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Abstract—The coupled analysis of corticomuscular 
function based on physiological electrical signals can 
identify differences in causal relationships between 
electroencephalogram (EEG) and surface electromyogram 
(sEMG) in different motor states. The existing methods are 
mainly devoted to the analysis in the same frequency band, 
while ignoring the cross-band coupling, which plays an 
active role in motion control. Considering the inherent 
multiscale characteristics of physiological signals, a 
method combining Ordinal Partition Transition Networks 
(OPTNs) and Multivariate Variational Modal Decomposition 
(MVMD) was proposed in this paper. The EEG and sEMG 
were firstly decomposed on a time-frequency scale using 
MVMD, and then the coupling strength was calculated by 
the OPTNs to construct a corticomuscular coupling 
network, which was analyzed with complex network 
parameters. Experimental data were obtained from a self-
acquired dataset consisting of EEG and sEMG of 16 healthy 
subjects at different sizes of constant grip force. The 
results showed that the method was superior in 
representing changes in the causal link among 
multichannel signals characterized by different frequency 
bands and grip strength patterns. Complex information 
transfer between the cerebral cortex and the corresponding 
muscle groups during constant grip force output from the 
human upper limb. Furthermore, the sEMG of the flexor 
digitorum superficialis (FDS) in the low frequency band is 
the hub in the effective information transmission between 
the cortex and the muscle, while the importance of each 
frequency component in this transmission network 
becomes more dispersed as the grip strength grows, and 
the increase in coupling strength and node status is mainly 
in the γ band (30~60Hz). This study provides new ideas for 
deconstructing the mechanisms of neural control of muscle 
movements. 

 
Index Terms—Multivariate variational modal decomposition, 

ordinal partition transition networks, granger causality, 
functional corticomuscular coupling 
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I. INTRODUCTION 

LECTROENCEPHALOGRAM (EEG) is an electrical 

signal collected on the surface of the scalp generated by the 

rhythmic activity of neuron clusters in the brain; surface 

Electromyogram (sEMG) is an electrical signal collected on the 

surface of the skin during the contraction of nerve-controlled 

muscles. During human movement, the rhythms of EEG and 

sEMG can reflect the body's sense of motor control and muscles. 

Studies have shown rhythmic synchronization between sEMG 

and EEG [1]. In human activity, the transmission of information 

between the cerebral cortex and muscles has both linear and 

non-linear properties [2], [3]. And there is both iso-frequency 

and cross-frequency coupling [4]. Studying the coupling 

between the sensorimotor cortex and muscles from a multiscale 

perspective allows the identification of links between control 

and sensory information from the cerebral cortex and response 

information from the associated muscles in different motor 

states at the same time, and the hierarchical nature of the 

coupling between EEG and sEMG can be explored. Research 

on the mechanisms of motor function control can be used to 

analyze the characteristics and musculature of muscle damage 

caused by brain diseases, which is of great value in the 

diagnosis, treatment, and assessment of the level of 

rehabilitation of motor neurological diseases. 

EEG and sEMG are multiscale in both time domain and 

frequency. EEG contains information about cortical activity in 

a range of frequency bands, while sEMG exhibits different 

time-frequency domain characteristics in different muscle 

actions. Also, studies have shown that there is a nonlinear 

coupling between cortical and muscle surface electrical signals 

in the same and different frequency bands [5]. In order to 

investigate the correlation between coupling properties and 

frequency bands between EEG and sEMG, the wavelet 

decomposition [6] proposed by Qassim was introduced to study 

the coupling between EEG and sEMG. However, wavelet 

decomposition suffers from the limitation of wavelet basis and 

lacks the ability to perform adaptive decomposition based on 

the signals. To solve this problem, Huang proposed the concept 
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of Intrinsic Mode Functions (IMF) and the method of empirical 

mode decomposition [7], which is data-driven and adaptive. 

But it suffers from serious mode mixing [8] and is highly 

influenced by noise. Then Dragomiretskiy introduced the 

decomposition of the time series into the variational model and 

proposed a variational modal decomposition algorithm [9], 

which transformed the decomposition problem of the signal 

into the problem of finding the optimal solution of the 

variational model. On this basis, to process multi-channel 

timing signals simultaneously, Rehman proposed the 

Multivariate Variational Mode Decomposition (MVMD) [10] 

algorithm, which can obtain high-resolution time-frequency 

features while suppressing noise components. MVMD allows 

for the decomposition of multiscale signals into different modes, 

which helps to provide insight into signal interactions at 

different scales. 

On the other hand, the methods for calculating the strength 

of coupling between time series have been improving. The 

traditional method of coherence [11] gives some characteristics 

of the functional connections between cortex and muscle during 

movement, but it cannot distinguish the directionality of 

information transfer in the motor nervous system. Afterwards, 

Granger proposed the Granger Causality (GC) analysis 

algorithm [12], which can compute causal relationships 

between time series in a directed manner and was applied in 

corticomuscular coupling analysis [13]. However, the linear 

coupling component and the nonlinear coupling component in 

the information transfer between the cerebral cortex and the 

response muscles coexist such that the linear analysis method 

can be extremely limited in terms of performance [14]. 

