ β = 1
Output: low rank non-negative sparse graphs
1: Initialize: {J, Z,Λ} = 0, µ(0) > 0
2: Compute XTX
3: while not converged do
4: Update Jk+1 by (10)
5: Normalize columns of J to unit to l2-norm
6: Calculate rank regularized proximal map Pµ

g by (12)
7: Calcultte sparsity regularized proximal map Pµ

f by(14)
8: Update Zk+1 = Pµ

f+g defined in (15,12,14)
9: Update Λk+1 by (16)
10: Update µk+1 by (17)
11: end while
12: Calculate graph weight matrix W by (18),(19),(20)

F. Feature selection and classification
We employ the simplest feature selection method (t test, p value

= 0.05) and the most popular support vector machine (SVM) [48]
classifier (in our linear kernel with default parameter C = 1) in the
experiment.

Due to the limited data available, the FBN estimation methods
involved were tested using a ten-fold cross-validation approach.
Specifically, all samples are divided into ten parts, leaving only one
part for testing, while the remaining parts are used for selecting fea-
tures and training classifiers. Finally, the classification performance of
different methods is evaluated by a set of commonly used quantitative
metrics, including accuracy (Acc), sensitivity (Sen) and specificity
(Spe). Additionally, the area under the ROC curve (AUC) is also
adopted to measure the MCI and AD classification performance [49].

IV. RESULT

A. Dataset
To validate the generative performance of the proposed method,

LSLRSR is applied to AD diagnosis and eyes open/close cognition
tasks.

There were 219 participants, including 67 patients with AD (36
males), 64 MCI patients (24 males), and 88 (39 males) in the normal
control group. Demographic characteristics are detailed in the paper
[50].

To further verify the robustness of our algorithm, we conducted
classification experiments on another dataset. The eyes open/close
dataset was downloaded from the public dataset “Beijing Eyes Open
Eyes Closed Study”. fMRI data were recorded during eyes open (EO)
and eyes closed (EC) states [51].

B. Experiments set
In this paper, we verify the robustness of our algorithm through

two different sets of experiments. (1) In the first set of experi-
ments, we use the AD dataset to compare the results of different
algorithms. We identify the optimal parameters by comparing all
parameters in the algorithm using a linear search in the following
range: [0.01, 0.025, 0.05, 0.075, 0.10, 0.25, 0.50, 0.75, 0.99]. (2) In
the second set of experiments, we use the dataset provided by
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reference [51], and the parameter settings in the comparison algorithm
are consistent with reference [51].

We used different methods to estimate the FBN based on the real
AD dataset and the brain state dataset provided in the BrainNetClass
tool [51]. We will briefly introduce the six methods below:

• Pearson’s Correlation (PC) [51]: Network Construction using
Pearson’s Correlation of regional mean BOLD signals.

• Sparse Representation (SR) [51]: network construction using
sparse representation.

• Weighted Sparse Representation (WSR) [25]: The original
connection strength and its group structure are optimized by the
connection strength weighted sparse group constraint to construct the
functional connection network.

• Weighted Sparse Group Representation (WSGR) [52]: The con-
straint based on group structure is introduced to integrate link strength
and group structure information to build the functional connection
network.

• Strength and similarity guided GSR (SSGSR) [26]: This method
employs integration of single functional connectivity (FC) informa-
tion and introduces GSR-based network construction framework.

• Sparse Low-rank Representation (SLR) [30]: This method em-
ploys FC network construction using estimation schemes by encoding
prior modularity in the form of matrix regularizer.

• Functional Brain Network Estimation with Human-Guided Mod-
ularity Representation (FBNMR) [32]:FC network construction is
performed using an estimation scheme by encoding both prior mod-
ular topology and expert domain knowledge.

• Functional Brain Network Estimation With Time Series Self-
Scrubbing (FBNSS) [31]: The method employs FC network construc-
tion using an estimation scheme by introducing a latent variable as
an indicator of the data quality.

Thus, we set parameter λ by a linear search in the range of
[0.01, 0.025, 0.05, 0.075, 0.10, 0.25, 0.50, 0.75, 0.99]. We performed
a validation analysis of the method. After obtaining the FC of all
participants, we used them to identify MCI and AD from the NC.

