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Across Sessions and Subjects Domain
Adaptation for Building Robust Myoelectric

Interface
Wei Li, Xinran Zhang, Ping Shi, Sujiao Li, Ping Li, Hongliu Yu∗

Abstract— Gesture interaction via surface electromyog-
raphy (sEMG) signal is a promising approach for advanced
human-computer interaction systems. However, improving
the performance of the myoelectric interface is challenging
due to the domain shift caused by the signal’s inherent vari-
ability. To enhance the interface’s robustness, we propose
a novel adaptive information fusion neural network (AIFNN)
framework, which could effectively reduce the effects of
multiple scenarios. Specifically, domain adversarial training
is established to inhibit the shared network’s weights from
exploiting domain-specific representation, thus allowing
for the extraction of domain-invariant features. Effectively,
classification loss, domain diversence loss and domain
discrimination loss are employed, which improve classifi-
cation performance while reduce distribution mismatches
between the two domains. To simulate the application of
myoelectric interface, experiments were carried out involv-
ing three scenarios (intra-session, inter-session and inter-
subject scenarios). Ten able-bodied subjects were recruited
to perform sixteen gestures for ten consecutive days. The
experimental results indicated that the performance of
AIFNN was better than two other state-of-the-art transfer
learning approaches, namely fine-tuning (FT) and domain
adversarial network (DANN). This study demonstrates the
capability of AIFNN to maintain robustness over time and
generalize across users in practical myoelectric interface
implementations. These findings could serve as a founda-
tion for future deployments.

Index Terms— Myoelectric interface, surface electromyo-
graphy, domain adaptation, robustness, domain adversarial
training.

I. INTRODUCTION

W ITH the increasing prominence of the Internet-of-
Things systems in the lives of human beings, human-

computer interaction is evolving in order to achieve better syn-
ergy between human intention and machine behavior. Hands,
as the most dexterous limbs in the human locomotor system,
can provide a natural and intuitive way for human-computer
interaction through various hand gestures. While computer
vision, WiFi, and data gloves have been acknowledged as
methods, it is recommended to depend on biosignals recorded
from the body for continuous use [1], [2]. Surface electromyo-
graphy (sEMG) is an improved option since it has several
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characteristics, including high signal-to-noise ratio, human-
machine friendliness, and low interference noise. sEMG is
very suitable for hands-free interaction in virtual reality and
augmented reality, control of robotic arms and prostheses, and
has broad applications [3]. Prospects for achieving a bridge
between signal and robot input guidance rely on artificial
intelligence, specifically deep learning (DL) [4]. Studies have
shown that DL has been successfully applied in many fields,
including face recognition, speech recognition, human pose
estimation, and indoor localization. However, sEMG signals
pose additional challenges for DL.

The application of myoelectric interface requires a long
learning curve or a high concentration of subjects due to the in-
herent instability caused by physiological factors and external
environment, such as muscle fatigue, cross-talk, sweating and
electrode shift, leading to insufficient robustness in application.
In real life, the cumbersome classifier training and time-
consuming repeated recalibration procedures seriously hinder
the deployment of myoelectric interface [5]. In recent years,
researchers have focused on resolving the challenge, trying
to make the myoelectric interface know when and how to
adapt properly and shorten recalibration time. Notably, deep
learning techniques have demonstrated significant potential in
the myoelectric interface, with the most successful application
is convolutional neural network (CNN) [6] [7] [8] [9] [10].
From the perspective of machine learning, the most direct
approach to improve the robustness and generalization is to
incorporate sufficient data to train a classifier that encompasses
all variations, a process that is both time-consuming and labor-
intensive, and may ultimately prove unfeasible [11].

Recently, transfer learning (TL) has been utilized to prevent
degradation arising from potential changes in sEMG signals
[12]. There are many approaches for transfer learning, such as
ensemble learning, common spatial-spectral analysis, covariate
shift adaptation technique and deep domain adaptation [13]
[14] [15]. Compared with deep domain adaptation, other
approaches heavily rely on feature engineering, which leads
to their limited capacity for multi-domain data learning and
uncertain efficacy for high-performance inter-subject learning
model [44]. In domain adaptation, the change of session or
subject is referred to as domain shift, while different sessions
or subjects are considered different domains [5]. Deep domain
adaptation is not training a new model, but using insufficient
recalibrated data to learn the consistent knowledge between
the original (source domain DS) and new data space (target
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Fig. 1: Domain shift in case of different scenarios

domain DT ), so as to quickly enhance the original model
and adapt to the new data distribution. Domain adaptation
is a prevalent deep transfer learning scheme, which aims at
learning a discriminative predictor by reducing the discrepancy
between different distributions of DS and DT and aligning
feature distributions of DS and DT . For the prosperous de-
ployment and commercial application of myoelectric interface,
robustness across time and generalizability across users are
both critical factors. As opposed to previous studies that only
focused on a single scenario, a comprehensive and systematic
analysis of performance across multiple scenarios is necessary
to provides guidance for future studies.