Afterwards, optimized nonlinear Granger causality has been 

proposed and continuously refined [15], [16], [17]. Staniek 

proposed the symbolic transfer entropy [18], [19] algorithm by 

exploiting the conditional mutual information in information 

theory. Then it was combined with methods of time series 

decomposition to parse the coupling between cortex and muscle 

at multiple levels [20], [21], [22]. But these methods cannot 

distinguish causal and non-causal interdependencies between 

two subsystems [23], which led to the proposal of Ordinal 

Partition Transition Networks (OPTNs) [24] algorithms for 

inferring causal links from multivariate time series. 

To address the problem that existing coupling analysis 

methods cannot systematically analyze the causal links among 

multivariate EEG and sEMG, and to analyze the hierarchical 

nature of the coupling network, a multiscale corticomuscular 

coupling network analysis method combining MVMD and 

OPTNs has been proposed in this paper. The method takes 

advantage of OPTNs' ability to identify causal dependencies 

and suppress spurious coupling and MVMD data-driven 

simultaneous frequency-scale decomposition of multichannel 

signals. It can be used to analyze the characteristics of 

information exchange between cortical and muscles under 

different grip force patterns of human upper limb movements. 

The multilayer coupling network constructed by this method 

can reveal the variation of coupling characteristics among 

frequency bands more obviously, identify the causal links 

between multiple signals more accurately and detect the 

nonlinear coupling better, which is beneficial to explore the 

intrinsic connection between cortical and muscles and the 

mechanism of neural control of muscle in locomotion. Based 

on the advantages and characteristics of this method mentioned 

above, this study analyzes the characteristics and differences 

between different grip force patterns of human upper limb 

movements from the perspective of signal coupling using 

complex network parameter features. The contributions of this 

paper are mainly reflected in the following aspects. 

(1) The results of identifying direct and indirect links 

between time series with OPTNs are more intuitive. Applying 

the OPTNs algorithm to calculate the coupling strength 

between EEG and sEMG can further characterize the 

differences in the causal links between signals across different 

patterns of human upper limb movements. 

(2) MVMD has excellent characteristics in the scale 

decomposition of time series. The band mixing is mild when 

using MVMD for the scale decomposition of EEG and sEMG. 

Also, the algorithm is robust and can decompose the time series 

into multiple bands evenly according to the actual needs. 

(3) Combined with the MVMD-OPTNs algorithm, the 

intrinsic causal links between EEG and sEMG signals were 

analyzed using a complex network approach, providing a new 

idea for systematic analysis of the information exchange 

between cortical and muscle during human upper limb 

movements. 

II. MATERIAL AND METHODS 

A. Framework 

The framework of the research scheme in this paper is shown 

in Fig. 1. The EEG and sEMG are first preprocessed to remove 

artifacts and noise interference. Then the coupling strength 

between the two pairs of multi-band EEG and sEMG with 

OPTNs causal inference algorithm to verify the effectiveness of 

the method is calculated. The framework of the research 

scheme in this paper is shown in Fig. 1.  

The EEG and sEMG are first preprocessed to remove 

artifacts and noise interference. Then calculate the coupling 

strength between the two pairs of multi-band EEG and sEMG 

with OPTNs causal inference algorithm to verify the 

effectiveness of the method. After that, we select suitable delay 

time and perform multiscale decomposition using MVMD for 

the full-band and low-band signals below 60 Hz, respectively, 

to investigate the changes of information transmission and the 

characteristics of information exchange between cortical 

muscles in the coupled functional network of human upper limb 

output brain myoelectricity. 

B. Data Acquisition And Pre-processing 

The experimental data used in this paper were obtained from 

a laboratory self-collected dataset containing data from a 

sample of 16 healthy subjects aged 24-26 years without any 

history of neurological impairment disease. The study followed 

the Declaration of Helsinki and was approved by the Ethics 

Committee of Hangzhou Mingzhou Naokang Rehabilitation 

Hospital. All participants signed an informed consent form and 

pledged not to have undergone similar experiments. 

In this study, participants were arranged to sit in front of a 

screen in a sitting position, with their bodies as relaxed as 

possible, with both arms resting naturally on the armrests of the 

chair, holding a grip strength dynamometer. They then 
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completed 10 sets of 5kg, 10kg and 20kg gripping experiments 

with their left and right hands respectively, using standardized 

power grip in accordance with the movement and resting cues 

given by the equipment. Only steady state force output data 

were analyzed in this study, so in the experiment we ensured 

that subjects had achieved the required grip strength at the time 

of hitting the start tag and maintained this grip strength 

throughout the task. The experimental steps are shown in Fig. 