C. FBN Estimation

The representative FBNs of NCs as estimated by eight different
methods are presented in Fig. 2.For the convenience of observation,
all weights are normalized into the interval

[
−1 1

]
. This figure

demonstrates that the FBNs based on PC and the other methods have
different topological structures, and the FBNs based on SR, WSR,
WSGR, SSGSR, SLR, FBNMR, FBNSS and LSLRSR have similar
topological properties. The reason why PC and other algorithms have
different topologies is that they use different data fitting functions.
SLR and our proposed method (LSLRSR) share similar topological
properties. Among these methods, SLR, FBNMR, FBNSS and other
methods show a clear modular structure. Unlike SLR, FBNMR and
FBNSS, our algorithm shows a tighter internal modular structure due
to the introduction of local similarity functions. ground connection.
Unlike from SLR, LSLRSR-based methods preserve sub-network
features with similar topological properties due to local similarity
prior knowledge.

In addition, to quantitatively evaluate modularity, we used New-
man’s spectral algorithm [53] to calculate the modularity scores Q
of different constructed brain networks.

Q = 1/(2m)
∑
ij

(
Zij − kikj/(2m)

)
δ
(
Li, Lj

)
(21)

where m is the total number of edges in the network, Z is the
adjacency matrix corresponding to the network, Zij = 1 means that

Fig. 2. The adjacency matrices of the estimated FC by PC, SR,
WSR, WSGR, SSGSR, SLR, FBNMR, FBNSS and LSLRSR. Note that
all weights are normalized to the interval -1 to 1 for convenience of
comparison between different methods. for convenience of comparison
between different methods.

there is an edge between node i and node j, and ki is the degree of
node i, and Li is the label that node i belongs to a certain community.

It is worth noting that negative edge weights are invalid for the
Newman algorithm, and we deleted all edge weights less than 0 [30],
[53]. In addition, all parameters in this experiment are the optimal
parameters in the training process (that is, the classification accuracy
is the highest). Fig. 3. presents the boxplots of the modularity scores
for several different methods. As shown in the figure, our method re-
tains the most modular structure under the optimal parameters (when
the classification accuracy is the highest) compared with several other
methods. At the same time, there are significant differences between
the highest and lowest modularity scores of different nodes. Due to
the use of the S0 norm as a constraint, our algorithm reduces the
occurrence of outliers relative to SLR.

In the data, our method outperforms several alternatives, main-
taining a prominent modular structure, especially under optimal
parameters when classification accuracy is at its peak. Notably, there
is a significant contrast in modularity scores among different nodes.
Incorporating the S0 norm as a constraint helps our algorithm reduce
outliers compared to the SLR approach.

The PC-based method, being fully connected, exhibits a higher
modular structure than other methods (excluding ours). Unlike con-
ventional approaches, our algorithm achieves a richer abundance of
FBN modular structures. This success is attributed to the integration
of local similarity constraints, guiding the modeling of the functional
connectivity network. This results in enhanced cohesion within each
module’s connections, while interconnections between distinct mod-
ules become more sparse.

D. Classification results
For each method employed in network modeling, feature vectors

are constructed by connecting the upper triangular elements of each
subject’s network representation. To clarify, the dimensionality of
these feature vectors is determined as follows. Subsequently, we apply
two-sample t-tests with a significance level of p < 0.05 (uncorrected)
during the feature selection process in order to reduce redundancy.
Table II and Figure 4 present the classification performance of various
methods for queues related to Alzheimer’s Disease (AD) and queues
associated with (EO/EC). We employed Z-scores to compute the
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Fig. 3. Modularity scores of networks constructed by different methods.
The red line within each box represents the sample median. The upper
and lower edges of each box represent the upper and lower quartiles,
respectively. The “+” is outliers.

variances between distinct algorithms, and the outcomes are displayed
in Table I.

The proposed method, LSLRSR, outperforms other modeling
methods across all performance indicators. Specifically, in MCI/NC
classification, LSLRSR achieves an improvement of approximately
17% (up to 92.70%) compared to Pearson’s modeling method, a 2%
improvement compared to SLR, and approximately 7% improvement
compared to other sparse representation-based modeling methods.
Significance tests (p-values) indicate that PC, SR, WSR, WSGR, and
SSGSR exhibit significant performance differences (p ¡ 0.05), while
SLR, FBNMR, and FBNSS show no significant difference (p ¿ 0.05).

