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Abstract—The variability in the propagation pathway in 

epilepsy is a main factor contributing to surgical treatment failure. 

Ways to accurately capture the brain propagation network and 

quantitatively assess its evolution remain poorly described. This 

work aims to develop a dynamic step effective network (dSTE) to 

obtain the propagation path network of multiple seizures in the 

same patient and explore the degree of dissimilarity. Multichannel 

stereo-electroencephalography (sEEG) signals were acquired with 

ictal processes involving continuous changes in information 

propagation. We utilized high-order dynamic brain networks to 

obtain propagation networks through different levels of linking 

steps. We proposed a dissimilarity index based on singular value 

decomposition to quantitatively compare seizure pathways. 

Simulated data were generated through The Virtual Brain, and 

the reliability of this method was verified through ablation 

experiments. By applying the proposed method to two datasets 

consisting of 29 patients total, the evolution processes of each 

patient's seizure networks was obtained, and the within-patient 

dissimilarities were quantitatively compared. Finally, three types 

of brain network connectivity patterns were found. Type I 

patients have a good prognosis, while type III patients are prone 

to postoperative recurrence. This method captures the evolution 

of seizure propagation networks and assesses their dissimilarity 

more reliably than existing methods, demonstrating good 

robustness for studying the propagation path differences for 

multiple seizures in epilepsy patients. The three different patterns 

will be important considerations when planning epilepsy surgery 

under sEEG guidance. 

  
Index Terms—Epilepsy; Propagation network; Dynamic step 

effective network; Dissimilarity 
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I. INTRODUCTION 

ocal epilepsy originates in a specific onset zone but may 

subsequently spread to neighboring regions of the brain 

until the entire cortex is potentially involved[1, 2]. An unresolved 

issue is how the seizures themselves vary among individual 

patients. Previous studies have found that seizures in individual 

patients have similar characteristics[3-6] and evolve through 

similar spatiotemporal neural dynamics sequences[7] or feature 

pathways[8]. However, there is also evidence that the various 

aspects of epilepsy can differ even in the same patient. 

Long-term electroencephalography (EEG) records in clinical 

practice indicate that a subset of patients have multiple types of 

epileptic seizure evolution[9-11]. It is possible that a given 

treatment may only target a subset of patients with seizures, 

resulting in the inability to control the complete range of 

seizures[12, 13]. Therefore, seizure variability is of great 

importance for the clinical management of these patients. 
To design an optimal and comprehensive treatment plan, we 

need to understand the prevalence and characteristics of patient 

variability. Although some studies have conducted quantitative 

comparisons among patients with epileptic seizures[14-17], the 

current gold standard is still routine examination of the initial 

EEG by trained clinical doctors. This method is 

time-consuming and subjective, however, and may miss 

important functions, including network interactions that are 

difficult to detect visually. Therefore, we must use 

computational methods to objectively quantify the similarity of 

seizure pathways and design a reasonable surgical program. 

Dynamic brain network connectivity reflects information 

interactions between brain regions, which can help reveal the 

evolution of seizure networks[18-20]. Nuttida 

Rungratsameetaweemana et al. applied a graph-theoretical 

approach to assess dynamic reconfigurations in functional brain 

connectivity before, during, and after seizures that displayed 

heterogeneous propagation patterns[21]. Brittany H. Scheid et al. 

calculated the average and modal controllability from each 

generated effective connectivity network to measure the 

time-varying controllability of the brain on an evolution graph 

of conditional network interaction[22]. Most existing studies 

focused on a single seizure and did not consider the effects of 

multiple seizures on patients[18, 21, 23-25]. Additionally, they used 

brain connectivity to evaluate the dynamic remodeling 

characteristics of epilepsy at different periods, including 

correlation, mutual information, and effective connectivity[26-28]. 
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Because of the variety of approaches to constructing networks, 

most of them require the assumption of a specific model. 

However, transfer entropy (TE) does not need to be modeled in 

advance, so it has certain advantages, such as good correlation 

sensitivity and small detection errors[29]. However, to meet the 

requirements of clinical applications, further research is still 

needed, especially in capturing hierarchical propagation 

patterns in dynamic networks and developing robust systems 

that perform consistently given different patients. 