2. Subjects cycled through resting and grasping maneuvers. 

The 64-channel (NeuSen.W64, Neuracle, China) EEG 

signals and sEMG signals (Delsys Inc., Natick, MA, USA) were 

acquired simultaneously at a sampling frequency of 1000 Hz. 

In this study, sEMG of the brachioradialis (BR), flexor 

digitorum superficialis (FDS), flexor carpi radialis (FCR), 

flexor carpi ulnaris (FCU), biceps brachii(BB), triceps brachii 

(TB) were acquired from the right and left hands of healthy 

subjects. The EEG signals were pre-processed using the 

EEGLAB toolbox [22] and re-referenced using an average 

reference. A fourth-order Butterworth bandpass filter was then 

used to remove the baseline drift of the EEG and filter the noise 

between the typical frequency bands of EEG and sEMG. Then 

the interference of artifacts such as electrooculogram and 

electrocardiogram for the EEG signals was removed with 

Independent Component Analysis. Finally, the wavelet noise 

cancellation method was used for the EEG and sEMG 

respectively. 

C. Causal Inference Based On OPTNs 

In order to accurately identify causal links between time 

series, suppress spurious links, and detect nonlinear coupling, 

Ordinal Pattern (OP) is considered in this paper to be introduced 

into the calculation of coupling between EEG and sEMG for 

constructing multivariate OPTNs. OP is defined as the order of 

amplitude arrangement based on the time series, and the 

network it constructs is a Markov chain of time series in the 

phase space. For a given time series  
1

( )
T

c t
X= x t

=
, the phase 

space trajectory reconstruction with embedding dimension m 

and lag d is performed according to Takens' embedding theorem 

[25], and the embedding vector is obtained as follows 

  ( ) ( ), ( ), , ( 1) ,

1, 2, , ( 1)

c c c c
v t x t x t d x t m d

                t T m d

= + + −

= − −
       (1) 

Assuming that 
0 1 1

( , , , )
s m

a a a a
−

=  is an ordering of 

(0,1, , 1)m − , the member

 ( ), ( ), , ( 1)c c cx t x t d x t m d+ + −   size ordering relation for 

the embedding vector ( )
c

v t  can correspond to a unique 
sa  that 

satisfies 

Fig. 1.  Overview of the research process.  

                                                                          (d)                                                                                  (c)                 

Fig. 2.  (a) EEG-EMG simultaneous acquisition experiment;(b) Selection and placement of sEMG electrodes ;(c) Channal locations;(d) Flow 
of the experimental procedure.  

(a) (b) 
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 0 1 1( ) ( )c c c mx t a d x t a d x t a d−+  +   +            (2) 

And set 
1l la a−   when 

1( ) ( )c l c lx t a x t a−− = − . Each 
sa  is 

called an OP, and there exist m! different OP for the embedding 

dimension m. They are denoted by the symbol 
1 2 !, , , M   . 

The conditional entropy between time series is calculated and 

the m-OPTNs matrix is constructed. The conditional entropy of 

time series 
1X  to 

2X  at delay   is formulated as follows 

2 1 1 2

! !
, ,

1 2 2

1 1

( ) ( , ) log ( )
M M

x x x x

j i i j

i j

H X X p p
 



= =

= −          (3) 

2 1,
( , )

x x

j ip


    denotes the frequency of simultaneous 

occurrence of 2 ,x

j


  and 1x

i . And 1 2 ,
( )

x x

i jp


   indicates the 

conditional frequency of appearance of 1x

i  when OP mode 

2 ,x

j


  occurs. 

Similarly, the conditional entropy of time series 
2X  to 

1X  at 

delay   is formulated as follows 

1 2 2 1

! !
, ,

2 1 2

1 1

( ) ( , ) log ( )
M M

x x x x

i j j i

i j

H X X p p
 



= =

= −         (4) 

Construct the m-OPTNs matrix 

1 1 2 1

2 1 2 2

1 2

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

N

N

N N N

H X H X X H X X

H X X H X H X X
H

H X X H X X H X

  

  



  

 
 
 =
 
 
  

   (5) 

Set hard threshold as follows. 

max max

ˆ ( )

( )

( ),

n m nm

n m

n m

H X X h

H if  H X X H
                  

H X X otherwise

 





