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Abstract— Bimanual coordination is important for devel-
oping a natural motor brain-computer interface (BCI) from
electroencephalogram (EEG) signals, covering the aspects
of bilateral arm training for rehabilitation, bimanual coor-
dination for daily-life assistance, and also improving the
multidimensional control of BCIs. For the same task tar-
gets of both hands, simultaneous and sequential bimanual
movements are two different bimanual coordination man-
ners. Planning and performing motor sequences are the
fundamental abilities of humans, and it is more natural to
execute sequential movements compared to simultaneous
movements in many complex tasks. However, to date, for
these two different manners in which two hands coor-
dinated to reach the same task targets, the differences
in the neural correlate and also the feasibility of move-
ment discrimination have not been explored. In this study,
we aimed to investigate these two issues based on a biman-
ual reaching task for the first time. Finally, neural correlates
in the view of the movement-related cortical potentials,
event-related oscillations, and source imaging showed
unique neural encoding patterns of sequential movements.
Besides, for the same task targets of both hands, the
simultaneous and sequential bimanual movements were
successfully discriminated in both pre-movement and
movement execution periods. This study revealed the neu-
ral encoding patterns of sequential bimanual movements
and presented its values in developing a more natural and
good-performance motor BCI.

Index Terms— Brain-computer interface (BCI), elec-
troencephalogram (EEG), bimanual movements, motor
sequence.
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I. INTRODUCTION

MOTOR rehabilitation and assistance are two vital
aspects for individuals with motor deficits [1]. Motor

rehabilitation training acts to restore impaired motor abili-
ties via recovering injured brain functions or reorganizing
brain function networks utilizing residual functions [2]. Motor
assistance of daily life (ADL) can improve individuals’ life
independence by assisting motor functions in terms of degrees
of freedom, range, and strength. For both motor rehabilitation
and assistance, involving the individuals in an active way
according to their motor intentions can benefit in enhancing
neuroplasticity and allowing more usable and natural con-
trols of peripheral devices. To decipher movement intentions,
the non-invasive electroencephalography-based (EEG-based)
brain-computer interface (BCI) is a promising tool [3]. It can
detect motor intentions from scalp signals directly relying on
the changes of motor-related potentials and oscillations [4].

Among EEG-based motor-BCIs, instead of inducing
motor-related neural modulations based on repetitive visual
or kinesthetic motor imagination (MI) [5], translating neural
information associated with motor execution (ME) or motor
attempt (MA) as control commands is a more intuitive and
natural way, e.g., hand open-and-close attempts of the affected
limb to control robotic hand for neuro-rehabilitation [6], and
reach-and-grasp movements to control prosthetic limbs for
ADL [7]. Prior studies have shown that the brain motor cortex
encodes movement information of both unilateral and bilateral
movements of limbs. For decades, discriminating unilateral
movements, such as center-our reaching task [8], [9], has been
well-explored. Brain activation patterns of different unilateral
movements of limbs are characterized for neurophysiological
visualization and interpretation, e.g., motor-related cortical
potentials (MRCPs), event-related desynchronization or syn-
chronization (ERD/S), brain connectivity network, etc. The
decoded movement commands are used to control exoskele-
ton [10], prostheses [11], orthosis devices [12], and robotic
gloves [6] for a reliable human-machine interaction. Impres-
sive neuro-motor rehabilitation effects of affected limbs are
observed in post-stroke patients [13].

Besides unilateral-limb movements’ decoding, discriminat-
ing bilateral-limb movements from EEG signals is of great
value, which mainly lies in three aspects. First, previous
studies reported the positive motor recovery effects and
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neuroplastic benefits of bilateral arm training (BAT) over
hemiplegic patients [14]. For symmetric BAT, the patients are
required to perform consistent actions using both unaffected
and affected limbs for synchronous training, e.g., raising both
arms, and grabbing with both hands, and for asymmetric BAT,
the patients are required to perform inconsistent actions for
coordination training, e.g., tying a knot and zipping. Simulta-
neous bilateral motor activities can enhance neural activation
of the ipsilesional hemisphere and alleviate interhemispheric
inhibition. Second, bilateral coordinating movements of both
arms and hands are necessary for activities in daily life [15],
such as dressing and undressing, and twisting the lid off
the bottle. Third, compared to increasing movement types
of unilateral limb, involving bilateral-limb movements to be
discriminated from unilateral movements can improve multi-
dimensional control and meanwhile maintain well decoding
performance, which can be attributed to the distinct brain
activation patterns of unilateral and bilateral movements [16].