In MCI/AD classification, LSLRSR maintains significant advan-
tages compared to other methods, with an 18% improvement over PC,
3% over SLR, and 6% over sparse representation methods. Sensitivity
(96.37%) is significantly higher than specificity (90.23%). Significant
performance differences (p ¡ 0.05) are observed for PC, SR, WSR,
and SSGSR, while SLR and FBNMR suggest possible differences
(p = 0.21 and 0.05, respectively), and FBNSS exhibits a significant
difference (p = 0.02).

In AD/NC classification, LSLRSR achieves an accuracy of 98.71%,
an 18% improvement over the PC method and approximately 6%
over sparse representation methods. All methods, except SLR, show
significant performance differences (p ¡ 0.05), while SLR suggests a
potential difference (p = 0.01).

For EO/EC classification (as shown in Fig. 4), LSLRSR achieves
better performance, reaching 82.98%. Compared to other methods,
it shows a 13% improvement over the PC-based method, 40% over
SLR, and 35% over SR and WSR. WSGR shows a 22% improve-
ment, and SSGR demonstrates a 6% improvement. Significance
tests indicate potential differences for PC and SR (p = 0.02 and ¡
0.05, respectively), while WSR, WSGR, SSGSR, SLR, FBNMR, and
FBNSS show significant differences (p ¡ 0.05).

Across a myriad of classification endeavors and diverse datasets,
our innovative algorithm has triumphantly secured its position at the
helm of performance. Previous research underscores a noteworthy
phenomenon: the intricate modular transformations that the functional
brain network (FBN) of patients afflicted with Alzheimer’s disease
(AD) undergoes. Our findings cast light on an intriguing possibil-
ity—by introducing localized similarity constraints, we gain a more
intricate representation of the cerebral landscape, thus cultivating
a decidedly modular brain network. This advance simultaneously

establishes a bedrock for unceasing exploration into the evolution-
ary trajectory of brain network modularization amidst the intricate
tapestry of AD’s pathological progression. Our proposed algorithm
has demonstrated remarkable performance across various classifica-
tion tasks and datasets. Previous research has highlighted a significant
shift in the modular structure of patients’ Functional Brain Networks
(FBN) during the progression of Alzheimer’s Disease (AD). We
findings show that introducing the S0 norm leads to the creation
of smoother modular brain networks, effectively reducing the occur-
rence of abnormal values in brain modularity. Simultaneously, the
incorporation of local similarity constraints proves to be a valuable
guide for modeling modular brain networks. This approach results in
sparser connections between brain modules and denser connections
within modules. Enhancing modularity within the brain network
contributes to our deeper understanding of the brain. Furthermore,
our classification results underscore the effectiveness of modular brain
networks in enhancing our comprehension and recognition of diseases
and various brain states. These outcomes also serve as a foundational
stepping stone for future investigations into the evolving modularity
of brain networks during the pathological progression of AD.

E. Parameter and noise sensitivity

In this experiment, we have two parameters, the balance parameter
λ and β (controls the sparsity of functional connectivity). Since λ+
β = 1 in our algorithm (see Section 2 for details), we can only look
at the sensitivity of λ. To verify the effect of different parameters
on the accuracy, we take the value of the parameter within a certain
range to see the effect of different parameters on our experimental
results. Fig. 7presents the results of two different parameters.

Fig. 7 presents the effect of parameter λ on the accuracy of the
two classification and triple classification experiments. It can be seen
from the figure that when parameter λ is taken as 0.01 and 0.25,
the accuracy of different classifications reaches the maximum. In the
process of parameter λ change, the trend of accuracy change is not
obvious.

To verify the sensitivity of our algorithm to noise, we conducted
experiments on binary classification tasks. We added 10DB of Gaus-
sian white noise to the BOLD signal and compared the accuracy of
all algorithms.