=

  
= 



 (6) 

max 2log !H M=                               (7) 

   is empirically set to 0.99 ~ 1    oo lik  is coksieeree to 

exist betweek two koees whek ˆ ( )n mH X X
 is set to 

maxH   

It is crucial to eksure the accuracy of the causal lik  

ieektificatiok results ake suppress the false lik s via the 

followikg three steps: eetermikikg the set of parekts ake 

chilerek ik the ketwor ; ieektifyikg the mikimum set of 

keighbors betweek cokeitiokal actiok relatioks; removikg the 

kok-causal keighbors ik the ketwor   The pseueo lik s causee 
by ikeirect causal lik s ik the causal akalysis cak be elimikatee 

to eksure that the causal ikferekce betweek the time sequekces 

are valie lik s ake the accuracy ake effectivekess of the 

algorithm  

Step Ⅰ: Fike the parekts ake chilerek of the ketwor  

By usikg OPTos, for eifferekt eelays  
1 2
, , ,

kmp p p    , a 

weightee multilayer ketwor   ,G V E=  is cokstructee basee 

ok the matrix  
1 2

ˆ ˆ ˆ ˆ, , ,
J

H H H H  =     1 2, , , NV X X X=  

represekts the set of koees of the weightee ketwor   Treatikg 

each time series as a koee, for eifferekt layers has the same set 

of koees   1 2, , , JE E E E=  represekts the set of eeges of the 

weightee ketwor , ake the eeges ik the ketwor  are gekerally 

eistikct for eifferekt layers  

For each koee 
mX  ik this multilayer ketwor , its 

mk  parekts 

cak be fouke by the followikg equatiok  

 max , ,
mX mn mjh h H n m T  =                   (8) 

mnh 
 represekts the value of the m-th row ake n-th columk ik 

the aejacekcy matrix Ĥ     Ik other wores, mnh 
  ikeicates the 

couplikg strekgth value of the m-sequekce for the n-sequekce 

ok the layer with eelay   ik the multilayer weightee ketwor   

Similarly, the 
ml   chilerek of 

mX   cak be obtaikee from the 

followikg equatiok 

 max , ,
mX mn inC h h H m n T =                  (9) 

Step Ⅱ: Ieektify the mikimum set of keighbors for cokeitiokikg 

For the causality eetermikatiok betweek 
mX  ake 

nX , eefike 

the mikimum set of cokeitioks 

 min

1 2
ˆ , , ,

m m nX X X rP C p p p   = =               (10) 

ˆ
nXC eekotes the set of chilerek of koee 

nX  exclueikg 
mX , 

i e , ˆ \
n nX X mC C X=    The two special cases where x is the 

empty set are treatee separately: set  min

mX mX =  if 
mX  is the 

okly chile koee of 
nX  ; If ˆ

m nX XP C =   , thek set 

min

m m nX X XP P = , ake if there is still ko elemekt ik the mikimal 

set of cokeitioks, thek set  min

mX mX =   The most eomikakt set 

of keighbors cak be filteree by settikg ak upper limit ok the 

kumber of elemekts ik the mikimum set of cokeitioks  

 

Step Ⅲ: Remove kok-causal keighbor koees ake fa e lik s 

To remove the effect of ikeirect causal lik s ok the ketwor  

akalysis, we eefikee the parameters 
nX  ake ( )min

mm XH X P  as 

follows  

( ) ( )min min ,
n m mX m X m X nH X P H X P X = −               (11) 

( ) 1 1

1 1

! !
, ,min

1 1

, ,

( , , , )

log ( , , )

mr r

m

m r r

M M
xp p

m X i i j

i j

x p p

j i i

H X P p

                         p

    

= =

    

= −   

  


      (12) 

nX  cak reflect the strekgth of the causal lik  betweek 
nX  

ake 
mX  to some extekt  The more it tekes to 0, the wea er the 

causal lik  of 
nX  to 

mX , ake the more li ely the lik  is ikeirect  

By settikg a threshole value for 
nX , some ikeirect causal lik s 

ik the ketwor  cak be removee, ake if 
nX    , 

nX   will be 

regareee as a false lik  of 
mX   

D. Multivariate Variational Modal Decomposition 

MVMD is a eata-erivek time series scalikg algorithm  The 

simultakeous frequekcy scalikg eecompositiok of EEG ake 

sEMG by usikg MVMD cak coksieer the iktriksic cokkectiok 

betweek multivariate eata  Also, the algorithm has excellekt 

capability of frequekcy bake eivisiok   

The purpose of the MVMD algorithm is to extract a specifiee 

kumber of K moeulatee oscillatiok vectors ( )ku t  from the ikput 
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eata 
1 2( ) [ ( ), ( ), , ( )]Cx t x t x t x t=  of the c chakkels, with x = b, 

such that Ⅰ  the sum of the bakewieths of the extractee moee 

compokekts is mikimizee; Ⅱ  the sum of the extractee moee 

compokekts cak accurately recover the origikal sigkal   

The akalytic represektatiok ( )u t+
 of ( )ku t  is as follows  

1

2

( )1

1

( )2

2

( )

( ) ( )

( ) ( )
( ) ( ) ( )

( ) ( ) C

j t

j t

j tC

C

u t a t e

u t a t e
u t u t j u t

u t a t e



+



+

+



+

  
  
  = +  = =
  
  

      

     (13) 