In recent years, several studies have turned attention to
the simultaneous bilateral movements’ decoding from EEG
signals, including bimanual center-out movements [17], [18],
bimanual reach-and-grasp movements [15], and bimanual
cyclical tasks [19]. Actually, humans can perform tasks with
two hands either simultaneously or sequentially. Though some
tasks can be performed by two hands simultaneously, many
natural tasks involve a sequence of bilateral movements. For
example, if the patients want to pour water into a cup to drink,
they would complete the tasks of pouring water into the cup,
lifting the cup, and drinking water in sequence, instead of
completing them concurrently. Planning and executing com-
plex sequential movements is a fundamental motor-process
ability of the human brain, and this motor skill requires the
elaborate organization of serially ordered motor elements. For
a motor sequence, our brain plans the full sequence as a task
set before execution and holds it in working memory, rather
than plans the next motor element separately after the last one
is done [20].

Some previous studies have paid attentions to the EEG
patterns and decoding of sequential movements. Yi et al. [21]
designed a MI paradigm involving motor sequences of com-
pound limbs to improve MI-BCI performance. Results showed
that there were significantly larger ERD during imagination
of multi-limb motor sequences than that of single limb.
Seeber et al. [22] investigated the temporal relation between
EEG oscillations and rhythmic finger-sequence movements.
Phase-related amplitude modulations were observed during
rhythmic finger movements, and large-scale networks were
separated to research cortical sensorimotor system. To improve
ERD during MI and classification accuracy, Bian et al. [23]
introduced a MI paradigm of complex motor tasks (playing
part of a piano tune) with dynamic video guidance. Though
these studies showed the neural patterns of motor sequences
and the feasibility to decode them, bimanual sequential coor-
dination movements are not considered. Comparing the neural
patterns of bimanual sequential movements with other biman-
ual coordination movements and research the feasibility to
discriminate them from EEG signals would contribute to the
bimanual motor-BCIs.

Supposing there are two reaching targets for two hands,
a person can reach them either simultaneously or sequentially.
However, the differences in brain activation patterns between
the simultaneous and sequential bimanual movements remain
unclear. In addition, considering that the brain can plan
the simultaneous and sequential bimanual movements before
motor initiation, whether it is feasible to discriminate the
planned bimanual movements from the working memory needs
to be explored. Here, we aim to investigate the neural corre-
lating and movement decoding of simultaneous-and-sequential
bimanual movements based on a bimanual reaching task for
the first time. The findings surprisingly revealed the unique
motor-related neural encoding patterns of sequential bimanual
movements compared to simultaneous bimanual movements.
Furthermore, the simultaneous and sequential bimanual move-
ments were successfully discriminated in the pre-movement
period. This study is ponderable for developing a more natu-
ral motor-BCI involving sequential bimanual movements and
can facilitate the motor-BCI to be applied in both bilateral
neuro-rehabilitation training and daily-life assistance.

II. METHODS

A. Participants
Nine right-handed healthy subjects (4 women and 5 men;

mean age 24 years) participated in the experiment. This study
was conducted at the Beijing Institute of Technology, Beijing,
China, and it was approved by the Local Ethics Committee
of the Beijing Institute of Technology (approval number:
BIT-EC-H-2023016). All subjects were informed of the con-
sent form before the experiment, and the experiment adhered
to the Declaration of Helsinki.