One challenge in assessing the evolution of epileptic seizures is 

that brain connections have only first-order neighbor 

information. Because of the sequence in which nodes are 

propagated, the information propagation mode is of high order. 

Gabriel M. Schroeder et al. utilized sliding-window functional 

connectivity to study the dissimilarity of multiple seizures in 

the same patient, and they found variability in seizure network 

evolution[9]. Mariella Panagiotopoulou et al. tracked network 

dynamics and found that the evolution of multiple seizures in 

most subjects above chance level fluctuates on different 

timescales[30]. However, ways to accurately capture the brain 

communication network and quantitatively assess its evolution 

have not been well defined. The propagation path during an 

attack follows a certain order in terms of the nodes along which 

the attack propagates. Because effective networks cannot 

provide characteristic regions connected to brain regions at 

different link-step distance levels, the classical mathematical 

model cannot be directly applied. Dynamic networks are 

complex and contain a large amount of information; therefore, 

direct similarity comparisons will have time complexity, 

information redundancy and other problems. 

In this study, we propose building a dynamic and effective 

network based on high-order information to capture the 

multilevel network of epilepsy propagation. As shown in 

Figure 1, we use three sets of subjects to construct a 

connectivity matrix under different time windows and then 

extract its high-order information step by step. The connection 

matrix obtained with this method in each time window then 

represents the propagation path mode at this time. A 

dissimilarity measurement method based on singular value 

decomposition is proposed to quantitatively compare each 

seizure in the same patient. The reliability of this method was 

verified by generating simulated data through The Virtual 

Brain (TVB). Our method quantifies and characterizes the 

within-patient variability in the evolution of the seizure 

network, finally yielding three types of epileptic seizure 

network connection patterns. 

 

 
Fig. 1 Schematic illustration of the overall methodological approach. A: We first obtain the TE network, and then a three-step process is performed to capture the 

propagation of hierarchical information; B: the anatomical network is constructed from MRI and TI data, and by using the “Epileptor Model”, the simulation data 

are finally obtained; C: the transmission path of a seizure in a clinical patient is obtained through the three steps. 

II. METHODS  

A. Study subjects 

The data from two centers were used in this study: (1) the 

SWEZ dataset, consisting of 11 in the neurosurgery department 

of Shanxi Provincial People's Hospital; (2) the HUP dataset, a 

public dataset consisting of 18 patients from the Hospital of the 

University of Pennsylvania. To be included in the study, each 

patient was required to have had at least four seizures suitable 

for the analysis. and. The information collected from the 

stereo-electroencephalography (SEEG) data of the two datasets 

is shown in Appendix S1, Tables S1 and S2. 

Preprocessing with the Brainstorm tool[31]: First, we removed 

bad channels, performed independent component analysis (ICA) 

to remove any artifacts, bandpass filtered the data at 0.16-97 Hz 
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and downsampled the frequency from 1000 Hz to 500 Hz. The 

bad channels are mainly determined by sEEG observation and 

doctor's record during operation. ICA-based artifact correction 

can separate and remove multiple artifacts from sEEG data 

through linear decomposition. 

B. Epileptor model 

In our study, simulated data were generated with the 

Epileptor model as the ground truth to verify dynamic step 

transfer entropy (dSTE). Figure 2 shows the default structural 

connectome of John Doe from the TVB and the subsequent use 

of the Epileptor model to simulate the iEEG data[32]. 

Mathematically, the Epileptor model is composed of five 

state variables coupled with two oscillating dynamical systems 

at three different time scales (see Appendix S2 for details). 

Proix et al. demonstrated that simple and complex seizure 

recruitment among brain regions can be modeled by coupling 

Epileptor nodes with permittivity-based coupling[33]. Hence, 

the Epileptor model is implemented here using the following 

eight equations adapted from the original five-equation 

model[32]: 

�̇�1,𝑖 = 𝑦1,𝑖 − 𝑓1(𝑥1,𝑖 , 𝑥2,𝑖) − 𝑧 + 𝐼1             (1) 

�̇�1,𝑖 = 1 − 5𝑥1,𝑖
2 − 𝑦1,𝑖                       (2) 

�̇�𝑖 =
1

𝜏0

(4(𝑥1,𝑖 − 𝑥0) − 𝑧𝑖 − ∑ 𝐾𝐶𝑖𝑗

𝑁

𝑗=1

(𝑥1,𝑗 − 𝑥1,𝑖)) (3) 