By estimatikg the bakewieth of each moeulatee oscillatiok 

vector ( )ku t   through the 
2L   parametrizatiok of the graeiekt 

fukctiok of ( )u t+
, the cost fukctiok ik the MVMD algorithm 

cak be obtaikee as follows  
2

2
( )kj t k

t

k

f e u t
− 

+
 =                           (14) 

The bakewieth of the multivariate moeulatee oscillatiok is 

estimatee by shiftikg the oke-sieee spectrum of all scales ( )ku t+
 

by a sikgle frequekcy compokekt 
k  ake ta ikg the Frobenius-

2 parametrizatiok  Thek the cost fukctiok cak be expressee by 

the followikg equatiok  
2

,

2
( ) kj tk c

t

k c

f u t e
− 

+
 =                       (15) 

Thek the cokstraikee optimizatiok problem of the MVMD is 

expressee as 

   ,

2
,

2,

,

minimize ( )

. . ( ) ( ), 1,2, ,

k

k c k

j tk c

t
u

k c

k c c

k

u t e

   s t  u t x t c C

− 

+


 
   

 

= =




             (16) 

The correspokeikg augmektee Lagrakgiak fukctiok is 

   
2

,

,
2

2

, ,

2

( , , ) ( )

( ) ( ) ( ), ( ) ( )

kj tk c

k c k c t

k c

c k c c c k c

c k c k

L u u t e

  x t u t t x t u t

− 

+
   =    

+ − +  −



   
(17) 

ADMM is usee to solve the ukcokstraikee optimizatiok 

problem, which simplifies the problem by traksformikg the 

complex optimizatiok problem ikto multiple suboptimizatiok 

problems  

Step Ⅰ: Moee upeate 

Coksieerikg the moee upeate, this Lagrakgiak fukctiok cak 

be equivalektly traksformee ikto the followikg optimizatiok 

problem  
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            (18) 

The frequekcy eomaik upeate relatiok ik MVMD cak be 

obtaikee as follows 
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Step Ⅱ: Cekter frequekcy upeate 

Coksieer the optimizatiok problem of cektral frequekcy 

upeate  Sikce the last two terms of the Lagrakgiak fukctiok are 

ikeepekeekt of 
k  , the cektral frequekcy upeate scheme is 

givek by the followikg optimizatiok problem  

2
1 ,

2
arg min ( ) k

k
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 
            (20) 

The above equatiok cak be equivalektly traksformee with 

Plakcherel's theorem  The equatiok for the cekter frequekcy 

upeate is obtaikee as follows  

21 2

,
0

2

,
0

2

,
0

ˆarg min ( ) ( )

ˆ ( )

ˆ ( )

k

n

k k k c

c

k c

c

k c

c

u d

u d

       
u d


+







 
 =  −    

 

  

=
 







      (21) 

E. Multiscale Corticomuscular Coupling Network 
Construction 

In the construction of the corticomuscular coupling network, 

each sampled channel is used as the node of the network, and 

the weights in the multilayer weighted network calculated by 

OPTNs are used as the edges of the network. For each IMF 

obtained using MVMD decomposition, the weights of the 

optimal delay are selected as the coupling strength to construct 

the adjacency matrix. And the multilayer cerebral myoelectric 

signal coupling network is built based on the adjacency matrix. 

The use of graph theory to characterize the topological 

relationships of complex networks is an important tool to study 

the different nodes, edges and the overall properties of the 

network [26]. In this paper, we use several network parameters 

in complex networks, such as node degree, node strength, 

mediator [27], agglomeration coefficient [28] and characteristic 

path length [29] to analyze the coupling properties between 

EEG and sEMG among different scales from the network level 

and node level. These parameters allow the topology of the 

network to be portrayed, to demonstrate more graphically the 

characteristics of information transmission in the coupled 

network, and to understand the myoelectricity of the coupling 

connection transformation between EEG and sEMG when a 

constant grip force is output from the human upper limb from a 

multilevel scale. 

III. RESULTS 

A. Analysis Of Corticomuscular Coupling In Each 
Frequency Band Based On OPTNs 

The coupling of EEG and sEMG in each frequency band 

under continuous output of 5kg, 10kg and 20kg grip force of 

human upper limbs was calculated using OPTNs causal 

inference algorithm and Granger causal inference algorithm 

according to the above method. Then we compared the results 

obtained by using each of the two methods, and the results are 

shown below. 
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The three images on the left side in Fig. 3 represent the 

calculated results of coupling strength at 5 kg, 10 kg and 20 kg 

grip force of left hand calculated using OPTNs and Granger 

causal inference algorithm, respectively. And the graphs on the 

right side indicate the coupling results of right hand. The blue 

lines in the figure indicate the significance threshold, and the 

red lines indicate the calculated results of the coupling. It can 

be seen that both methods exhibit changes in the synchronous 

coupling relationship between cortex and muscle across 

frequency bands. Besides, the calculation results of coupling 

strength using both algorithms have similar trends. As the grip 

force magnitude rose, the peak of coupling intensity in the EEG

→EMG direction shifted from α (8-13 Hz) to γ (35-60 Hz) band. 