B. Experimental Procedure
The experimental paradigm is illustrated in Fig. 1 (a).

During the experiments, the subjects were seated in a
comfortable chair with both hands put on a table. The
experiment includes 5 blocks of the unimanual, simultane-
ous bimanual, and sequential bimanual horizontally outward
reaching movements. For the unimanual movements, the
subjects were required to move their left or right hand in
horizontally-outward directions (left or right) while keep-
ing the opposite hand still. For the simultaneous bimanual
movements, the subjects were required to move both left
and right hands outwards simultaneously. For the sequential
bimanual movements, the subjects were required to execute
a sequence of left hand first and then right hand movement,
or vice versa. For each sequence, when the first movement
element was completed, the second movement element had to
be executed as soon as possible. The experiment contained
5 blocks corresponding to 5 different movement types, and
each block consisted of 8 runs. There were 10 trials in each
run. Therefore, we could collect 80 trials for each movement
type. Different runs of different blocks were conducted ran-
domly for order balance.

The timeline of one trial is depicted in Fig. 1 (b). For
each trial, it lasts for 14 s, including 3 s for rest, 3 s for
movement preparation, 4 s for movement execution, and 4 s
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for relaxation. When one trial started, there was nothing on the
screen. At the third second, one arrow with a dotted line is
shown on the screen, indicating the hand and its movement
direction to be executed. At the sixth second, one arrow
with a solid line is shown, indicating the subjects to execute
the movements immediately. The red and blue colors of the
arrows correspond to the left and right hands, respectively.
For the unimanual movements, a single arrow appears. For
the simultaneous bimanual movements, two arrows appear at
the same time. For the sequential bimanual movements, two
arrows appear sequentially with an interval of 500 ms. Noting
that the sequential arrows only appear for the preparation cue,
and they also appear simultaneously for the go cue to ensure
that the sequential information is only encoded in the working
memory period. During the experiment, the subjects could take
a rest whenever they requested.

C. Data Collection and Preprocessing
EEG data were recorded using a 64-channel amplifier

(Neuracle, China) sampled to 1000 Hz. Thirty-two electrodes
were mounted according to the 5% international 10/20 EEG
system (see Fig. 1(C)). Two extra electrooculogram (EOG)
electrodes were positioned at the outer canthi of both eyes.
Electrode impedances were kept below 5 k�. Each position
sensor (Fastrack) was fixed to one hand to collect its position
in three-dimension space at a sampling rate of 50 Hz.

After data was collected, position data was filtered using
a 4-order Butterworth filter at a band of [0.02 4] Hz to
remove noise caused by the tremors of hands. The movement
onset points of each trial were labeled by the velocity of
hand movement with a threshold of 1 cm/s. The movement
onset was used to align the EEG signals. EEG signals were
down-sampled to 100 Hz. Baseline correction with the sliding
window was applied to suppress drift. Independent component
analysis (ICA) was used to reject independent components
whose correlation coefficient with EOG signals was above 0.4.
Artifact subspace reconstruction (ASR) was applied to remove
large-amplitude movement artifacts. Common average refer-
ence filter was applied to eliminate the common background
noise. After that, the EEG data flow was segmented into
trials with [−6, 6] s of movement onset, and the trials whose
amplitude exceeds the threshold of ±100 µV were rejected.
Since electromyogram (EMG) artifacts are mainly in band of
20-300 Hz, and we mainly focused on the low-frequency band
of EEG signals, no more EMG artifacts were corrected.

D. Neural Correlating
1) Movement-Related Cortical Potentials (MRCPs): The

MRCPs were plotted to inspect the motor-related signal poten-
tials in the low-frequency temporal band. In this work, we first
extracted the low-frequency temporal components from each
trial using a 4th-order [0.01, 4] Hz Butterworth filter and then
averaged all trials of each movement type across all subjects.

2) Event-Related Spectral Perturbation (ERSP): To compare
the task-related spectral power changes, the ERSP was used
to map event-related power desynchronization/synchronization
in the time-frequency domain. The changes of ERSP across

trials were computed as follows:

E RS P(t, f, c) =
1
N

N∑
n=1

|T F Rn(t, f, c)|2, (1)

where T F Rn(t, f, c) denotes the spectral power estimation of
the nth trial at time t , frequency f , and electrode c. N is
the number of trials of each movement type. The ERSP was
baseline-normalized to the period of (−6, −4.5) s during rest,
and mapped in the frequency band of [0, 40] Hz. In this work,
the spectral perturbation was estimated by using newtimef
function of EEGLAB toolbox in MATLAB [24].