�̇�2,𝑖 = −𝑦2,𝑖 + 𝑥2,𝑖 − 𝑥2,𝑖
3 + 𝐼2 + 0.002𝑔(𝑥1,𝑖)

− 0.3(𝑧𝑖 − 3.5)                                              (4) 

�̇�2,𝑖 =
1

𝜏2
(−𝑦2,𝑖 + 𝑓2(𝑥2,𝑖))                      (5) 

where 

𝑓1(𝑥1,𝑖 , 𝑥2,𝑖) =       {
𝑥1,𝑖

3 − 3𝑥1,𝑖
2                           𝑖𝑓𝑥1,𝑖 < 0

(𝑥2,𝑖 − 0.6(𝑧𝑖 − 4)2)𝑥1,𝑖   𝑖𝑓𝑥1,𝑖 ≥ 0
     (6) 

𝑓2(𝑥2,𝑖) = {
0                                        𝑖𝑓𝑥2,𝑖 < −0.25

6(𝑥2,𝑖 + 0.25)           𝑖𝑓𝑥2,𝑖 ≥ −0.25
       (7) 

𝑔(𝑥1,𝑖) = ∫ 𝑒𝑥𝑝−𝛾(𝑡−𝜏)
𝑡

−𝑡0

𝑥1,𝑖(𝜏)𝑑𝑡                (8) 

where 𝜏0 = 2857, 𝜏2= 10, 𝐼1 = 3.1, 𝐼2 = 0.45, and 𝛾 = 0.01. 

The parameter x0 indicates the excitability of the brain region. 

When 𝑥0 > −2.1. For the simulation data, 𝑥0 = −1.5 represents 

the epileptic zone (EZ), early propagation nodes are 

represented by 𝑥0  = −1.8, and 𝑥0  = −2.0 represents late 

propagation nodes. In all other regions, 𝑥0  is set to −3.0. 

Simulated SEEG data are generated by projecting the local field 

potential given by 𝑥1 (t) + 𝑥2 (t) into the sensor space through a 

linear transformation. Simulations are performed in TVB using 

the Heun integration scheme with a time step size of 0.05 ms 

for 10000 ms. 

Specifically, for seizure 1, the 𝑥0 values of the EZ regions 

are set to -3.0. The 𝑥0values of the early propagation regions 

are set to -1.8. The 𝑥0 values of the late propagation region are 

set to −2.0. Similar values are set for the other seizures; the 

specific locations can be seen in Table 1. The propagation paths 

designed for seizures 1 and 2 are similar, as are those designed 

for seizures 4 and 5. 

 

 
Fig. 2 Simulated data generation: with the default structural connectome of John Doe, we used the Epileptor model to simulate the sEEG data.

 

 

TABLE 1 Specific simulation locations 

 𝑥0=-3.0 𝑥0=-1.8 𝑥0=−2.0 

Seizure 1 rAMYG, 

lAMYG 
rA2, rCCA, rM1, rPCI, 

rPCIP, and lA2 
rTCI, rTCS and 

rTCV 
Seizure 2 rPHC, rHC rAMYG, rTCI, rTCS, 

lHC and lPHC 
rA2, rCCA and 

rTCV 
Seizure 3 lAMYG rA2, rCCA, rM1 and lA2 rTCI and rTCS 

Seizure 4 rCCR, rCCS rPCM, rPCS, rPFCCL, 

rPFCM and rPFCPOL 
lPCI, lPFCPOL 

and lPFCVL 
Seizure 5 rCCR, lS1 rCCS, rPCM, rPFCCL, 

rPFCM and lPFCVL 
lTCC, rPCS and 

rPFCVL 
 

C. Dynamic step transfer entropy  

In this section, we propose dSTE to objectively explore 

epileptic seizure variability. First, we partition each seizure 

with a 1-s sliding window. Then, we use the step effective 

connection capture propagation network. Finally, the obtained 

matrices are combined according to the time window order to 

obtain matrix 𝐻 (Figure 3). 

Kaiser and Schreiber proposed transfer entropy as an 

estimation of the information flow from one time series to 

another[34]. Compared with other model-based methods, TE has 

certain advantages in terms of correlation sensitivity[35, 36]. 

