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Abstract— Automated sleep staging is essential to
assess sleep quality and treat sleep disorders, so the issue
of electroencephalography (EEG)-based sleep staging has
gained extensive research interests. However, the following
difficulties exist in this issue: 1) how to effectively learn the
intrinsic features of salient waves from single-channel EEG
signals; 2) how to learn and capture the useful informa-
tion of sleep stage transition rules; 3) how to address the
class imbalance problem of sleep stages. To handle these
problems in sleep staging, we propose a novel method
named SleepFC. This method comprises convolutional fea-
ture pyramid network (CFPN), cross-scale temporal context
learning (CSTCL), and class adaptive fine-tuning loss func-
tion (CAFTLF) based classification network. CFPN learns
the multi-scale features from salient waves of EEG sig-
nals. CSTCL extracts the informative multi-scale transition
rules between sleep stages. CAFTLF-based classification
network handles the class imbalance problem. Extensive
experiments on three public benchmark datasets demon-
strate the superiority of SleepFC over the state-of-the-art
approaches. Particularly, SleepFC has a significant perfor-
mance advantage in recognizing the N1 sleep stage, which
is challenging to distinguish.

Index Terms— Sleep staging, convolutional feature
pyramid network, cross-scale temporal context
learning, class adaptive fine-tuning loss function,
electroencephalography.

I. INTRODUCTION

SLEEP is important for humans [1]. Different sleep stages,
such as non-rapid eye movement (NREM) and rapid eye

movement (REM), are essential for memory consolidation,
attention improvement, emotion regulation, and so forth [2],
[3]. Accurately classifying the sleep stages is indispensable for
comprehending how the sleep impacts human physical and
mental health. However, manual sleep staging heavily relies
on the knowledge and labor of sleep experts. The laboring
process is empirical and time-consuming [4], [5]. By contrast,
automatic sleep staging is promising to enhance the accuracy
and efficiency of sleep analysis [6], [7].

Sleep staging refers to distinguishing the stages of
human sleep. Sleep specialists generally categorize the sleep
stages based on polysomnography (PSG), which consists
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of EEG, electrooculogram (EOG), electromyogram (EMG),
and electrocardiogram (ECG) [8]. This paper focuses on
single-channel EEG for sleep staging. Compared with PSG
or multi-channel EEG, single-channel EEG holds great practi-
cal significance, because it is quite convenient and efficient
to collect only one sort of signals via single one channel.
Besides, technological improvement of sleep staging based
on single-channel EEG is very helpful for enhancing the
performance of sleep staging using multi-channel EEG as
well as PSD. According to the American Academy of Sleep
Medicine (AASM) criteria, PSG data can be divided into
WAKE, REM, and NREM. NREM can further be classified
into N1, N2 and N3 stages. In different sleep stages, the
EEG signals display different waveforms, amplitudes, and
spectra [9]. For instance, the salient waves of REM stage are
sawtooth waves, but the salient waves of N2 stage are sleep
spindles or K-complexes [10]. Capturing the characteristics
of signal wave patterns can be beneficial for sleep stage
classification. Moreover, sleep transition rules are also infor-
mative to distinguish sleep stages, especially those between
the neighboring sleep stages, such as W-N1-N1-W-N1-N1,
N2-N2-N3-N2-N3, N2-N2-REM, etc.

Many researchers have recommended deep learning for
sleep staging based on EEG. Typical methods include con-
volutional neural network (CNN) [11], [12], convolutional
recurrent neural network (CRNN) [13], [14], fully convolu-
tional network (FCN) [15], etc. Early methodology relies on
the one-to-one scheme in which an EEG epoch corresponds to
one sleep stage [16]. Generally, EEG signal waves of different
sleep stages display distinctive temporal and spectral char-
acteristics. For example, K-complexes occur approximately
every 1.0-1.7 minutes, but alpha rhythm undergoes periodic
oscillations with a frequency range of 8 to 12 Hz. Therefore,
multi-scale feature extraction plays an important role in sleep
staging, because it can capture the different characteristics of
salient EEG waves. Eldele et al. [17] designed two parallel
CNNs, which utilize small and large filters to learn the
representations from EEG saline waves for classifying sleep
stages. Wang et al. [18] employed the attention mechanism and
the multi-scale convolution to extract the salient wave features
from EEG to classify sleep stages. Although CNN models have
shown inspiring performance in sleep stage classification, their
one-to-one scheme ignores the important sleep transition rules
between neighboring sleep stages.

In recent years, both many-to-one and sequence-to-sequence
schemes, which rely on multiple EEG epochs for sleep staging,
have attracted increasing research interests [11], [12], [14].
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Fig. 1. Overall architecture of SleepFC. At first, CFPN extracts the multi-scale features of salient waves from successive EEG epochs. Then, CSTCL
learns to capture sleep stage transition rules from the extracted multi-scale features. In more detail, CSTCL fuses the multi-scale features by SCT,
TDCL and BUCL, and encodes the temporal context information of fused features via Transformer encoder. At last, CAFTLF-based classification
network distinguishes the imbalanced classes of sleep stages.