3) EEG Source Analysis: To observe the brain activation
patterns in the source space, we mapped the EEG data from
the sensor level to the source level by using the source imaging
technique. We first established a forward head model to obtain
the propagation patterns of electrical fields from the cortex
to the scalp. The head model was established by co-registering
the ICBM152 boundary element model (BEM) with recorded
EEG electrodes using open source software Brainstorm. The
conductivities of the scalp, skull, and brain layers of BEM
were set to be 1, 0.0125, and 1, respectively. The forward
model was estimated using OpenMEEG BEM [25] in the
source space of the cortex surface. Then, we computed the
inverse estimation of brain sources using sLORETA with
unconstrained dipole orientations and the minimum norm
imaging method [26].

E. Movements’ Decoding
To decode movements while keeping the decoding models

with good interpretability, we applied a discriminant manifold
learning method for feature dimension reduction and used the
linear discrimination analysis (LDA) for classification. First,
the features of MRCPs were extracted as input. Then, the low-
dimensional sub-manifold was built using a nearest neighbor
graph embedding to reduce the feature dimension. Finally,
LDA was applied to discriminate sub-manifold feature maps
for movement decoding.

To extract MRCP information, we selected the temporal
amplitudes from the low-frequency band of [0.01, 4] Hz and
32 electrodes as features. The length of decoding window
was 1 s and the sampling rate was 100 Hz. For each trial,
the amplitudes were reshaped into a one-dimensional feature
vector (100 × 32).

To reduce the feature dimension, we introduced the locality
sensitive discriminant analysis (LSDA) method, which could
discover the intrinsic geometrical structure of the underlying
data manifold [27]. The work by Lin et al. [28] showed
the superiority of LSDA in decoding performance. Besides,
as a manifold-leaning method, LSDA could discover the
intrinsic geometrical structure of the underlying data manifold
and also has the advantages of interpretability and simple
computation. Thus, in this work, we applied LSDA to reduce
the feature dimension to 50. Given the EEG data sample
X = {xi }

N
i=1 ∈ RN×M , where N is the number of samples,

and M is the number of feature points, it is supposed that
there is an underlying sub-manifold L of data. The local
geometrical structure of sub-manifold L can be modeled by a
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Fig. 1. Illustration of (a) experimental paradigm of different movement tasks and the hand movements’ trajectories illustrations. Among these, L
corresponds to the experiment block of moving the unimanual left hand, R corresponds to moving the unimanual right hand, L&R corresponds
to moving bimanual hands simultaneously, L-R corresponds to moving the left hand first and then moving the right hand sequentially, and R-L
corresponds to moving right hand first and then moving left hand sequentially, (b) timeline setup, (c) EEG channel locations, and behavior analysis
of (d) movement duration time and (e) motor element interval time of movement sequence.

nearest-neighbor graph G with the weight matrix W ∈ RN×N .
W represents the affinity of edge joining vertices xi and x j as
in (2).

Wi j =

{
1,

0,

if xi ∈ N (x j )or x j ∈ N (xi )

otherwise (2)

xi ∈ N (x j ) represents xi is in the set of k nearest neighbors
of x j . LSDA constructs both a within-class graph Gw and
a between-class graph Gb to discover both geometrical and
discriminant structures of data. Thus, for each data, the neigh-
bor set N (xi ) contains the subsets Nw(xi ) and Nb(xi ). The
weight matrices of Gw and Gb are Ww and Wb, respectively,
and W = Ww + Wb.

The objective of sub-manifold mapping is to keep the
within-class points of Gw closer and the between-class points
of Gb farther. Let y = [y1, y2, · · · , yN ]

T be such a map, and
the objective functions can be written as follows:

min
∑
i, j

(yi − y j )
2WW i, j (3)

max
∑
i, j

(yi − y j )
2Wbi, j (4)

Supposing the projection yT
= aTX, the objective func-

tions (3) and (4) can be solved as optimal embedding as
follows:

X(αLb + (1 − α)Ww)XTa = λXDwXTa (5)

xi → yi = ATxi , (6)

i.e., we aim to find a projection matrix A giving the maxi-
mum eigenvalue solution to (5). The projection matrix A =

[a1, a2, · · · , ad ], corresponding to the first d largest eigenval-
ues, λ1 > λ2 > · · · > λd . In (5), α ∈ [0, 1] is a penalty
factor between the within-class and between-class projection,
Lb = Db − Wb is the Laplacian matrix of Gb, where Db is the
column sum of Wb, and Dw is the column sum of Ww.