Therefore, TE was ultimately selected to build an effective 

network between different regions[37]. A brief overview of TE is 

given below. 
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Given system 𝑋  and system 𝑌 ,  {𝑥𝑖}𝑖=1
𝑁  and {𝑦}𝑖=1

𝑁  denote 

the corresponding time series. The degree of information flow 

propagation between variables is obtained by calculating 

information entropy, which is defined as follows: 

𝐻𝑋 = − ∑ 𝑃(𝑥𝑖) log 𝑃(𝑥𝑖)                           

𝑖

 (9) 

Schreiber proposed TE to detect asymmetry in system 

interactions. We assume that the system under study is a 

stationary Markov process of order 𝑘, so each observation xi 

can be regarded as a state of Markov process and satisfies: 

𝑝(𝑥𝑖+1|𝑥𝑖 , … , 𝑥𝑖−𝑘+1) = 𝑝(𝑥𝑖+1|𝑥𝑖 , … , 𝑥𝑖−𝑘)     (10) 

Taking full advantage of all previous states, the average 

amount of information transmitted for the most recent 

observation 𝑥𝑖+1 is as follows: 

ℎ𝑥

= − ∑ 𝑝(𝑥𝑖+1|𝑥𝑖 , … , 𝑥𝑖−𝑘+1) log 𝑝(𝑥𝑖+1|𝑥𝑖 , … , 𝑥𝑖−𝑘+1)  (11)

𝑖

 

Given the connection between the two systems X and Y, if 

there is no information flow between X and Y, then 

𝑝(𝑥𝑖+1|𝑥𝑖 , … , 𝑥𝑖−𝑘+1) = 𝑝(𝑥𝑖+1|𝑥𝑖 , … , 𝑥𝑖−𝑘+1, 𝑦𝑖 , … , 𝑦𝑖−𝑙+1) .  

Therefore, the effect to which a system X is affected by system 

Y is measured by calculating the difference between two 

probabilities, 𝑝(𝑥𝑖+1|𝑥𝑖 , … , 𝑥𝑖−𝑘+1)  and 

𝑝(𝑥𝑖+1|𝑥𝑖 , … , 𝑥𝑖−𝑘+1, 𝑦𝑖 , … , 𝑦𝑖−𝑙+1).  Based on the Kullback 

entropy, which is a pleasant method based on the concept of 

backoff entropy and ℎ𝑥  to measure the difference in 

distribution, the transfer entropy is given by Schreiber as 

follows: 

𝑇𝐸(𝑌 → 𝑋  )

= ∑ 𝑝(𝑥𝑖+1, 𝑥𝑖
(𝑘)

, 𝑦𝑖
(𝑙)

)

𝑥𝑖+1,𝑥𝑖
(𝑘)

,𝑦𝑖
(𝑙)

𝑙𝑜𝑔
𝑝(𝑥𝑖+1|𝑥𝑖

(𝑘)
, 𝑦𝑖

(𝑙)
)

𝑝(𝑥𝑖+1|𝑥𝑖
(𝑘)

)
     (12) 

𝑥𝑖
𝑘 = 𝑝(𝑥𝑖+1|𝑥𝑖 , … , 𝑥𝑖−𝑘+1)                      (13) 

𝑦𝑖
𝑙 = 𝑝(𝑥𝑖+1|𝑥𝑖 , … , 𝑥𝑖−𝑘+1, 𝑦𝑖 , … , 𝑦𝑖−𝑙+1)            (14) 

The transfer entropy from 𝑌  to 𝑋  is essentially the 

information that Y changes with the uncertainty of 𝑋, that is, 

the size of the amount of information that 𝑌 transfers to 𝑋 , 

quantifying the degree of statistical dependence derived from 𝑌 

but not those originating from a common history, which is 

better than the standard mutual information of standard time 

delay. 

As an input to the STE analysis, we first computed the 

individual TE matrices. We obtained an N-by-N matrix, where 

N is the sum of the contacts on all electrodes. Then, a Fisher 

transformation was applied to the resulting effective matrix. 

Next, we applied an FDR (Benjamini and Hochberg) correction 

at the 0.001 level to control for the rate of false positives in the 

final network adjacency matrices. Finally, we binarized the 

resulting FDR thresholded matrices to obtain directed graphs 

for each individual that will serve as input data for the STE 

analysis. 