These two schemes take into account the transition patterns of
neighboring sleep stages and thus achieves encouraging per-
formances [19]. Dong et al. [20] put forward a rectifier neural
network to learn the hierarchical features from EEG epochs
and adopted long short-term memory (LSTM) to recognize
sleep stages. Seo et al. [21] brought forward intra- and inter-
epoch temporal context network (IITNet), which is composed
of a deep residual network and two layers of bi-directional
LSTM (BiLSTM), to extract the time-invariant features from
single-channel EEG epochs and learn the sleep transition rules
for distinguishing sleep stages. Phan et al. [22] came up
with SleepTransformer which extracts the intra-epoch features
from each 30-second EEG epoch and learns the inter-epoch
temporal representation from these epoch-wise features to
separate sleep stages.

Nevertheless, because humans have different sleep durations
at different stages, the number of signal samples in each
sleep stage is usually unequal. Therefore, we need to address
such a class imbalance problem for sleep staging [12], [23].
Recently, some studies suggest using data augmentation to
balance the class distribution for sleep datasets [24], [25].
Data augmentation approaches usually generate the synthetic
samples of minority classes from existing samples at the
expense of computational time. Other studies recommend
applying cost-sensitive learning to penalize the misclassifica-
tion of minority classes, which, however, will sacrifice the
classification rate on the majority classes as a cost [17].

In this paper, we propose a novel and effective method
named SleepFC for sleep staging based on single-channel
EEG. The main contributions of SleepFC are summarized as
follows.

1) The proposed SleepFC has a new architecture,
which consists of convolutional feature pyramid net-

work (CFPN), cross-scale temporal context learning
(CSTCL), and class adaptive fine-tuning loss function
(CAFTLF) based classification network, as illustrated in
Fig. 1.

2) In SleepFC, CFPN takes charge of learning a feature
pyramid of salient waves; CSTCL is responsible for
capturing the multi-scale sleep transition rules between
successive sleep stages; CAFTLF-based classification
network plays the role in resolving the class imbalance
problem for sleep staging, without causing extra compu-
tational expense or compromising the classification rate
on the majority classes.

3) Extensive experiments on three public benchmark
datasets demonstrate the superiority of SleepFC over
the related state-of-the-arts for sleep staging based on
single-channel EEG.

II. METHOD

As shown in Fig. 1, the proposed SleepFC is comprised
of three components: CFPN, CSTCL, and CAFTFL-based
classification network. The algorithmic procedures of SleepFC
are briefly described as follows. At first, CFPN learns the
multi-scale features of salient waves from successive EEG
epochs. Then, CSTCL captures the sleep stage transition
rules from the multi-scale features. At last, CAFTLF-based
classification network predicts the sleep stages whilst tackling
the class imbalance problem.

A. Preliminary
We denote L successive single-channel EEG epochs sam-

pled at F Hz as S(L) ∈ RT ·F ·L×C , where T is the number of
seconds of EEG epoch duration and C is the number of EEG
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channels, we recommend T = 30 and F = 100 in our work,
following the general research on the issue of EEG-based sleep
staging [6], [15], [26], [27]. Besides, we denote the one-hot
encoding label of an EEG epoch as yk

s ∈ {0, 1}
k , which

corresponds to the true label ys . Here, we set k = 5, following
the five-stage sleep classification in the AASM criteria [28].

B. Convolutional Feature Pyramid Network
To characterize the intrinsic features of salient waves from

EEG signals, CFPN learns the feature pyramid by means of
convolutional blocks, max-pooling layers, and convolutional
layers.

The feature pyramid consists of three feature maps{
F(L)3 ,F(L)4 ,F(L)5

}
, where F(L)i ∈ Rdt,i ×dc , dt,i denotes the

temporal dimension of the i-th feature map (i = 3, 4, 5),
and dc denotes the channel dimension of feature maps. CFPN
involves five convolutional blocks, four max-pooling layers,
and three convolutional layers, all of which are designed for
unifying the channel dimension of feature maps. Each of the
first two convolutional blocks contains two 1-D convolutional
layers, two 1-D batch normalization layers, and two parametric
rectified linear units (PReLU) [29]; each of the last three
convolutional blocks contains three 1-D convolutional layers,
three 1-D batch normalization layers, and three PReLUs.
In each convolutional block, all the convolution layers have the
same kernel size. Besides, a squeeze-and-excitation module is
positioned before the last PReLU of every convolutional block.
The squeeze-and-excitation module can adaptively recalibrate
the channel-wise feature responses by explicitly exploring
the inter-dependencies among feature channels [30]. A max-
pooling layer is placed between every two convolutional
blocks to decrease the temporal dimension of feature maps.
Moreover, a 1-D convolutional layer with a kernel size of
1 is put after each of the last three convolutional blocks, for
reducing and unifying the channel dimension of feature maps
as dc.