The main contribution of this research is introducing a novel
domain adaptation scheme called the Adaptive Information
Fusion Neural Network (AIFNN), which is based on CNN and
Siamese architecture. This approachenables learning a distinct
representation across multiple domains simultaneously without
relying on the target domain label, while explicitly penalizing
any domain-variant representation, maximizing the discovery
and exploitation of common features of sEMG signals across
multiple sessions or multiple subjects and diminishing any
domain transfer effects. To tune CNN weights effectively,
three types of loss functions are employed, including the
classification loss for supervised learning in DS that has a
clear label while Dt does not, a domain divergence loss to
reduce marginal distribution mismatches between two domains
in the latent space, and a domain discrimination loss for DS
and DT to reduce conditional distribution mismatches between
two domains.

Another significant contribution of this research is the
release of a new long-term multi-subject sEMG-based gesture
classification dataset(https://github.com/tinker1017/long-term-
multi-subject-sEMG-dataset), which contains 16 gestures per-
formed by 10 able-bodied participants. Using the dataset, this
research investigates three scenarios: (1) intra-session myo-
electric interface, instability mainly stemming from muscle
fatigue or force changes [17], (2) inter-session myoelectric
interface, instability mainly due to electrode shift [18], [19]
and (3) inter-subject myoelectric interface, instability related
to muscle physiology, fat thickness and individual habits [20],
[21], as indicated in Fig. 1.

The rest of this paper is structured as follows: Section

II presents relevant research relevant for this work. Section
III demonstrates the design and conduct of long-term sEMG
signal experiments, Section IV describes the design of AIFNN,
including the associated signal preprocessing, training methods
and comparison methods, Section V presents and analyzes the
related experimental results, and in Section VI, the related
discussion of the experimental results is presented.

II. RELATED WORK AND MATHEMATICAL NOTATIONS

This work is mainly related to sEMG-based gesture recog-
nition using transfer learning. Therefore, we sort out the
currently available related works and summarize the main
contributions and limitations.

For intra-session variations, the application of myoelectric
interface is based on the fundamental assumption that the
sEMG mode is repeatable for the same movement and sep-
arable for different movements. Previous work has assumed
that over 90% of the overall accuracy is well feasible [4].
However, the clinical applications and user acceptance of this
scenario are still limited. Several studies have attempted to
use an optimized CNN to enhance the generalizability of the
system, but these efforts either have limited improvements or
use small datasets that are insufficient to demonstrate their
effectiveness [45] [23].

To address session-to-session nonstationarity, Zhai et al.
[24] proposed an automatically updating self-recalibration
strategy that could significantly improve intra-session accuracy
for both amputees and able-bodied subjects [25], yet such
strategy would increase latency. Du et al. [26] handled the
intra-session and inter-session problem using a multi-stream
extension of AdaBN, which is an unsupervised domain adap-
tation learning applying to both sparse multi-channel and high-
density sEMG [27]. Côté-Allard et al. [28] proposed the self-
calibrating asynchronous domain adversarial neural network
(SCADANN) to improve the performance of multi-session
system, but pseudo-labeling heuristic are easy to accumulate
error effects and need to be improved in long-term experi-
ments.

For high variability between different subjects, in [9], a Con-
tinuous Wavelet Transform-based progressive neural network
(PNN) architecture was applied on a complex gesture dataset
and trained to solve inter-subject problems. Côté-Allard et
al. [29] proposed the adaptive domain adversarial neural
network (ADANN) to improve the inter-subject performance,
and compared the topological structures of deep learning-
based features with hand-crafted features. Campbell et al.
[30] proved that ADANN could as an novel multi-subject
classification model to realize advanced performance with very
little retraining data, which would outperform the state-of-the-
art model. Bao et al. [31] proposed a regression supervised
domain adaptation (SDA) approach for wrist kinematics es-
timation using sEMG signal, which effectively reduced the
burden of recalibration.

For simultaneous recognition of multi-session and multi-
subject, Sosin et al. [32] employed RNN and adversarial
domain adaptation (ADA) to estimate continuous gestures,
which improved the accuracy between subjects but reduced the
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TABLE I: List of Mathematical Notations.

Notation Definition
DS Source domain dataset
DT Target domain dataset
ns,nt Length of the source and target domain dataset
X sEMG dataset
y Gesture labels
M,N Data length of the source domain, target domain,

N �M

W Length of sliding window
C Number of electrodes
λ Penalty for gradient reversal layer(GRL)
Rλ (r) The forward output of GRL
L,Lc, Ld,
Ll

The total loss, classification loss, domain divergence
loss, and domain discrimination loss

λu, λl Penalty for domain divergence loss, domain discrim-
ination loss

θ CNN weights
ΘS
c Weights used to optimise classification loss

ΘS
d , ΘT

d Weights used to optimise domain divergence loss
between two domains

ΘS
l , ΘT

l Weights used to optimise domain discrimination loss
in two domains

accuracy between sessions. Côté-Allard et al. [33] proposed
PNN with a multi-stream AdaBatch scheme to extract stable
and general features across subjects as much as possible. To
achieve multi-day and multi-subject zero training, Sheng et
al. [34] proposed common spatial-spectral analysis for signal
processing. However, the multi-day verification and multi-
subject verification in the paper are carried out on two different
datasets.