In our framework, a step refers to the number of links (edges) 

that belong to a path connecting a node to the target area. The 

high-order network is solved by the following formula: 

𝑆𝑇𝐸𝐾 = 𝑆𝑇𝐸1 ∗ 𝑆𝑇𝐸𝐾−1,     𝑘 ≥ 2                   (15) 

Specifically, step 1 is the initial TE matrix, which can capture 

the direct neighbors of the seed node. Step 2 captures two-hop 

neighbors, and step 3 captures three-hop neighbors. Through 

experimental studies and clinical observation, a relatively 

complete multimodal integration network can be captured in 

step 3. Therefore, we used the third-order network to extract the 

seizure brain network.  

 

 
Fig. 3 Step dynamic transfer entropy analysis: First, we divide each episode with a 1-s sliding window. Then, we use transfer entropy combined with step 3 to obtain 

an effectively connected capture propagation network. Finally, matrix H is obtained by combining the obtained matrices in the order of the time window. 

 

 
D. MDS index  

Because of the high dimensionality of this network space, it 
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is not feasible to directly observe the seizure pathways. 

However, they can be approximated in two dimensions (2D). 

MDS was used to project all seizure time windows into 2D 

space, allowing seizure pathway visualization through network 

space. Each point corresponds to a seizure time window that is 

more similar to the network time window, and the dynamic 

position is closer in the projection. In the same seizure, 

continuous time windows are connected to visualize the seizure 

pathways. 

The basic idea of multidimensional scaling (MDS) is to 

ensure that the relative distance between samples remains 

unchanged after the high-order space is mapped to the 

low-dimensional space. The algorithm is as follows: 

Step 1: Calculate the distance among sample points in the 

original space. Taking Euclidean distance as an example, MDS 

should project the original d-dimensional space to a 

lower-dimensional space 𝑍  while maintaining the distance 

among sample points unchanged before and after dimension 

reduction. The formula is as follows: 

𝑑𝑖𝑗
2 = ||𝑍𝑖 − 𝑍𝑗||2                               (16) 

Step 2: Calculate the inner product matrix 𝐵.  

∑ 𝑍𝑖

𝑖

= 0                                     (17) 

∑ 𝑑𝑖𝑗
2𝑁

𝑖=1 = ∑ ||𝑍𝑖||
2 + 𝑁||𝑍𝑗||2              𝑁

𝑖=1  (18) 

∑ 𝑑𝑖𝑗
2

𝑁

𝑗=1

= ∑ ||𝑍𝑗||2 + 𝑁||𝑍𝑖||
2                (19)

𝑁

𝑗=1

 

∑ ∑ 𝑑𝑖𝑗
2

𝑁

𝑗=1

𝑁

𝑖=1

= ∑ ∑ ||𝑍𝑗||2 + 𝑁||𝑍𝑖||
2

𝑁

𝑗=1

= 2𝑁

𝑁

𝑖=1

∑ 𝑑𝑖𝑗
2

𝑁

𝑖=1

 (20) 

Define inner product matrix 𝐵, 𝐵 = 𝑍𝑇𝑍. Using the above 

formula, the element values in matrix 𝐵  can be derived as 

follows: 

𝑏𝑖𝑗 = −0.5 (
1

𝑁2
∑ ∑ 𝑑𝑖𝑗

2

𝑁

𝑗=1

𝑁

𝑖=1

−
1

𝑁
∑ 𝑑𝑖𝑗

2

𝑁

𝑖=1

−
1

𝑁
∑ 𝑑𝑖𝑗

2

𝑁

𝑗=1

+ 𝑑𝑖𝑗
2 )                                                          (21) 

Step 3: Eigenvalue decomposition is performed on matrix 𝐵 

to obtain the eigenvalue matrix and eigenvector matrix: 

𝐵 = 𝑉 ∧ 𝑉𝑇                                   (22) 

Step 4: The first z-term of the largest eigenvalue matrix and 

its corresponding eigenvector are taken to form the reduced 

dimension 𝑍-matrix: 

𝑍 = 𝑉 ∧
1

2⁄                                  (23) 

The MDS algorithm only relies on the distance matrix of the 

sample, and the method does not need any other prior 

knowledge. After dimension reduction, the relative 

relationships among the samples in the original space are 

maintained, producing a better visualization effect. 