C. Cross-Scale Temporal Context Learning
To learn the EEG features for sleep staging, CSTCL cap-

tures the multi-scale sleep transition rules by integrating three
context learning approaches and one transformer encoder.

The sleep transition rules have multi-scale characteris-
tics according to the AASM criteria (i.e., short scale:
N2-REM; middle scale: N3-N1-N1-N3; long scale:
N2-N1-N1-W-N1-W-W; here, “-” means the sleep stage
transiting from one to another) [31]. CSTCL learns to capture
the multi-scale sleep transition rules from feature pyramid.
Specifically, CSTCL contains top-down context learning,
self-context learning, bottom-up context learning, and Trans-
former encoder. As the input of CSTCL, the feature pyramid{

F(L)3 ,F(L)4 ,F(L)5

}
contains both fine-grained feature map Fl ∈

Rdt,l×dc at the low level and coarse-grained feature map
Fh ∈ Rdt,h×dc at the high level. In the feature pyramid{

F(L)3 ,F(L)4 ,F(L)5

}
, every feature map F(L)i consists of a

sequence of feature vectors
[
f(L)i,1 , f(L)i,2 , . . . , f(L)i,T

]⊤

along the

temporal dimension of F(L)i .

1) Self-Context Learning: Self-context learning (SCL)
extracts the features of salient waves from EEG in different
sleep stages, and learns the contextual relationship along the
temporal dimension of these features. The output F̃ of SCL
has the same size as its input F. Firstly, we use M different
learnable matrices to project the input F to M pairs of query
and key. Then, we perform a convolutional operation on the
input feature map F to obtain the value V. Next, we calculate
the similarity score between each pair of Q j and K j , which are
the j-th pair of query and key, by using mixture of softmaxes
(MoS) [32]. The MoS-based normalization is formulated as

WS =

M∑
j=1

π jσ1(
Q j K⊤

j
√

dk
),

[π1, π2, . . . , πM ] = σ2(w⊤

mos, j K̄),
Q j = K j = fQKS, j (F),

V = fVS(F), (1)

where M denotes the number of learnable linear projection
matrices; dk denotes the channel dimension of K; π j denotes
the j-th aggregation weight; σ1(·) and σ2(·) are the Softmax
functions; wmos, j denotes the learnable linear projection vec-
tor for normalization; K̄ denotes the arithmetic mean of K
along the temporal dimension; fVS(·) represents the convolu-
tional operation, and fQKS, j (·) the learnable linear projection
matrice. Based on the MoS-based normalization, we can obtain
the output feature map F̃ of SCL as

F̃ = BN(WSV)+ F, (2)

where BN(·) indicates the batch normalization.
2) Top-Down Context Learning: Top-down context learning

(TDCL) adopts a top-down attention mechanism. This mecha-
nism fuses the global information of high-level feature map Fh
and the local information of low-level feature map Fl together.

The method pipeline of TDCL is briefly described in the
following. First, we apply three convolutional layers fQT(·),
fKT(·) and fVT(·) with a kernel size of 1 to reduce the channel
dimension of Fl and Fh to dc/2, thus generating Q, K and V.
After this process, the temporal dimension of Q is still dt,l ,
and that of K and V is still dt,h .

Next, we calculate the dot product between Q and K⊤ and
take the normalization operation to produce the attention score.
Then, we multiply the attention score by V to yield a new
feature map. Finally, we utilize a convolutional layer with the
kernel size of 1 and the stride size of 1 to increase the channel
dimension of this feature map to dc and keep the temporal
dimension as dt,l , so that F̃l ∈ Rdt,l×dc . The above process
can be formulated as follows:

F̃l = ConvT (
QK⊤

dt,h
V),

Q = fQT(Fl),

K = fKT(Fh),

V = fVT(Fh), (3)

where the size of output F̃l is the same as the input Fl .
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3) Bottom-Up Context Learning: Bottom-up context learning
(BUCL) fuses the local information of Fl into Fh . Specifically,
Fh is linearly projected to Q, and Fl is linearly projected to
K and V:

Q = fQB(Fh),

K = fKB(Fl),

V = fVB(Fl), (4)

where fQB(·), fKB(·) and fVB(·) are the learnable matrices.
Next, we process the low-level feature map K by the

channel-wise attention operation:

wc = ReLU(GAP(K)), (5)

where the weight wc of channel-wise attention is computed
by global average pooling (GAP) and ReLU.