Besides, we introduce and summarize the mathematical
notations that we used in this paper with Table I.

III. EXPERIMENT METHODS

A. Experiment Setup

Ten able-bodied subjects (mean age in years: 22(± 2.8), 5
males and 5 females) were recruited. Exclusion criteria were
any neurological pathology or musculoskeletal complaints
interfering with study outcomes. Each subject received writ-
ten informed consent before the experiment. All participants
conducted the experiment with their right hand. Participants
had no relevant professional knowledge of sEMG and had not
received corresponding training before the experiment.

B. Acquisition Protocol

sEMG signals were recorded using the commercial wear-
able gForcePro Armband, developed by OYMotion Technolo-
gies Co., Ltd (Shanghai, China, https://www.oymotion.com/),
which are consists of eight dry electrodes with a sampling
frequency of 1000 Hz and a nine-axis inertial measurement
unit (IMU). In this work, only sEMG was utilized to study.
The gForcePro armband is worn on the forearm, about 3cm
from the elbow. Before wearing the armband, the skin of the
forearm needs to be cleaned with alcohol. The subjects sat
comfortably in the office chair with arms used in the exper-
iment on the table and were expected to complete each trial

Fig. 2: Schematic of experimental environment

following the imitation stimulus displayed on the computer
monitor, as shown in Fig. 2. To provide a more security and
reliable system, all movements were recorded under the most
appropriate contractile force of subjects.

The experiment involved the signal acquisition of 16 move-
ments. Each trial is collected with 5 seconds of motion
execution and 3 seconds of rest as well as 10 repetitions in a
single session. All experimental sessions was completed over
10 consecutive days, and two adjacent sessions was conducted
with a 24-hour interval. Markers were set to ensure that the
position of the armband is similar among different sessions.
The hand movements included Thumb up (TU), Extension of
index and middle (EIM), Flexion of ring and littlt finger (FRL),
Thumb opposing base of little fingers (TOL), Flexion of all
fingers (FAF), Fingers flexed together in fist (FFTF), Pointing
index (PI), Adduction of extended fingers (ADEF), Abduction
of extended fingers (ABEF), tripod pinch (TP), all fingers
pinch(AFP), Extension of thumb and index (ETI), Contact
with thumb and index finger (CTI), Contact with thumb and
middle finger (CTM), Contact with thumb and ring finger
(CTR) and Contact with thumb and little finger (CTL), as
illustrated in Fig. 3.

IV. DATA ANALYSIS

In this section, we would introduce how to preprocess
the signal, the design of AIFNN, and how to evaluate the
performance of AIFNN.

A. Signal preprocessing
The purpose of the experiment is to give a pre-study of

the real-time sEMG control system, so the input delay is
the key factor to be considered. Related studies have shown
that the optimal guidance delay is between 150 and 250 ms,
and the partially overlapping sliding window method can be
used as a data enhancement technique to segment sEMG data,
therefore, the sEMG data were segmented into 200 ms [35]
with an increment of 50 ms [36] (75% overlap). Besides,
sEMG is a noisy signal. To keep the useful motion information
unchanged, we used a fourth-order Butterworth band-pass
filters (20Hz-495Hz) to remove motion artifacts and high-
frequency noise. Because the handcraft feature extraction of
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Fig. 3: The gestures used in experiment.

sEMG is time-consuming, and CNN can automatically extract
high-level and internal features from the raw data, this paper
takes the raw sEMG as the input of the algorithm. Deep
learning has been shown to yield promising results [9] [37]
[38] [39] in learning features from sEMG data to perform
motor intent recognition without feature engineering. A review
can be found in [40], [41].

B. CNN

The AIFNN proposed in this paper consists of almost the
same two streams, both based on the same CNN architecture,
and the differences would be unfolded later in the domain
adaptation framework. A sketch of the structure of AIFNN
is shown in Fig.4, and Algorithm 1 is its details. The CNN
consists of two main parts: feature learning block and classifi-
cation block. The feature learning block takes two convolution
layers as the core to learn the motion features of sEMG.
There are 16 kernels in 1st convolutional layer and 32 kernels
in 2nd, whilst two convolution layers uses a kernel size of
(3, 1). A batch normalization layer, a ReLU layer, a max-
pooling layer and a dropout layer are added subsequently to
each convolution layer. The classification layer divides the
previously learned features into different motions. In order
to realize this function, the classification layer is composed
of two blocks and a full connection layer, and each block
has a fully connection layer, a batch normalization layer,

Fig. 4: Framework of AIFNN

a ReLU layer and a dropout layer. ADAM is employed to
optimize the CNN with an initial learning rate of 0.0023. Due
to the inherent limitations of sEMG-based gesture recognition,
CNN algorithms are susceptible to overfitting. To address the
issue, Batch Normalization, Dropout and early stopping are
employed.