The coupling strength in the high-frequency range also shows a 

slight increase. All the above findings are consistent with the 

existing studies [30]-[37]. 

Comparing the result plots of the two methods, it can be seen 

that the OPTNs method has a larger significant region on the 

coupling curve than Granger method. Secondly, in the high 

frequency band, the coupling curves calculated by the OPTNs 

reflect the coupling curves at constant output grip. The coupling 

curves in the resting state basically overlap, and there is 

basically no significant region. But the two curves obtained by 

the Granger method have several crossings and peaks in the 

high frequency band many times. Also, GC still exhibits 

significant regions in the high-frequency range above 100Hz, 

although this is not the primary frequency range of EEG signals. 

Moreover, the coupling strength calculated by OPTNs method 

has a smaller variance between multiple trials and the results 

are more stable. The results indicate that the OPTNs has 

advantages over the GC in the detection of coupling features 

and can demonstrate the differences of coupling between 

frequency bands more obviously. 

B. Simultaneous Frequency Scale Decomposition Of 
EEG And sEMG 

MVMD allows simultaneous frequency-scale decomposition 

of EEG and sEMG. It was performed on the EEG and sEMG of 

all subjects after pre-processing, and the C3, C4, CP5, CP6 and 

the left and right superficial FDS channels associated with 

human upper limb fist movements were selected for analysis. 

The preset number of IMF k was determined by the center 

frequency observation method, and the appropriate bandwidth 

was set to select the center frequency that meets the 

requirements. The decomposition results of each component 

will be displayed in Fig. 4. IMF1~IMF6 (0-18Hz, 18-50Hz, 50-

71Hz, 71-88Hz, 88-116Hz, 116-152Hz) are selected as the 

main frequency bands. The left panel shows the spectrogram of 

each component, and the right panel shows the corresponding 

IMF. It can be seen that there is basically no band mixing 

between the modes obtained from the decomposition, and the 

smoothness of each component is also well. 

C. Results Of Broad-band Cortical Muscle Coupling 
Network Analysis 

We have calculated the coupling adjacency matrix among the 

IMFs of EEG and sEMG according to the OPTNs algorithm 

introduced above. The adjacency matrix between the channels 

calculated at each scale is shown in the following figure for 

subject S1 as an example. 

(a)                                                                                                 (b) 
Fig. 3.  Coupling intensity values between EEG and sEMG in each frequency band at 5kg, 10kg and 20kg grip force output for the right and left 
hands (a) Left hand (b) Right hand 

Left hand Right hand 

(a)                                                   (b) 
Fig. 4.  MVMD decomposition results of C4 channel (a) Frequency 
spectrum of each IMF component (b) Time domain waveform of each 
IMF component.  
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The cross-coupling adjacency matrix between the frequency 

bands is shown in Fig. 5 (a). The figure shows that when the left 

hand outputs a sustained grip, the node that outputs information 

externally is mainly the C4, while the EMG channel that outputs 

and receives information is mainly the FDS of the left hand, and 

the EEG channel that receives information is mainly the CP6. 

When the right hand outputs sustained grip force, the control 

signal is mainly output by the C3, which controls the right FDS 

and transmits the information to the CP5 in sensory area. This 

reflects the bidirectional transmission of information between 

the cerebral cortex and the controlled muscles, moreover, it 

verifies that the coupling strength in the downward direction is 

higher than that in the upward direction of the corticomuscular 

coupling [38]-[41]. 

Furthermore, the coupling intensity between channels at the 

same scale was significantly stronger than that between signals 

at different scales at constant grip output from the hand. At 

constant force output, the peak of coupling intensity between 

EEG and sEMG channels appeared in the low frequency band. 

In the IMF3 band, there was a slight boost in the coupling 

intensity, and that in IMF5 and IMF6 also rose with the 

increasing grip force. 

In Fig. 5(b), at each level of grip strength, the in-degree of 

C3 and C4 channels was larger, while the out-degree of CP5 

and CP6 channels was larger. There were significant 

differences between left and right hands (p>0.05). In the left 

hand experiment, C4 and CP6 channels showed more obvious 

performance, while C3 and CP5 channels showed more obvious 

performance in the right hand experiment. And the controlled 

muscles in the right hand grasp experiment can be found to be 

mainly the FDS of the right hand, but in the left hand grasp 

experiment, the FDS of both hands have larger outward and 

inward degrees, which may be related to the right-handedness 

of the subjects. Fig. 5(c) shows edge mediators and node 

mediators of the network. The resultant plots show that the EEG 

nodes have a larger role and influence in the network. As the 

grip force increases, more information transmission between 

channels is activated and the roles and influences played by 

each node in the network are more evenly distributed. And the 

experiments show that the information circulation speed of the 

full-band EEG coupled network under each grip force of the left 

and right hands is not much different.  