E. Dissimilarity based on singular value decomposition  

The matrix 𝐻  contains noise, data redundancy and high 

complexity. We use singular value decomposition (SVD) to 

extract the key information in the matrix for quantitative 

analysis. 

𝐻 = 𝑈∑𝑉∗                                    (24) 

where 𝑈 is an N * N left matrix; ∑ is a positive semidefinite 

N*M diagonal matrix; and 𝑉∗, the conjugate transpose of V, is 

an M*M right matrix. ∑ Diagonal elements ∑𝐼 are the singular 

values of 𝐻, representing r important features in the original 

matrix. 

On the basis of the singular value matrix, we compared the 

dissimilarity matrix 𝐷 of multiple seizures in each patient. A 

low dissimilarity indicates that the two seizures have similar 

pathways through network space. 

𝐷(𝑖, 𝑗) = |∑𝑛𝑖𝑗 − ∑𝑚𝑖𝑗|                       (25) 

where ∑𝑛 for the first seizure, and ∑𝑚 for the other seizure.  

III. RESULTS 

A. Simulation data verify the reliability of dSTE 

In this paper, we generated five seizures from simulated data 

using the Epileptor model in TVB to verify the accuracy of our 

method. We used ablation experiments to verify the reliability 

of dSTE. The ability of TE, STE and dSTE to capture multiple 

seizure propagation networks is shown in Figure 4. By 

simulating five seizures, sEEG data showed that the first and 

second seizures were similar, the fourth and fifth seizures were 

similar, and the electrodes involved in the third seizure were 

between those of the second and fourth seizures. The specific 

locations are shown in Table S3. TE yielded three seizure 

propagation patterns, but there was a deviation in the relative 

position of the third seizure. STE has higher-order information, 

and although three types of seizure propagation pattern were 

obtained and the relative positions of each seizure were 

basically correct, the pattern of path changes cannot be seen. 

After adding time information to the dSTE, more accurate 

results are obtained. 
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Fig. 4 Using simulated data for ablation experiments to verify the superiority of dSTE: (A) simulated iEEG data for known seizure types; (B) path pattern of 

multiple seizures obtained by TE; (C) path pattern of multiple seizures obtained by STE; (D) path pattern of multiple seizures obtained by dSTE; (E) dissimilarity 

matrix for the simulated data. 

B. Visualizing and quantifying within-patient variability 

Our first goal is to objectively compare the evolution of 

epileptic seizure networks in patients. For each patient, we 

calculated the effective connectivity in the sliding window. 

Therefore, the interaction between sEEG channels can be 

described by a high-order connection matrix in each time 

window that represents the evolution of the network dynamics 

of the epileptic seizure propagation path mode. By converting 

seizures in this way, we formulate seizure comparison as a 

comparison of seizure pathways (or trajectories) through 

high-dimensional network space. The MDS network space 

provides an intuitive visual comparison of epileptic seizure 

pathways within the same patient. 

We identified three types of patients based on the seizure 

network dissimilarity (Figures 5, 6, and 7). Type I patients have 

high consistency in each seizure pathway and high similarity in 

the propagation path involved and are called simple patients. 

Type II patients are called mixed type patients; although they 

present with many types of seizures, they all obey certain rules, 

and there are certain similarities within multiple seizures. In 

type III patients, there is a large degree of dissimilarity directly 

among all seizure pathways, and so they are also called 

complex patients. 

An example type I patient, patient ID06, is illustrated in 

Figure 5. The projections demonstrate that two seizures seem to 

follow approximately the same pathway (seizures 3 and 4). The 

dissimilarity matrix of all patients' seizures quantifies the 

difference in network evolution for each pair of seizures: low 

dissimilarity indicates that the two seizures have similar 

pathways. The pathways change as the number of seizures 

increases. However, in aggregate, the seizure pathways tend to 

be similar overall. 

The results for a typical type II patient, patient ID05, are 

illustrated in Figure 6. The projections suggest that four 

seizures follow approximately the same pathway (seizures 1, 2, 

3 and 4), four follow part of the same pathway (seizures 5, 6, 8 

and 10), and two follow completely distinct pathways (seizures 

7 and 9) through the network space. We can also clearly see 

these three propagation modes in the heatmap. 