C. Design of AIFNN

Multiple scenarios motion recognition system contains

three kinds of data: DS =
{(
XS
m, y

S
m

)}M
m=1

, DT ={(
XT
n

)}N
n=1

, DS comes from the source domain, while DT
from the target domain. They have the same dimensionality
of features and label spaces, i.e. XS

m,X
T
n ∈ Rd, d is the

dimensionality, and y ∈ Ym = Yn is label space. M and
N represents the length of the data, where N � M . In the
gesture recognition system, the data of DS is obtained through
the intentional training session. Correspondingly, the data of
DT represents the data obtained in the actual normal usage. As
depicted in Fig. 4, a pairwise sample

{(
XS
m, y

S
m

)
,
(
XT
n

)}
is imported into domain adaptation, in which the first stream
operates xSm and the second operates xTn separately. The
construction of pairwise samples allows each target sample(
XT
n

)
to be paired with all source samples

(
XS
m, y

S
m

)
,

which is able to effectively align the entire source data with
the few target data. This process can also be regarded as the
Cartesian product of two datasets.
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Algorithm 1 Adaptive Information Fusion Neural Network

Input: Source domains with label DS and target domains
without label DT , numbers of epochs E

Output: Parameters of the depth domain adaptation network
P and predicted labels for the target domain samples ỹT

1: begin:
2: Define Classifier fc

(
· | ΘS

c

)
, Domain divergence

head fd

(
· | ΘS

d ,Θ
T
d

)
, domain discrimination head

fl

(
· | ΘS

l ,Θ
T
l

)
3: Initialize parameters θ, ΘS

c , ΘS
f , ΘT

f , ΘS
d , ΘT

d

4: Set i = 0
5: repeat:
6: i = i+ 1
7: while True do
8: Sample BS from DS , BT from DT
9: zc = fc

(
BS | ΘS

c

)
10: zd = fd

(
BS , BT | ΘS

d ,Θ
T
d

)
11: zd = fL

(
BS , BT | ΘS

L,Θ
T
L

)
12: end while
13: Compute loss (Lc), (Ld), and (Ll):
14: Update ΘS

c to minimize (Lc) by Eq.4
15: Update ΘS

d , ΘT
d to minimize (Ld) by Eq.5

16: Update ΘS
l , ΘT

l to maximize (Ll) by Eq.8
17: until L without reduction over 50 epochs or i > E
18: return P , yT = ỹT

The main idea of reducing the domain shift is by aligning
the feature distribution of DS and DT . Specifically, we build
a Siamese architecture that can share the weights of the two-
stream CNN to maximize the extraction of domain-invariant
features in the source and target data. Outputs of the two-
stream CNN will be utilized as deep features for three uses:
the first is to calculate gesture classification results with the
classification layer, the second is to minimize the distribution
mismatch of two different domains, and the third is to calcu-
late domain differences with the adaptive domain adversarial
training strategy. Adaptive domain adversarial training strategy
involves learning a discriminative predictor from DS and
DT , which makes it hard to distinguish between different
distributions. Its most prominent feature is the use of the
gradient reversal layer (GRL), which reverses the loss of all
layers automatically by multiplying a negative constant (−λ)
and maintains identity transformation in the forward pass.
Such operation allows for simultaneous extraction of domain-
invariant features and discriminative features. The relevant
mathematical expression is defined as the following equation:

Rλ (r) = r (1)

dRλ
dri

= −λI (2)

where Rλ (r) is the forward output of GRL, r is the
input, λ is penalty and I is the identity matrix. After several

verification, when λ is set to 1, the appropriate penalty
could be observed. Utilizing these operation, it can effectively
improve the robustness in different domains while maintaining
the accuracy of the model.

Apart from the model structure and domain adaptation
techniques, the loss function is also vital important to the
performance. There are three loss functions added to tune
CNN weights θ: classification loss (Lc), domain divergence
loss (Ld), and domain discrimination loss (Ll), where (Lc)
is used for supervised learning, (Ld) ia used to align the
feature distribution of source and target streams, and (Ll)
is to describe the difference in edge distribution between
two domains. The optimal weight θ∗ could be obtained by
optimizing the total loss, which could be calculated as follow:

L
(
Θ |XS , yS ,XT , d

)
= Lc + λdLd + λlLl (3)

where θ is the CNN total weight, including five parts: ΘS
c ,

ΘS
f , ΘT

f , ΘS
d and ΘT

d , of which weight ΘS
c is obtained by

optimizing the weight of classification loss in DS , ΘS
f , ΘT

f

are obtained by optimizing the weight of domain divergence
loss between two domains in the latent space, ΘS

d and ΘT
d are

obtained by optimizing the weight of domain discrimination
loss in DS and DT respectively.
Lc is obtained by optimizing the most commonly used

cross entropy cost function. It is the distance between the real
gesture label and the prediction:

Lc =
1

ns

ns∑
i=1

c
(
ΘS
c |X

S
i , y

S
i

)
(4)

Since only the data of DS has labels, only DS is used here.
Ld draw support from maximum mean discrepancy (MMD),

which is used to measure the average distance between two
domains of samples in a Reproducing Kernel Hilbert Space
(RKHS).