Then, we calculate the Hadamard product between Wc and
Q by

F̃h = ReLU(Q ⊙ Wc + V),
Wc = [wc,wc, . . . ,wc]1×dk , (6)

where dk denotes the temporal dimension of K, and ⊙

represents the Hadamard product.
4) Transformer Encoder: By performing SCT, TDCT and

BUCL on the feature pyramid
{

F(L)3 ,F(L)4 ,F(L)5

}
, we can

obtain three feature sets, each of which contains four feature
maps. Then, we concatenate the four feature maps of each
set along the channel dimension. To reduce the channel
dimension, we process the concatenated feature maps by a
convolutional layer ConV(·) to yield the feature maps F̃(L)3 ,
F̃(L)4 and F̃(L)5 :

F̃(L)3 = ConV(Concat(F(L)3 , F̃(L)l(5,3), F̃(L)l(4,3), F̃(L)(3,3))),

F̃(L)4 = ConV(Concat(F(L)4 , F̃(L)l(5,4), F̃(L)(4,4), F̃(L)h(3,4))),

F̃(L)5 = ConV(Concat(F(L)5 , F̃(L)(5,5), F̃(L)h(4,5), F̃(L)h(3,5))), (7)

where Concat(·) represents the concatenation operation along
the channel dimension of the four feature maps in each set,
the feature map F̃(L)i consists of a sequence of feature vectors[
f̃(L)i,1 , f̃(L)i,2 , . . . , f̃(L)i,T

]⊤

, and T denotes the temporal dimension

of F̃(L)i .
Finally, we encode the context information of temporal

sequence
[
f̃(L)i,1 , f̃(L)i,2 , . . . , f̃(L)i,T

]
by Transformer encoder. In the

positional encoder of Transformer, we adopt the sine and
cosine functions to incorporate the order information of feature
vectors

[
f̃(L)i,1 , f̃(L)i,2 , . . . , f̃(L)i,T

]
into

E(L)i = TransformerEncoder(P̃(L)i ),

P̃(L)i = F̃(L)i + P(L)i , (8)

where P(L)i denotes the positional encoding matrix; E(L)i
denotes the encoded feature map of the i-th feature map P̃(L)i ;
TransformerEncoder(·) represents the encoder component of
Transformer. Because of the large number of parameters in
Transformer, we reduce the hidden dimension dF F of the feed-
forward network. Besides, we retain the original number of

attention heads Nh and encoder layers Ne in Transformer [33].
The parameter settings will be detailed in Section III-B.

D. CAFTFL-Based Classification Network
CAFTFL-based classification network predicts the sleep

stages whilst handling the class imbalance via the attention
mechanism and the loss function CAFTLF in a two-stage
training process.

In CAFTFL-based classification network, we fuse the

encoded feature map E(L)i =

[
e(L)i,1 , e(L)i,2 , . . . , e(L)i,T

]⊤

into an
attention vector ẽi by the attention layer. More concretely,
we combine the feature vectors

[
e(L)i,1 , e(L)i,2 , . . . , e(L)i,T

]
via the

weighted sum:

ẽi =

T∑
t=1

αi,t ai,t , (9)

where αi,1, αi,2, . . . , αi,t denote the attention weights which
can be learned by an attention layer:

ai,t = tanh
(

We(L)i,t + b
)
,

αi,t =

exp
(

a⊤

i,t wα
)

∑T
t=1 exp

(
a⊤

i,t wα
) , (10)

where W and b are the learnable weight matrix and bias,
respectively; wα is the trainable weight vector.

Finally, the i-th feature vector ẽi passes through a fully
connected layer to yield the i-th output logit Oi , and thus the
sleep stage can be predicted via

ŷ = argmax

 ∑
i∈{3,4,5}

Oi

 , (11)

where ŷ denotes the predicted sleep stage.
In the classification network, we employ a piecewise loss

function to address the class imbalance problem of sleep
stages. The training process of SleepFC consists of two
stages. In the first stage, we utilize the standard multi-class
cross-entropy [34] as the loss function; in the second stage,
we devise the loss function CAFTLF as

LCAFTLF = −
1
S

∑
{i∈3,4,5}

S∑
s=1

K∑
k=1

wk yk
i,s log

(
ŷk

i,s

)
, (12)

wk =

 1 + µ(ys ,̂ys ) · max
(

1, log
(

S
Sk

))
, if ys ̸= ŷs

1, if ys = ŷs,

(13)

where ŷk
s denotes the predicted probability of the s-th sample

belonging to class k; S denotes the total number of samples,
and K denotes the total number of classes; wk denotes the
weight assigned to class k; Sk denotes the number of samples
belonging to class k; µ(ys ,̂ys ) is an adjustable parameter
indicating the distinctness of the class.