D. Results Of Low-band Cortical Muscle Coupling 
Network Analysis 

In the above experiments, it can be seen that there is a high 

coupling strength between the EEG signals in the low frequency 

band. So further multiscale coupling networks were constructed 

for EEG and sEMG below 60 Hz to analyze the variations in 

the information exchange of the low frequency band. The signal 

is decomposed using MVMD, and seven IMF components are 

derived sequentially according to the center frequency selection 

method: 0-3Hz, 3-11Hz, 11-25Hz, 20-40Hz, 33-47Hz, 47-59Hz, 

and 55-65Hz. 

The cross-coupling relationships among multiscale EEG and 

sEMG signals in the low frequency band are shown in Fig. 6. It 

can be seen from the figure that the coupling phenomenon is 

more obvious between the same scales. And the coupling 

(a) (c) 

Fig. 5. (a) The coupling adjacency matrix among the IMFs of EEG and sEMG: Channels 1 to 36 are the 6-channel EEG and EMG signals of IMF1~ 
IMF6, respectively, where channels 1 to 6 are the 6-channel EEG signals at the IMF1 level, and so on. (b) Network parameters of corticomuscular 
coupling network: Nodal degrees, blue: left hand, red: right hand. (c) Network parameters of corticomuscular coupling network: Edge mediators 
and node mediators: the thicker edges in the network reflect that the edge has a higher edge mesonumber and the nodes with larger node 
mesonumbers have larger diameters 

(b) 

k k 

k k 

k 

k 
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intensity tends to shift to the high frequency band as the grip 

force increases. The trend is the same for the left and right hands. 

For IMF1, there is a strong coupling between signals. For IMF2, 

the coupling strength decreases as the grip force increases. 

Coupling strength in IMF4 increases as the grip force increases. 

Where IMF2 largely overlaps with the α band, IMF3 largely 

overlaps with the β band, IMF4 and IMF5 largely contain the γ 

band, and the β and γ bands are thought to represent cortical 

transfer to the muscular system in terms of neural oscillations 

swhen static force is adjusted to dynamic force output [42]. 

For the left-hand and right-hand experiments, the C4, CP6, 

left FDS channel and the C3, CP5, right FDS channel were 

selected for analysis, the results of which were found to be 

consistent in the experiments. The results of the following 

coupling analysis were chosen as an example for the left-

handed experimental results. 

The node intensities and mediators of the coupled networks 

at different scales are shown in Fig. 7. It can be seen in Fig. 7 

(a) and (b) that the low-band signal has larger nodal intensities 

inside and outside the node at a constant grip force output. The 

IMF1 of FDS has larger nodal strength when the grip force is 

small, while as the grip force increases it decreases. IMF3 and 

IMF4 nodal intensities are smaller, while IMF6 and IMF7 nodal 

intensities have increased. There was a significant enhancement 

of information exchange between IMF4 and other channels as 

the grip force increased, which might be attributed to the 

activation of information exchange between cortical muscles in 

the high frequency band when the grip force increased. The 

network edge median chord diagram of multiple subjects 

showed a similar trend, reflecting the influence of the coupling 

relationship between signals of different scales in the network. 

Fig. 7 (c) displays the network edge median chord diagram for 

S1 subjects. It can be seen that the IMF1 and IMF7 components 

have more significant influence in the network, especially the 

IMF1 component of the myoelectric channel, and the 

importance of the connected edges of the nodes in the coupled 

network changes with the changing of the grip force. Moreover, 

the edge betweenness centrality of EEG nodes as emitting ends 

should be greater than that of receiving ends, indicating that 

EEG nodes tend to emit signals more frequently. 

IV. DISCUSSION 

A. Characteristics Analysis Of MVMD-OPTNs Algorithm 
Based On Results 

Based on MVMD and OPTNs, we quantitatively analyzed 

the causal relationship between EEG and sEMG in human 

upper limbs with constant grip force output. We also analyzed 

the coupling functional network consisting of EEG and sEMG 

channels using complex network parameters. Simultaneous 

frequency-scale decomposition of EEG and sEMG can be 

performed using MVMD. The method can eliminate the 

spectral overlap between frequency bands by setting the 

bandwidth and has a small transient frequency fluctuation and 

is robust. This is the verified advantageous time-frequency 

scale decomposition method for time series used so far. Using 

OPTNs to calculate the coupling strength compared with GC, 

the coupling strength varies more significantly between 

Fig. 6.  Low frequency band corticomuscular coupling adjacency 
matrix: Channels 1 to 42 are the 6-channel EEG and EMG signals from 
IM` F1 to IMF7, respectively. Channels 1 to 7 are the 6-channel EEG 
signals of IMF1, and so on.  