Ld = ru

(
ΘS
f ,Θ

T
f |X

S ,XT
)

(5)

Among them, the empirical estimation of square MMD is
calculated by the following formula:

MMD2
(
XS ,XT

)
=

∥∥∥∥∥∥
ns∑
i=1

ϕ
(
xSi
)

ns
−

nt∑
j=1

ϕ
(
xTj
)

nt

∥∥∥∥∥∥
2

H

(6)

Where xSi and xTj represent the output of the subsequent FC
block in the source stream and target stream, respectively,and
can be further expressed using kernel tricks:

ru

(
ΘS
f ,Θ

T
f |X

S ,XT
)
=

∑ns

i,i∗ k
(
xSi ,x

S
i∗
)

(ns)
2

−
∑ns,nt

i,j k
(
xSi ,x

T
j

)
ns × nt

+

∑nt

j,j∗ k
(
xTj ,x

T
j∗
)

(nt)
2

(7)
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For Ll, CNNs can only achieve accurate classification of
source domain data, and to achieve the classification task in
the target domain, it is necessary to confuse the source domain
dataset and the target domain dataset to maximize the domain
classification error. The domain discriminant loss is to achieve
this purpose, which is defined as:

Ll =

 1

ns

ns∑
i=1

c
(
ΘS
d |X

S
i , di

)
+

1

nt

nt∑
j=1

c
(
ΘT
d |X

S
j , dj

)
(8)

This function is used in conjunction with GRL, and since
AIFNN is a two-stream design, this loss function also includes
two components. The use of Ll, as opposed to using a
deterministic neuron for each domain in the training set,
allows for a higher degree of certainty in the differentiation of
domains, thus producing a more appropriate penalty term that
guarantees approximately equal representation during testing.

D. Comparison Methods

To demonstrate the effectiveness of AIFNN, we further
compare it with several baseline approaches. The descriptions
of these approaches are as follows.

1) Raw CNN: For Raw CNN, we employ the same structure
as described in Sec. IV-B, and only labeled data in DS is are
utilized to train for supervised learning. For multi-scenario
learning, the data of DT are utilized for testing, so the model
is unaffected by (Ld) and (Ll). In this work, Raw CNN
is regarded as the lower-bound recognition performances to
compare with other algorithms.

2) Fine-Tuning (FT): As aforementioned, FT is the most ba-
sic but most commonly-used TL approach. Following previous
research [12] and according to the structure of the CNN in Sec.
IV-B, the feature learning block is transferred directly from the
CNN that was pre-trained using the data in DS , as the initial
value for training the new model in DT . And only the weights
of the classification block are fine-tuned using the data in DT .
Theoretically, this would give rise to errors in DT , causing
catastrophic forgetting [10].

3) DANN: DANN is considered as a possible solution for
multi-subject/cross-subject pattern recognition [29]. DANN
learns the invariant features across participants by simultane-
ously training the network across multiple domains. However,
the performance of DANN in multi-session experiment needs
to be further tested. In this paper, we mainly use single-stream
CNNs with two output neurons, one is the motion classification
output neuron, and the other is the domain classification
output neuron. The motion classification output neuron is to
learn the discriminative ability to identify category of gesture,
which is similar to the traditional deep learning. The domain
classification output neuron is to allow extracting domain-
invariant with GRL, as described in Sec. IV-C.

E. Performance Metrics

1) Classification Accuracy: Accuracy was defined as the
ratio of correct predictions over total predictions:

Acc =
correctpredictions

totalpredictions
× 100% (9)

Error represents the pooled standard variation in accuracy
for different gestures. The accuracy and error information on
the figure axis are expressed as a percentage.

2) Statistical Analysis: To test the effectiveness of the pro-
posed approach, we conducted statistical analysis via the t-test
and the Wilcoxon rank sum test. In each figure, No sign means
no significant difference, ∗ means p−value < 0.05, ∗∗ means
p− value < 0.01 and ∗ ∗ ∗ means p− value < 0.001.

3) Experimental Settings: All experiments are conducted on
a microprocessor (Intel i7-11700K CPU) and a GPU (NVIDIA
GeForce RTX 3060) environment with Python 3.8.1.

4) Performance Evaluation: K-fold Cross validation(CV) is
a common technique used by researchers to evaluate offline
performance. However, a study by Sugiyama et. al. showed
that CV was biased in non-stationary environments (e.g.,
brain-computer interface) [42]. Relatively speaking, time serial
related validation (TSV) can transferable offline performance
to online performance [43]. The training set of TSV is per-
formed in time sequence without iterations, meaning that trials
1 to (K-1) are the training set and the last trial is the test set,
which has the potential to evaluate the effectiveness of user
learning. Inspired by this approach, we adopt an incremental
training protocol to analyze the performance drop caused
by algorithms differences to never-seen scenario experiments,
where 1 to half of the sessions/subjects are divided into DS ,
and the rest as DT .