When training SleepFC, an early stopping technique is
employed to reduce the overfitting risk and enhance the
generalization performance. In the training process, once the
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TABLE I
DATASET CHARACTERISTICS AND EVALUATION PROTOCOLS

validation loss stops decreasing not less than a certain number
of training iterations (i.e., the early stopping patience φ1), the
first stage of training ends and the second stage of training
starts. In the second training stage, if the validation accuracy
ceases to increase not less than a certain number of training
iterations (i.e., the early stopping patience φ2), which indicates
that the trained model can no longer be improved, then the
training process ends. In the second training stage, the class
weight wk is influenced by two factors: first, the number of
samples in each class; second, the classification rate for each
class in the first training stage. So, CAFTLF can depress the
over-belief of classification network in the classification rate
while neglecting the class size, which is thereby conducive
to overcoming the imbalanced classification problem in sleep
staging. In addition, the hyperparameters for training SleepFC
will be detailed in Section III-B.

III. EXPERIMENTS

A. Datasets
We evaluate our proposed method, SleepFC, on three public

benchmark datasets: SleepEDF-20 [26], SleepEDF-78 [27],
and ISRUC-S3 [35], whose critical characteristics have been
summarized in Table I.

SleepEDF-20: SleepEDF-20 is comprised of 10 male sub-
jects and 10 female subjects aged from 25 to 34 years
old without sleep disorders. Two consecutive nights of PSG
recordings were collected from them, except that one recording
of subject 13 was lost due to device failure. Based on the
Rechtschaffen and Kales criteria [6], sleep experts manually
annotated the PSG sleep periods in 30-second sleep epochs and
categorized the sleep epochs into eight classes: MOVEMENT,
UNKNOWN, WAKE, N1, N2, N3, N4, and REM.

SleepEDF-78: SleepEDF-78 is the Sleep-EDF Expanded
dataset (version 2013), consisting of 78 healthy subjects aged
from 25 to 101. Each subject underwent two consecutive
nights of PSG sleep recordings, except for subjects 13, 36 and
52, whose one recording was lost due to device failure. Every
sleep epoch was categorized into the same eight classes as
SleepEDF-20.

ISRUC-S3: ISRUC-S3 contains the PSG recordings col-
lected from 10 healthy subjects (9 males and 1 female). The
recordings of ISRUC-S3 lasted continually for 8 hours with a
sampling frequency of 200 Hz. Each recording includes 6 EEG
channels, 1 ECG channel, 3 EMG channels, and 2 EOG
channels. According to the criteria of AASM, sleep experts
categorized these PSG signals into five sleep stages: WAKE,
N1, N2, N3, and REM.

TABLE II
EVALUATION OF FEATURE EXTRACTION METHOD FEATURE

PYRAMID IN SLEEPFC

B. Experimental Settings
For each dataset, we use one single channel of original

EEG, except for ISRUC-S3 whose signals are downsampled at
the frequency of 100 Hz. In experiments, we use the Fpz-Cz
channel of EEG from SleepEDF-20 and SleepEDF-78, and
the C4-A1 channel of EEG from ISRUC-S3 for method eval-
uation. The MOVEMENT class refers to the physical activity
during sleep. There are also the movement artifacts that cannot
be scored in both beginning and end of the recording from each
subject. These noisy parts of each recording are labeled as
UNKNOWN [36]. Because these two classes don’t represent
any specific sleep stage, we exclude them before experiments
[6], [31], [37]. Moreover, according to the AASM criteria,
we merge N3 and N4 stages into N3 for classification [6], [17],
[38], [39]. Besides, we keep 30 minutes of the WAKE periods
before and after the sleep period as the WAKE stage [40].

We follow the universally-used evaluation protocols for
method evaluation [6], [17], [22]. The evaluation protocols on
different datasets have been described in Table I. It is worth
mentioning that, in experiments, the validation set is randomly
selected from the training set, which is independent of the
testing set. Besides, we adopt three metrics to evaluate the
method performance: accuracy (ACC), macro F1-score (MF1),
and Cohen’s Kappa (κ) [6], [22], [36].

The parameter settings of SleepFC are given in the fol-
lowing. L is set as 10, which means that one current and
nine previous adjacent EEG epochs are used as the input data
of SleepFC. In each convolutional block of CFPN, for every
convolutional layer, the kernel size is set as 3, the stride size
is set as 1, and the padding size is set as 1; for every max-
pooling layer, the kernel size is set as 5, and the stride size
is set as 5. In CFPN, the output channel number dcr of the
convolutional layer is set as 128. In CSTCL, all the outputs
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TABLE III
CONFUSION MATRICES OF SLEEPFC FOR SLEEP STAGE CLASSIFICATION ON SLEEPEDF-20, SLEEPEDF-78 AND ISRUC-S3 (IN EACH