An example type III patient, patient ID10, has their results 

illustrated in Figure 7. We find that the overall presentation of 

the patient’s multiple seizures is chaotic and that the similarity 

among them is low. Assessment of the dissimilarity shows that 

three seizures may follow approximately the same pathway 

(seizures 2, 3 and 5). 

 
Fig. 5 Visualizing and comparing seizure pathways through network space in 

an example type I patient, patient ID05. (A) MDS projects all seizure time 

windows into 2D space. (B) The dissimilarity matrix of all the patient’s seizures 

quantifies the difference in the network evolution of each pair of seizures. (C) 

Pathway evolution of epileptic seizures in the patient. 
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Fig. 6 Visualizing and comparing seizure pathways through network space in 

an example type II patient, patient ID04. (A) MDS projects all seizure time 

windows into 2D space. (B) The dissimilarity matrix of all the patient’s seizures 

quantifies the difference in network evolution of each pair of seizures. (C) 

Pathway evolution of epileptic seizures in the patient. 

 
Fig. 7 Visualizing and comparing seizure pathways through network space in 

an example type III patient, patient ID7. (A) MDS projects all seizure time 
windows into 2D space. (B) The dissimilarity matrix of all the patient’s seizures 

quantifies the difference in network evolution of each pair of seizures. (C) 

Pathway evolution of epileptic seizures in the patient. 
 

 

C. Surgical outcomes for the three types of patients 

In this study, we obtained the seizure types for 29 subjects, as 

shown in Figure 8(A). The Engel grades for the three types of 

patients were compared, as shown in Figure 8(B). We observed 

that type I patients had a better surgical outcome (Engle grade 

1). Type III patients had a poor surgical outcome and a high risk 

of postoperative recurrence, which is consistent with our 

hypothesis: the lower the dissimilarity of patients with multiple 

seizures, the easier it is to locate the surgical resection area. 

Even if a few seizures are less frequently observed, there will 

be little impact on the surgical results. However, for patients 

with large dissimilarity among their seizures, if the situation for 

each seizure is not evaluated, it is likely to lead to surgical 

failure. 

 
Fig. 8 Type of seizure in all subjects and its association with surgery outcome: 

Type I is simple patients for whom postoperative results were good. Type II is 

mixed patients. Type III patients are complex patients whose postoperative 

results are poor. 

IV. DISCUSSION 

We proposed dSTE, which captured the propagation network 

of multiple seizures in the same patient. Since the seizure 

process is dynamic, the existing effective network framework 

cannot capture the high-order propagation mode in the dynamic 

network space. High-order dynamic brain networks can be used 

to obtain the propagation network through different levels of 

connection steps. Due to the high complexity and information 

redundancy of the constructed brain network, we proposed a 

dissimilarity index based on SVD to quantitatively assess the 

differences between multiple seizures. 

Some studies have begun to focus on whether there are 

differences in the evolution of the networks of multiple seizures 

in the same epilepsy patient[30, 38, 39]. Ma et al. used the multiple 

seizure data from the same patient to calculate a 

synchronization index based on phase space reconstruction and 

mutual information to build a dynamic functional network 

model of seizures. The results showed that this model described 

the functional cooperation between various brain regions and 

the state transition in the seizure process[40]. Panagiotopoulou et 

al. quantified the duration of seizures using patient sEEG data 

over long periods (2-12 days). By using multiple seizures, it 

was found that the sEEG signal fluctuates in different 

frequency bands on different time scales, and this variability 

follows a specific pattern[30]. Schroeder et al. analyzed the 

iEEG data of patients with multiple seizures, quantitatively 

compared the evolution of patients' seizure networks, and found 

that the variability in the epileptic seizure paths can be reflected 

through the network dynamic space; that is, there are certain 

differences between multiple seizures of the same patient, but 

this difference cannot be better reflected through topological 

attributes such as the characteristic path of the network space[38]. 

Therefore, existing studies have only revealed changes in 
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network topology attributes when seizures spread, and no 

studies have revealed the dynamic evolution of seizure 

propagation paths when multiple, different seizures occur in the 

same patient. This is mainly because existing brain network 

analysis technologies cannot extract effective networks with 

propagation path information. 