For intra-session, to validate the effect of muscle fatigue
on the system, the first 3 repetitions were used as the source
domain, 4-6 repetitions as the target domain, and the remaining
repetitions as the validation set in our incremental training
protocol, as opposed to using a comparison approach. For
inter-session, to verify the effect of electrode shift and the
number of sessions trained on the system, DS was sequentially
increased from one day to five days, and after determining the
size of the training set, each of the remaining days would
be used sequentially as a separate DT . For inter-subject, to
verify the effect of individual factors and the number of trained
subjects on the system, DS was sequentially increased from
one to five individuals, and each of the remaining individuals
was used as a separate DT .

V. EXPERIMENTAL RESULTS AND PERFORMANCE
ANALYSIS

A. Scenario one: intra-session classification
performance

Previous work has assumed that over 90% of the overall
accuracy indicates good feasibility of the algorithm [4]. Fig.
5 depicts the comparison of the specific average classification
performance over ten sessions between different transfer learn-
ing approaches. For the three algorithms, we have achieved
high classification accuracy (> 92.10%) when testing on the
run not used for training in the same session. As we can
see, the differences in accuracy and error indicate that there
may be significant differences of sEMG in different sessions.
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Fig. 5: Comparison of the performance among raw CNN,
DANN and AIFNN for each session. T1-T10 indicate the
corresponding experimental dates.

Comparing the performance of the three algorithms, it can be
found that AIFNN is the best in multiple sessions, and there
are significant differences between AIFNN and the other two
algorithms in statistical analysis. For session T3, T7 and T9,
AIFNN is not optimal, but there is no significant difference in
statistical analysis.

In addition, we also analyze the confusion matrix of
all sessions. Fig. 6 illustrates the average value of the
confusion matrix related to sixteen gestures over 10 indi-
vidual sessions under raw CNN and AIFNN schemes, as
evaluated by the average accuracy and error. By analyz-
ing the prediction performance of all single motions in
the confusion matrix, the effectiveness of these algorithms
in multi-gesture classification approaches is verified. From
the analysis of the average confusion matrix of raw CNN
in Fig. 6a, it can be found that the recognition accuracy
of FRL, TOL, BG, ADEF and ABEF was less than 95%
(91.00%, 92.1%, 92.59%, 92.16%, 90.20%), which is signifi-
cantly worse than AIFNN. However, for the recognition perfor-
mance of CTM and CTR, the two confusion matrices are sim-
ilar(raw CNN: 98.57%, 98.84%, AIFNN: 99.07%, 99.39%),
which shows that the raw CNN scheme performs poorly on
some gestures, while the AIFNN scheme performs well on
all gestures. From the analysis aforementioned, we can learn
that an excellent adaptive scheme is helpful to build a high-
precision gesture recognition system.

B. Scenario two: inter-session classification performance
The performance of different transfer learning approachs in

the inter-session experiment is depicted in Fig. 7, as evaluated
by the overall accuracy and standard error. Regardless of the
approach used, the classification performance is on a down-
ward trajectory as the number of never-seen sessions increased.
Specifically, when the transfer learning approach was not
used, the accuracy of the algorithm deteriorated rapidly, with
accuracies dropping by 82.15%, 77.85%, 77.13%, 77.93%,
72.56%, which could not be used in practical application.
The performance of raw CNN technique confirmed, compared
to the intra-session test, that the variations of sEMG signals
during different sessions would seriously degrade the classi-
fication performance of sEMG signals completed within ten
separate days. FT have improved the classification accuracy

(a)

(b)

Fig. 6: Average confusion matrix of 10 individual sessions. (a)
Confusion matrix of raw CNN scheme. (b) Confusion matrix
of AIFNN scheme.

(with accuracies drop of 49.70%, 48.74%, 47.45%, 53.09%,
48.40%), but the performance decline is also very obvious. For
DANN and AIFNN, the performance degradation is reduced
less than 15%, but AIFNN performs better (accuracies drop of
DANN by 11.08%, 8.75%, 7.37%, 6.77%, 6.22%, accuracies
drop of AIFNN by 5.34%, 7.34%, 6.42%, 6.45%, 7.69%),
which is maintained at more than 90%, except for the eighth
session. It is an unusual phenomenon that the performance
decreased significantly during the test in the eighth session.
This may be related to the environment on the day of the
experiment, which needs further discussion in the future.