CONFUSION MATRIX, THE ROW STANDS FOR THE GROUND-TRUTH LABELS, AND THE COLUMN STANDS FOR THE PREDICTED CLASSES; THE

ABOVE VALUE INDICATES THE CLASSIFICATION RATE ON EACH CLASS, AND THE BELOW VALUE INDICATES THE NUMBER OF PREDICTED

SAMPLES IN EACH CLASS)

of SCT, TDCL and BUCL have the same channel dimension
dcr = 128. In SCT, the number of mixture models in MoS
is set as 2. In Transformer encoder, the number of heads is
set as Nh = 8, and the number of encoder layers is set as
Ne = 6. The hidden dimension of the feed-forward network
dF F is set as 128. Besides, SleepFC is trained using the Adam
optimizer [41] with η = 5 × 10−4, β1 = 0.9, β2 = 0.999, and
ϵ = 1 × 10−8. In training, the mini-batch size of SleepFC is
set as 32. To mitigate overfitting, the L2-weight regularization
with a coefficient of 1 × 10−6 is adopted for SleepFC.

On SleepEDF-20 and SleepEDF-78, SleepFC is evaluated
on the validation set every 500 training iterations (i.e., the
validation period ψ = 500); and on ISRUC-S3, SleepFC is
evaluated with ψ = 150. At the same time, the validation loss
is also monitored for early stopping. The first stage of training
focuses on minimizing the validation loss. If φ1 = 20, the
first training stage ends and the second training stage starts.
The second stage of training turns to maximize the validation
accuracy, η = 1 × 10−4 and φ2 = 10.

C. Feature Evaluation
To evaluate the performance gain brought by CFPN,

we compare the feature extraction components of SleepFC,
U-Time, XSleepNet, and SleepTransformer with and without
the feature pyramid method on SleepEDF-78. This comparison
is carried out under the condition where the subsequent
components of the feature extraction components are utilizing
Transformer Encoder and the CAFTFL-based classification
network of SleepFC.

U-Time [15] is a fully convolutional network for sleep
staging. U-Time has an encoder-decoder structure for feature
extraction, and the encoder is used for feature extraction and
the decoder for times series segmentation. In our experiments,
we only utilized the encoder component to extract EEG
features directly from the raw EEG signal.

XSleepNet [6] is a sequence-to-sequence bidirectional RNN
for sleep staging. XSleepNet is composed of two network
streams: one for processing raw signals and the other for pro-
cessing time-frequency images. In our experiments, we only
use the former stream to extract features, considering its
suitability for EEG.

AttnSleep [17] is an attention-based deep learning approach
for sleep staging using single-channel EEG. The feature

extraction component of AttnSleep is a multi-resolution
convolutional neural network (MRCNN), which is bifur-
cated into two distinct branches. The low-resolution branch
extracts low-frequency features, and the high-resolution
branch extracts high-frequency features. The features from
the two branches are then concatenated as the extracted
features.

From Table II, we can see that, with feature pyramid, the
overall ACC, MF1, and κ performances of all the evaluated
methods consistently rise. These results not only validate the
competency of CFPN in SleepFC, but also verify the compat-
ibility of feature pyramid with all the compared networks for
sleep staging.

D. Method Comparison
Table III has visualized the confusion matrices of SleepFC

for sleep stage classification on SleepEDF-20, SleepEDF-78
and ISRUC-S3. From these confusion matrices, we can
observe that the class imbalance problem has a big influence
on the performance of SleepFC. Specifically, it is indeed the
easiest case to identify the sleep stage W, which belongs to
the majority class in the long-tailed distribution, on all the
datasets, while, it is also the hardest case to classify the sleep
stage N1, which belongs to the minority one at the other end
of such a class distribution.

Moreover, we compare our proposed SleepFC with the
state-of-the-art approaches in Table IV. We directly report the
results of the methods with the input setting of L = 10 in their
original papers, including IITNet [21] and SleepEEGNet [13].
For those methods having a different setting of L , we also
evaluate them based on the input data of L = 10 for fairness.
In particular, we implement AttnSleep [17], Multi-Task CNN
[42], TinySleepNet [37], XSleepNet [6] and U-Time [15] using
public-available codes, and reproduce DeepSleepNet [36],
ResnetLSTM [43], SleepFCN [44], Single-Stream XSleepNet
[6], SleepTransformer [22], TSA-Net [39], MNN [20] and
SeqSleepNet [10] by ourselves.

From Table IV, we can see that SleepFC performs the best
for sleep staging in terms of ACC, MF1 and κ on the whole.
In greater detail, SleepFC achieves the remarkable F1-Scores
performances on N1, N2 and REM. Besides, the results of
SleepFC on WAKE and N3 are also relatively encouraging.
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TABLE IV
COMPARISON OF SLEEPFC WITH RELATED STATE-OF-THE-ARTS FOR SLEEP STAGING

Actually, the sleep stage N1 is a challenging minority class,
which only accounts for 5% − 15% of the total sleep time.
Even so, SleepFC still obtains a relatively high F1-score on
N1. These results readily demonstrate the ability of SleepFC
to deal with the class imbalance problem in sleep staging.