(a) (b) 

(c) 
The upper half of the network edge mesoscope chord diagram shows the emitting end and the lower half shows the receiving end. The horizontal 

coordinates in the figures are the IMF1 component of the three-channel signal from left to right up to the IMF7 component of the three-channel 
signal.  

Fig. 7.  Network parameters of corticomuscular coupling network for each IMF (a) Internal strength; (b) External strength; (c) Mediators: the thicker 
edges in the network reflect that the edge has a higher edge mediator and the nodes with larger node mediator have larger area.  

S1 

s s s s s s 
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frequency bands. Moreover, OPTNs takes multiple channel 

inputs into consideration when calculating the coupling 

intensity, which is more conducive to analyzing the changes 

of coupling characteristics among the scales of EEG and 

sEMG under different grip force patterns of upper limb 

movements and makes the construction of coupling networks 

more reasonable. 

B. Network Characteristics Of The Sensorimotor 
System 

Nodes with a critical role in a complex network are not only 

related to their central location, but also to the timing of 

information exchange with other nodes [43], [44]. In the 

coupled cortical-muscular function network of human upper 

limb movements, the C3 and C4 play a critical role in 

information sending, while the FDS of the left and right hands 

receive signals while sending them. Information transmission 

between the cerebral cortex and the muscles is bidirectional. 

The cerebral cortex outputs a large amount of information 

when it controls the movement of muscles in the motor area. 

Human activity is also performed by multiple muscles in 

concert, and there are coupling associations among sEMG 

signals from different locations. 

In the crossband experiments, in the high-frequency band, 

the peak coupling between EEG and sEMG occurs between 

simultaneous frequency scales. The coupling intensity in the 

high frequency band increased in the case of increasing grip 

force. During the experiments in the low frequency band, it 

was found that there was a strong coupling between the low 

frequency band sEMG (IMF1) and EEG, and that the low 

frequency band EMG channels assumed an important role in 

the transmission of information in this directed network. As 

the grip level rises, the higher frequency band (IMF4, IMF6) 

EEG and sEMG components have an increased position in the 

information transmission in this coupled network. These scale 

components are mainly gamma bands, which are consistent 

with the transfer characteristics of the cerebral cortex to the 

muscular system in terms of neural oscillations during static 

force adjustment to dynamic force output. Moreover, the 

coupling networks at the IMF2 and IMF3 scales have faster 

information transfer and better connectivity at static force 

output, which also suggests that there are differences in neural 

pathways at different scale components during constant grip 

force output from human upper limb movements. 

C. Global Network Parameter Analysis 

Two network parameters, the characteristic path length and 

the agglomeration coefficient, are shown in Figs. 8 (a) and (b) 

for the corticomuscular coupling network during human upper 

limb movements at each scale for the three grip force patterns, 

respectively. Blue represents 5 kg grip force, red represents 10 

kg grip force, and yellow represents 20 kg grip force. The 

characteristic path length is shorter at the IMF3 and IMF4 

scales, indicating faster information flowing. In Fig. 8, it 

shows that the IMF2 and IMF3 scales have larger clustering 

coefficients, and there is consistency between the left and 

right hands, suggesting that the signal coupling is tighter and 

has better connectivity at this scale. However, the information 

flow speed and connectivity of the network did not show a 

clear pattern of change with the variation of grip force level. 

The significance test shows that the network parameters are 

significantly different between the three grip strength 

patterns(p<0.05) in several IMFs. 

 
(a) 

 
(b) 

V. CONCLUSION 

To address the problems that traditional coupling methods 

cannot perform multiscale simultaneous analysis of 

multidimensional time-series signals and have certain 

limitations in describing coupling characteristics, we propose a 

complex network analysis method based on MVMD and 

OPTNs causal inference method. The method models the 

corticomuscular information transfer system from a holistic 

perspective and evaluates the coupling characteristics between 

EEG and sEMG at different scales of human upper limb 

movements through complex network parameters. The results 

show that the vital information transmission nodes in the 

network are consistent at different time-frequency scales. 

However, there are some variabilities in the coupling network 

at different scales, and stronger coupling properties exist 

between signals in the lower frequency bands. The complex 

network analysis method portrays the degree of importance of 

signals at different scales in the information exchange between 

cortex and muscle, which can provide a reasonable explanation 

for the variation of the coupling strength among scales of 

multidimensional EEG and sEMG.  But the method still needs 

wider validation and application to ensure its applicability to 

different clinical and research scenarios. Also, how the network 

parameters in the method are specifically related to biological 

processes needs to be further explored, which will contribute to 

a deeper understanding of neural control and rehabilitation 

mechanisms. This research may contribute valuable insights for 

designing biomedical engineering devices and technologies, 

such as neuroprosthetics or brain-machine interfaces. 
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