Furthermore, for the pre-training performance analysis from
one session to five sessions, it is noteworthy that the perfor-
mance of AIFNN increases by 2.1%, while the performance
of raw CNN, TL and DANN show a fluctuating state. For the
performance analysis of the inter-session test from one session
to five sessions, another discrepancy between different transfer
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(a) (b)

(c) (d)

Fig. 7: The classification accuracy of different transfer learning approachs on the different sessions. The 5 multi-session training
procedures gradually improve the generalization ability to never-seen sessions. 1d stands for using the data obtained in the
first day as the pre-training set, 2d stands for using the data obtained in the previous two days as the pre-training set, and so
on. T1-T10 indicate the corresponding experimental dates. (a) Classification accuracy curve of raw CNN. (b) Classification
accuracy curve of FT. (c) Classification accuracy curve of DANN. (d) Classification accuracy curve of AIFNN.

learning techniques can be obtained that the performance of
raw CNN and DANN is affected by the amount of data
during pre-training, and the performance is better on the
never-seen sessions with the increase of sessions used in pre
training, while the performance of TL and AIFNN is hardly
affected. This means that AIFNN can achieve more robust
representation in heterogeneous samples, which is extremely
beneficial for the application of myoelectric interface.

The statistical analysis for comparing the classification
accuracy among the four approaches is shown in TableII. Note
that, the performance of AIFNN is significantly different from
that of raw CNN and FT. For DANN, when the data of the
first three days or the first four days are pre-training data
respectively, there is no significant difference between the test
results on the eighth day with AIFNN, which seems to be
related to the abnormality of the test results of AIFNN model
on the eighth day. When the data of the first three days or the
first four days are pre-training data respectively, there is no
significant difference between the test results on the eighth day
with AIFNN, which seems to be related to the abnormality of
the test results of AIFNN model on the eighth day. Using the
pre-training data of the first five days and the data of the sixth
day as the test data, there is no significant difference between
DANN and AIFNN, which shows that the increaseing of the
amount of heterogeneous data can improve the robustness of

TABLE II: Statistical analysis for comparison of classification
accuracy between four approaches. T2-T10 indicate the cor-
responding experimental dates.

session T2 T3 T4 T5 T6 T7 T8 T9 T10

1d ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
CNN 2d ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
vs. 3d ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
AIFNN 4d ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

5d ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
1d ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

FT 2d ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
vs. 3d ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
AIFNN 4d ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

5d ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
1d ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗ ∗ ∗∗ ∗∗

DANN 2d ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
vs. 3d ∗ ∗ ∗ ∗ − ∗ ∗
AIFNN 4d ∗ ∗ ∗ − ∗ ∗

5d − ∗ ∗ ∗ ∗
∗ means p− value < 0.05, ∗∗ means p− value < 0.01 and ∗ ∗ ∗ means
p− value < 0.001.
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Fig. 8: Statistical analysis of raw CNN, DANN and AIFNN
for each source subject

Fig. 9: Statistical analysis of raw CNN, FT, DANN and
AIFNN for each target subject

DANN, but the significant difference in the performance of the
next few days shows that AIFNN is still better than DANN.

C. Scenario three: inter-subject classification
performance

The third scenario is more complex than the first two
because it adds differences between subjects based time vari-
ability. First, we use three different pre-training approaches
to train on different numbers of subjects, and the results are
shown in Fig. 8. The average accuracy of AIFNN and DANN
is not only high but also stable (> 96.64%, > 95.61%), which
shows that the two approaches can classify hand movements
more accurately and effectively. The accuracy of the raw
CNN decreases with the increase of the number of subjects,
indicating that the raw CNN cannot maximize the extraction of
similar features in different subjects, and the gradual increase
of error seems to explain this problem. Fig. 9 preliminarily
shows the test results with different number of subjects in the
source domain, and the results have some different with pre-
training. Not surprisingly, the raw CNN is difficult to learn
the feature of new subjects. Even FT is used, the accuracy is
not very high (< 68.97%). DANN changes greatly (72.43%−
89.18%), and it seems that there would be over fitting when
the number of subjects is small or large. Although the accuracy
of AIFNN has decreased, it is basically maintained at more
than 90.57%, which shows the effectiveness of our proposed
approach. This signify that the proposed AIFNN shows a less
loss of performance than other approaches.

Furthermore, Fig. 10 illustrates in detail the performance
differences among different transfer learning techniques in the

TABLE III: Average Computational Cost (Millisecond) of Each
Time Window.

Stage CNN FT DANN AIFNN

Training 138.9 206.4 257.9

Retraining 50.3 155.3 176.6

Prediction 129.1 133.4 137.5 139.2

transfer processDS −→ DT . Through analysis, it can be found
that the proposed AIFNN is not always effective. The worst
performance in the test trial was observed in S4, with the best
accuracy of 92.44% and the worst of 78.98%. Meanwhile, the
worst performance of S1, S2 and S7 was also less than 90%
(87.56%, 85.92%, 87.55% ). Based on these results, we can
assume that the domain adaptation framework proposed in this
study cannot improve the accuracy of subjects in all cases. At
present, further experiments are needed to solve this problem.

D. Computational Cost

Traditionally, the sEMG-based gesture recognition literature
has primarily focused on increasing signal information density
with feature engineering for improving recognition accuracy.
This approach is computationally costly for the algorithm [44],
[45]. This paper employs a deep learning approach, shifting
the paradigm from feature engineering to feature learning,
which learn an embeddings from inputs to facilitate classi-
fication recognition. Correspondingly, deep networks tend to
be computationally expensive. Therefore, an important issue
in algorithm processing is time consumption. And we counted
the average computational cost consumed by the algorithm
at each stages and presented in Table III, including training,
retraining, and prediction in each time window. Since for each
stage the preprocessing is the same, we cover this process
in the statistics for each stage. From the table we can see
that the computational cost of training and retraining changes
dramatically as the complexity of the algorithm increases.
However, the computational cost of prediction does not change
much, which is the most important for us, as well as meeting
the latency requirements of the system.