The experimental results for the binary classification task are
depicted in the figure. From these results, it is evident that (1) as
the level of noise intensity rises, the accuracy of all algorithms
decreases to varying degrees. It’s apparent that the presence of feature
noise in the samples significantly impacts the classifier’s classification
performance. (2) Based on Figure 5, it’s apparent that the traditional
PC-based functional connectivity method is particularly susceptible to
noise, resulting in a notable accuracy decrease of 53.08%. Compared
to methods based on SR, WSR, WSGR, SSGSR, SLR, FBNMR,
and FBNSS, these methods are not sensitive to noise, so their classi-
fication accuracy is better than traditional methods. The proposed
LSLRSR algorithm achieved the best classification performance.
The LSLRSR algorithm introduces the lowest rank constraint of
S0 norm, which weakens the ”influence” of larger singular values
in the objective function, and weakens the influence of Outlier in
the data on the signal. In addition, combining local constraints
of manifold learning enables the LSLRSR algorithm to mine the
geometric structure of samples in low dimensional space through low
rank learning, maximizing the preservation of the modular structure
of the brain network. Therefore, the intra class similarity and inter
class differences of the data are more prominent, which enables the
LSLRSR algorithm to achieve good classification performance in the
presence of noise.
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Fig. 4. Results (%) of nine different methods in MCI vs. NC, MCI vs. AD, AD vs. NC, EO vs. EC classification.

TABLE I
RESULTS SHOW SIGNIFICANT DIFFERENCES BETWEEN EIGHT DIFFERENT METHODS AND LSLRSR ACROSS VARIOUS CLASSIFICATION TASKS.

Method PC SR WSR WSGR SSGSR SLR FBNMR FBNSS

MCI/NC < 0.05 0.03 0.04 0.03 < 0.05 0.25 0.07 0.19

MCI/AD < 0.05 0.02 0.05 < 0.05 < 0.05 0.21 0.05 0.02

AD/NC < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05

EO/EC < 0.05 < 0.05 < 0.05 < 0.05 0.24 < 0.05 < 0.05 < 0.05

AD/MCI/NC < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05

TABLE II
RESULTS (%) OF NINE DIFFERENT METHODS IN AD VS. MCI VS. NC

CLASSIFICATION.

Method Acc (%) Sen (%) Spe (%)

PC 37.73 37.10 68.62

SR 36.99 36.74 68.24

WSR 51.60 53.91 76.57

WSGR 49.09 50.13 74.52

SSGSR 51.14 46.62 73.52

SLR 50.68 49.92 74.82

FBNMR 67.69 65.81 70.65

FBNSS 66.59 68.92 67.35

LSLRSR 84.19 79.16 83.21

F. Complexity analysis
We now investigate the computational cost of the LSLRSR and

report the running time of different methods in AD vs. NC classi-
fication in Table III.As can be observed from Table III, the overall
running time of our method is reasonable and acceptable in practical
applications. However, the proposed LSLRSR requires more running
time than PC, SR, and WSR because of the time spent computing
the local similarity of the brain network. In our future work, we will
optimize the algorithm to reduce the time complexity.

G. Compared with state-of-the-art methods
In addition to the above experimental analysis, we also compare

the performance of our proposed LSLRSR method with that of
several recent state-of-the-art studies, which are also performed on
AD diagnosis (see Table IV). A brief introduction to these latest
technologies is as follows. Ma et al. [54] introduced the Riemannian
manifold model to extract global features for the diagnosis of ADd.
Hu et al. [55] proposed a multi-band fusion model to estimate brain
networks. These constructed brain networks were then subjected to
graph theoretical analysis to differentiate MCI individuals from NC
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Fig. 5. Influence of noise on LSLRSR in classification tasks.

TABLE III
RESULTS (S) OF NINE DIFFERENT METHODS IN AD VS. MCI VS. NC CLASSIFICATION.

Method PC SR WSR WSGR SSGSR SLR FBNMR FBNSS LSLRSR

Times(s) 2.89 19.18 14.84 220.67 101.25 286.36 300.65 343.26 37.26

Fig. 6. The most discriminative features selected by the best accuracy
of AD identification (i.e., AD vs. MCI vs. NC classification) and ASD
identification tasks based on AAL template respectively. Note that, each
arc shows the selected feature between two ROIs, where the color is
randomly allocated only for a better visualization, and the thickness of
each arc indicates its discriminative power that is inversely proportional
to the corresponding the p − value.

subjects. Wang et al. [56] proposed a distribution-guided network
threshold learning (DNTL) method for FC network analysis to
identify brain diseases through rs-fMRI. Zhang et al. [57] A multi-
view feature learning method based on multi-map FC network to
improve MCI diagnosis. Xue et al. [58] introduced a latent variable to
control the volume sequence, thereby encoding the time dependence
and sequential information of the signal into the estimated BFN.
Zhang et al. [59] developed a multi-scale time series kernel-based
learning model based on Jensen-Shannon divergence for brain disease
diagnosis. Among all these compared methods, our method achieves
the best classification performance with higher ACC, AUC, and SPE.