Furthermore, we measure the model size of SleepFC in
Table V. Although the performance advantage of SleepFC

over XSleepNet is not so obvious as the compared approaches,
yet SleepFC has smaller parameter amount and requires fewer
EEG epochs.

E. Model Ablation
We carry out ablation study to validate the rationality

and effectivity of the key components CFPN, CSTCL and



LI et al.: SleepFC: FEATURE PYRAMID AND CROSS-SCALE CONTEXT LEARNING FOR SLEEP STAGING 2205

Fig. 2. Ablation of SleepFC on SleepEDF-20.

TABLE V
MODEL SIZE OF SLEEPFC

CAFTLF in SleepFC on SleepEDF-20. The following four
experiments are conducted:

1) Ablation on CFPN: CFPN and CAFTLF-disabled clas-
sification network with the first training stage.

2) Ablation on CFPN+CAFTLF: CFPN and
CAFTLF-based classification network with the two-stage
training.

3) Ablation on CFPN+CSTCL: CFPN, CSTCL and
CAFTLF-disabled classification network with the first training
stage.

4) Ablation on CFPN+CSTCL+CAFTLF: CFPN,
CSTCL and CAFTLF-based classification network with the
two-stage training, i.e., SleepFC.

From Fig. 2, we can see that CSTCL avails SleepFC of
capturing the informative multi-scale transition rules between
sleep stages, thus boosting the performance of SleepFC. These
results reveal the value of this context learning component
in SleepFC for sleep staging. By comparing CFPN and
CFPN+CAFTLF as well as comparing CFPN+CAFTLF and
CFPN+CSTCL+CAFTLF, we can find that CAFTLF-based
classification network not only can enhance the overall ACC,
MF1, and κ performances of SleepFC, but also can signif-
icantly improve its F1-Score for N1 classification in spite
of the severe class imbalance problem. Such results confirm
that CAFTLF enables SleepFC to attach importance to the
minority class but without compromising its performance on
the majority classes.

F. Sensitivity Analysis
1) Evaluation on the Number of EEG Epochs: We evaluate

the influence of the number of EEG epochs, denoted as L ,
on the performance of SleepFC, by adjusting L as 1, 2, 5,
10 and 20. Our results under three different evaluation metrics,
as illustrated in Fig. 3, reveal that SleepFC achieves its peak
performance on SleepEDF-20, SleepEDF-78 and ISRUC-S3
when L is set as 10. By contrast, both increase and decrease
of L result in a performance decline of SleepFC. This is
mainly because the lower values of L cannot offer sufficient

Fig. 3. Evaluation on the number of EEG epochs as the input for
SleepFC using SleepEDF-20, SleepEDF-78 and ISRUC-S3: (a) the
results of SleepFC under ACC; (b) the results of SleepFC under MF1;
(c) the results of SleepFC under κ.

temporal context information for CSTCL of SleepFC to learn
discriminative feature maps

{
E(L)3 ,E(L)4 ,E(L)5

}
from the fea-

ture pyramid, while the higher values of L will involve much
redundant and noisy information to harm the discriminability
of learned feature maps

{
E(L)3 ,E(L)4 ,E(L)5

}
. As a compromise,

L = 10 is the relatively best choice for SleepFC.
2) Evaluation on the Convolution Kernel Size of CFPN: We

evaluate the influence of the convolution kernel size of CFPN,
denoted as K , on the performance of SleepFC, by adjusting
K from 1 to 9. By observing the results of SleepFC under
three different evaluation metrics on ISRUC-S3 in Fig. 4,
we can find that the performance of SleepFC fluctuates with
the increase of K , resulting in more than one peak. The reason
to explain this phenomenon is as follows. For a sleep stage,
the larger convolution kernel size enables CFPN to encode the
rich and varied information, thus being beneficial for CFPN to
learn more robust features at the expense of discriminability;
the smaller convolution kernel size enables CFPN to encode
the detailed and typical information, thus being conducive
to CFPN to learn more discriminative features at the cost
of robustness. To ensure a good generalization performance,
CFPN should balance both discriminability and robustness
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Fig. 4. Evaluation on the convolution kernel size of CFPN in SleepFC
using ISRUC-S3: (a) the results of SleepFC under ACC; (b) the results of
SleepFC under MF1; (c) the results of SleepFC under κ; (d) the number
of parameters in SleepFC with different size of convolution kernels.

in feature learning. Moreover, the signal data in different
sleep stages have different characteristics, commensurate with
different kernel sizes of CFPN to learn the features with
the strongest generalizability. Therefore, SleepFC exhibits a
fluctuating performance as K increases. However, as shown
in Fig. 4(d), the larger kernel size also means the more
model parameters and computational complexity of SleepFC.
Considering this, we recommend K = 3 for SleepFC, because
this is the smallest kernel size for SleepFC to obtain the
relatively highest ACC, MF1, and κ .