Through stepwise and time windows, our study successfully 

captured the higher-order networks that represent the 

propagation path of epilepsy. The reliability of the method was 

verified by using simulated data, as shown in Figure 4. The 

relative position of the third seizure obtained by TE is biased, 

mainly due to the lack of higher-order information in the TE 

method, which cannot successfully capture the propagation 

path. The STE method cannot discern the pattern of path 

changes because it only considers third-order matrices and 

ignores many temporal characteristics. The dSTE technique can 

capture both accurate propagation paths and temporal 

information, thus successfully capturing the variability in the 

networks of multiple seizures, proving the necessity of 

high-order information and dynamism. Previous studies have 

mainly applied dynamic functional connectivity in constructing 

high-order networks and assessed differences among multiple 

seizures through dimensionality reduction visualization[8, 30]. 

Our study constructed a dynamic high-order effective network 

that can capture directional information and reliable 

propagation paths between electrodes. We further conducted 

comparative experiments in this study, as shown in Table 2. 

Among the 29 subjects shown, 22 subjects maintained a high 

degree of consistency with previous studies, while the results of 

others were inconsistent. Patients with higher consistency also 

had better outcomes, lower Engle grades, and relatively simple 

modes of propagation. The prognosis of patients with 

inconsistencies is poor, and the difference among multiple 

seizures is greater. For these inconsistent subjects, we analyzed 

the pattern of change in the sEEG data. As shown in Figure 9, 

we can clearly see that the patient's first, third, and fourth 

seizures are more consistent, and the second seizure involves a 

wider range of contacts, which is consistent with the findings of 

this study. In summary, our study is closer to the truth on the 

basis of the existing research. 

In this study, three types of seizure pattern were obtained, 

and their corresponding surgical results were consistent with 

clinical knowledge. The propagation network of type I patients 

with multiple seizures is relatively concentrated, which means 

that only one focal seizure network is involved, and the clinical 

manifestation is half retention of consciousness. This type of 

patient likely has better results after undergoing surgical 

resection. Type II patients demonstrate multiple types of 

propagation networks, and we speculate that their seizures 

propagate from the region of origin to the nearby brain network. 

If comprehensive postoperative results are considered during 

surgical resection, incomplete consideration will lead to 

recurrence. The propagation network involved in type III 

patients is relatively complex, and there is significant 

inconsistency among multiple seizures. We speculate that they 

are tonic-clonic seizures, greatly affecting the patient's 

cognition. The seizures may be transmitted directly from the 

region of origin to the insular region, with a faster rate of 

propagation to the entire brain than in the other patterns. This 

also leads to poor surgical outcomes for this type of patient, as 

shown in Figure 8. 

There are some limitations in our study. Due to the short 

preoperative monitoring time and limited spatial coverage of 

the recording electrodes, some potential seizure pathways may 

not have been captured. It is evident that acknowledgement of 

the variation in the propagation pattern of epilepsy has 

increased the complexity and difficulty of surgical planning. 

Based on the results of our study, computer tools can be used to 

quickly and accurately determine the type of epileptic seizure. 

Future research should be conducted that fully considers the 

differences among multiple seizures in the patients, predict 

propagation pathways, and identify the "critical nodes" that 

contribute the most to the generalization of seizures to 

customize personalized surgical plans. We will conduct further 

research to find the optimal target for clinical intervention. 

 
TABLE 2 Comparison results with the previous study 

 Number of 

subjects 

Engle Possible reason 

Consistent 22 1, 2 The patient propagation mode is 

relatively simple, and the 

postoperative outcome is good, so it 

is easy to distinguish multiple 

seizures. 

Inconsistent 7 3, 4 The mode of patient propagation is 

complex, and the postoperative 

outcome is poor, so it is difficult to 

distinguish multiple seizures 
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Figure 9 ID02 comparison results. 

V. CONCLUSION 

In conclusion, the proposed dSTE method showed 

satisfactory results in capturing the propagation networks of 

multiple seizures in the same patient, and it has a significant 

advantage in exploring high-order propagation patterns in 

dynamic network spaces. The dissimilarity index based on 

SVD can accurately assess differences among multiple seizures. 

The method is characterized by low time complexity and good 

robustness and should be widely applied in clinical practice. 

When planning epilepsy surgery under sEEG guidance, the 

three different propagation modes identified in this study will 

be important considerations. 
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