Table IV presents a comprehensive overview of the comparison
conducted between our proposed methodology and six state-of-the-art
(SOTA) approaches. The results of this comparative analysis indicate
that our method attains the highest level of accuracy, reaching an
impressive 98.18%, 95.42%, 92.70%, 84.19% in the classification of
AD/NC,AD/MCI,MCI/NC and AD/MCI/NC. Furthermore, in con-
trast to various deep learning algorithms, our approach effectively
identifies the specific brain regions and connections that are associ-
ated with diseases, rendering it more interpretable. Consequently, our
method exhibits significant potential for facilitating clinical applica-
tions, particularly in the early detection of Alzheimer’s disease-related
brain functional connectivity dysfunction.

H. Discriminative features

Using the optimal network parameters, as shown in Fig.6, we use
the LSLRSR method to build a feature-connected network and use
the t test method to rank all features. We choose the 34 significant
frequently occurring values (p value < 0.05). The thickness of each
arc in Figure 5 represents the discriminative power of the corre-
sponding connection (rather than its actual connection strength). We
found some of these biological links to AD recognition. Specifically,
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Fig. 7. Influence of λ and β on LSLRSR in four classification tasks, i.e., AD vs. MCI, AD vs. NC, and MCI vs. NC and AD vs. MCI vs. NC
classification.

TABLE IV
RESULTS OF COMPARED WITH STATE-OF-THE-ART METHODS.

Method classification AD/NC AD/MCI NC/MCI AD/MCI/NC

Hu et.al. [55] SVM 90.18 NA NA NA

Ma et. al. [54] Softmax 92.87 87.29 85.13 83.78

Wang et. al. [56] SVM NA NA 79.2 NA

Zhang et. al. [57] SVM NA NA 85.5 NA

Xue et. al. [58] SVM NA NA 90.51 NA

Zhang et. al. [59] SVM 86.23 NA NA NA

Ours SVM 98.71 95.42 92.70 84.19

the middle temporal gyrus, hippocampus, parahippocampus, medial
and accessory cingulate gyrus, thalamus, medial superior frontal
gyrus, supramarginal gyrus, and inferior temporal gyrus have strong
discriminative ability, which is consistent with similar pathological
studies of MCI [60]–[62].

The default network is related to high-level cognitive functions
such as self-awareness, memory, emotional processing, and psycho-
logical exploration [63]. Existing studies have found that changes
in the default network connection pattern can be observed in AD
and MCI [64]. A large number of studies have shown that the
hippocampus in the early stage of AD is very sensitive to pathological
onset [65], [66]. Alzheimer’s patients may have abnormalities in
memory, object recognition or information evaluation [67], because
of the structure of the posterior cingulate gyrus. , functional and
metabolic abnormal changes [68], [69].

In addition to the DMN, there are other selected brain region
connections shown to be important in AD diagnosis. Connectivity
abnormalities have also been observed in the olfactory cortex of
AD patients [70], and abnormal olfactory function has become a
biomarker for AD and its early diagnosis [71]. At the same time,
the inferior temporal gyrus is affected in AD patients [72], and its
multimodal association area and high-level brain functions such as
speech fluency will also undergo significant changes [73].

V. CONCLUSION

In this study, we propose a new FBN modeling method called
LSLRSR, which utilizes prior similarity between subnetworks to
guide functional brain network modeling and generate a more mod-
ular FBN. We introduce the Schatten-0 norm, which enhances the
robustness of the FBN to the effects of signal noises and outliers and

is better at capturing the modular structure in brain networks than
sparse representation-based graphs. Experimental results demonstrate
that the network constructed by our algorithm can retain more prior
biological knowledge. Finally, we use the constructed feature con-
nection network for MCI recognition, and even with a simple feature
selection and classification pipeline, we can achieve an encouraging
accuracy rate of 94.71% for MCI and 98.70% for AD, the three-
category result reached 82%, meanwhile, the EO/ while the EO/EC
result reached 82.98%
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