3) Evaluation on the Concatenation Order of Feature
Maps: We evaluate the concatenation order of feature
maps on ISRUC-S3, including [F̃(L)(5,i),F(L)i , F̃(L)(4,i), F̃(L)(3,i)],
[F(L)i , F̃(L)(5,i), F̃(L)(3,i), F̃(L)(4,i)], [F(L)i , F̃(L)(3,i), F̃(L)(4,i), F̃(L)(5,i)],
[F̃(L)(3,i),F(L)i , F̃(L)(4,i), F̃(L)(5,i)], [F(L)i , F̃(L)(3,i), F̃(L)(5,i), F̃(L)(4,i)], and
[F(L)i , F̃(L)(5,i), F̃(L)(4,i), F̃(L)(3,i)]. From Fig. 5, we can see that the
concatenation order of feature maps has nearly no influence
on the performance of SleepFC under different evaluation
metrics on ISRUC-S3. Generally, the concatenation order of
feature maps in deep learning will affect the classification
performance, so long as the downstream layers learn the deep
representation relying on the position of concatenated feature
maps [45], [46], [47]. Nevertheless, SleepFC concatenates
the four feature maps along the channel dimension instead of
the temporal dimension, so the concatenation order has no
impact on the process of temporal feature learning. Actually,
the minor performance variation of SleepFC for different
feature map concatenation is mainly caused by the random
initialization of convolution layers after concatenation, which
is inevitable and negligible in applications.

Fig. 5. Evaluation on the in SleepFC using ISRUC-S3: (a) the results
of SleepFC under ACC; (b) the results of SleepFC under MF1; (c) the
results of SleepFC under κ.

4) Evaluation on the Scale of Learned Representation: We
evaluate the effectivity of each scale of learned representa-
tion output from SleepFC on ISRUC-S3. For convenience,
we denote the three scales of learn representations as O3, O4,
and O5, which correspond to the output logits of SleepFC,
as shown in Fig. 1(c). As reported in Table VI, the results
exhibit the performance enhancement of SleepFC with the
increment of learned representation scales; when all the three
scales of representations O3, O4 and O5 are used together,
SleepFC performs the best. Such results validate the effec-
tiveness of the multi-scale representations learned by SleepFC
for sleep staging. Further, we can observe the contribution
of different scales of learned representations to sleep stage
prediction. In greater detail, O3 is especially effective to
classify the WAKE and N3 stages, and O4 is particularly
effective to classify the N1 stage, while O5 is effective for
classifying all the sleep stages on the whole without special
superiority in any class. Since different scales of learned
representations have different classification advantages, com-
bining these representations together, as done by SleepFC, can
well integrate their advantages and hence achieves the best
performance for sleep staging.

G. Significance Test
We evaluate the statistical significance of the performance

improvement of SleepFC over the three related advanced meth-
ods AttnSleep, DeepSleepNet, and XSleepNet by means of the
paired Wilcoxon signed-rank test. To be specific, we assess the
p-values for ACC improvement, MF1 improvement, and κ

improvement of SleepFC in comparison to the three methods.
To this end, we set the null hypothesis H0 as follows: the
performance difference between SleepFC and each compared
model in the control group is not significant; if the p-value is
less than 0.05, H0 will be rejected. In statistical significance
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TABLE VI
EVALUATION ON THE SCALE OF LEARNED REPRESENTATION OUTPUT FROM SLEEPFC

TABLE VII
STATISTICAL SIGNIFICANCE TESTS ON THE PERFORMANCE IMPROVEMENT OF SLEEPFC

tests, all the methods adopt the same input of EEG epochs
with L = 10.

As recorded in Table VII, in almost all the cases, SleepFC
has obvious performance improvements over the compared
approaches, and the p-values for these improvements are
much lower than the significance level of 0.05. Such results
straightforwardly evidence the statistical significance of the
performance superiority of SleepFC for the task of sleep
staging.

IV. CONCLUSION

In this paper, we have proposed a novel method SleepFC for
the issue of single-EEG-based sleep staging. SleepFC not only
can effectively extract and fuse the representative features from
the salient waves of EEG epochs, but can learn and capture
the informative multi-scale sleep transition rules among sleep
stages, and also can competently tackle the serious class imbal-
ance problem ever haunting this issue. Experimental results
on three public benchmark datasets have demonstrated the
superiority of proposed method over the related state-of-the-
arts. In future, we will tentatively incorporate an appropriate
transfer learning strategy into SleepFC to handle the thorny
problem of cross-subject domain gap, so as to further enhance
the performance of our model for this issue.
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