VI. DISCUSSION

Domain shift issues are very prevalent and difficult to
solve in multi-scenario sEMG-based motion estimation, which
results in a great challenge for the integration of the my-
oelectric interface into the advanced system [46], [47]. To
be effective in commercial applications, adaptive approaches
need to be easy to train and can achieve better robustness
with the change of time or subjects. However, to the best of
our knowledge, preliminary research on myoelectric interface
has rarely focused on adaptive schemes. In this paper, we
propose a novel AIFNN to improve robustness and reduce the
damage of domain shift on CNN performance, while most
studies focus on enhancing performance in relatively ideal
environments.

In the result analysis, although the performance of DANN
is very good, there are two dominant disadvantages: greatly
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Fig. 10: Boxplots of the overall recognition caccuracies of DS −→ DT . S1-S10 indicate different subjects.

affected by the amount of data, and the accuracy of different
gestures is different. The proposed AIFNN approaches could
realize effective robust myoelectric interface without or little
retraining the classifier, promoting the practical application in
a real-life situation. This is mainly due to several designs of
AIFNN: 1) different from raw CNN, which intrinsically learns
the best features, and FT, which is vulnerable to catastrophic
forgetting, AIFNN could achieve good robustness by exploit-
ing information of both DS and DT ; 2) employing the multi-
domain adversarial training could inhibit the shared network’s
weights from learning domain-specific representation, improv-
ing robustness of the model to different domains [48]; 3) using
the domain discrepancy losses, the network can distinguish
different domains with higher certainty, so as to produce
a more appropriate penalty [49], [50]; 4) using the label
correlation loss, the marginal distribution of DS and DT could
be align, which ensure that the parameters of the DT without
any label are still updated to output non-zero probability
[51]. This design enhances the relationship between gesture
categories, which can not only align the features between the
two domains, but also adjust DT with unlabeled data according
to the conditional distribution of DS [52], [53], enables the
network to be quickly achieved stabilised under conditions
where each gesture needs to be repeated only once in a short
period of time. These features make the network suitable for
the target session/subject while minimising the possibility of
over- or under-fitting under the limited data conditions. As the
network weights are modified during the adaptation process
but the validation set is not available, compared to AIFNN, the
overfitting/underfitting of CNN and DANN networks cannot
be mitigated. It can be seen from the experimental results that
different algorithms have differences in different influencing
factors. However, in multi-subject long-term experiment, the

performance of AIFNN outperformed other algorithms. The
study has shown that the proposed AIFNN could help to
learn better representation between the two domains and
adapt model to the new environment with the unlabeled data
of sEMG signal. In typical domain adaptation approaches,
AIFNN can greatly reduce the burden of manual labeling,
which is very meaningful in many related works such as
intelligent prostheses, wearable exoskeleton robots and other
research fields [12], [54].

The experimental results of this paper only provide an
experimental example of the advantages of AIFNN proposed
in this study. Fig. 7 and Fig. 9 illustrate that the increase
of heterogeneous data seems to have little impact on the
performance of AIFNN, which may be due to the fact that
there are only 10 subjects, so do with the abnormality in
the experimental results [55]. The common features obtained
from these subjects may not be enough to simulate the multi-
session/multi-subject interface, which requires further research
these hypotheses. At present, the computational cost during
recalibration and real-time application are still a limitation of
the proposed AIFNN [56]. In addition, there are still some de-
ficiencies in this work; we addressed the small displacements
that occur when subjects put on and take off the electrodes, but
not the larger shift, such as 1 cm. Studies have shown that this
could lead to more severe performance degradation. Another
major issue is that although the existing work proposes well
performing algorithms, the training process is not sufficiently
uniform, a more complete pre-trained model should be built
at a later stage using the existing data for adaptive real time
testing. Considering the confounding factors, we will collect
sEMG data containing external conditions (variation in muscle
contraction force, limb position and subject mobility) [57]–
[59], and reduce the training burden by using class-incremental
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techniques to add more gestures without having to retrain the
classifier from the scratch.

VII. CONCLUSION

In this study, we propose a novel AIFNN to improve
robustness and reduce the damage of domain shift on motion
recognition performance in the cross-scenario circumstance.
The two-stream structure and adaptive domain adversarial
training can effectively reduce the training burden while
maintaining high accuracy. By adding the domain discrepancy
loss and domain discrimination loss in model training, model
can maximally extract the common features of multiple do-
mains, and enhance the robustness and generalization of the
model while maintaining the good performance in the original
domain. This work can realize feasible rapid training and
adaptive myoelectric interface, which have great significance
to promote the practical deployment.
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