After features mapped into a low-dimensional sub-manifold,
we applied the LDA classifier for movement decoding.
Five nearest neighbors were set for manifold learning.
The classification performance was evaluated using 10 × 5
cross-validation.

III. RESULTS

A. Behavior Analysis
To unify the neural correlating results with motor behavior,

we analyzed the movement duration time for the unimanual,
simultaneous bimanual and sequential bimanual movements,
and also analyzed the movement interval time between the
ending of the first motor element and the start of the sec-
ond motor element for the sequential bimanual movements,
as illustrated in Fig. 1 (d) and (e). For the unimanual and
simultaneous bimanual movements, the movement duration
time of two hands was similar, and for the sequential bimanual
movements, the movement duration time of the first motor
element was shorter than that of the second one, though not
significant (Wilcoxon signed-rank test). Besides, the move-
ment intervals of L-R and R-L motor sequences were 0.2181±

0.1371 s and 0.2382± 0.1253 s, respectively. Thus, we could
obtain the movement onset time points of the second motor
element of the sequence were 0.8125 s and 0.8233 s, respec-
tively, which could be associated with the neural correlating
results in the subsequent sections.
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Fig. 2. (a) The movement-related cortical potential (MRCP) plots associated with five movement types. The MRCPs are averaged across all
subjects, and the shadows correspond to the deviations. Time 0 s represents the movement onset. (b) The averaged brain activation patterns in
source space associated with five movement types. The source-space images are plotted from the top projection view.

Fig. 3. The time-frequency plots of event-related spectral perturbation (ERSP) for the unimanual, simultaneous bimanual, and sequential bimanual
movements.

B. Movement-Related Cortical Potentials (MRCPs)
Fig. 2 (a) depicts the MRCPs in FC1, FCz, and FC2 elec-

trodes under five movement conditions from −2 to 2 s of
movement onset. It should be noted that for the sequential
movements, the movement onset was calibrated to the first
motor sequence element. The MRCPs were plotted at FC1,
FCz, and FC2 electrodes because the MRCPs in these chan-
nels showed more standard modalities. The MRCPs were
averaged across all trials and all subjects, and the shadows
corresponded to the deviations across subjects. For all MRCPs,
the amplitudes kept steady with a slight negative offset during
movement preparation and showed an obvious negative offset
before ∼200 ms of movement onset and a positive rebound
after movement finished. The negative offsets peaked just

after the movement onset and were most prominent in FCz
electrode.

For the unimanual movements, contralateral effects were
observed with larger negative offsets in the contralateral hemi-
spheres. For the simultaneous bimanual movement, similar
negative offsets in bilateral hemispheres were observed. For
the sequential bimanual movements, two sequential negative
offsets were observed in the contralateral hemisphere of the
second motor sequence elements. The negative peaking time
of two sequential offsets was in accordance with the movement
onset time of two motor elements (according to Fig. 1 (d)
and (e)). Wilcoxon signed-rank test showed that there were sig-
nificant differences of MRCPs between simultaneous bimanual
movement (L&R) and sequential bimanual movement (L-R)
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at electrode FC1 in [0, 2] s, and also significant differences
of MRCPs between simultaneous bimanual movement (L&R)
and sequential bimanual movement (R-L) at electrode FC2 in
[0, 2] s.

C. EEG Source Images
Fig. 2 (b) presents the brain activation patterns in the source

space under different movement conditions. It could be seen
that, for all movements, the brain activations were centered
on the primary motor cortex, somatosensory cortex, premotor
area, and supplementary motor area. For the unimanual move-
ments, stronger activations can be observed in the contralateral
hemispheres of motor limbs. Comparing the simultaneous
and sequential bimanual movements, we could find that the
activations of simultaneous movements were stronger after
movement onset, and the activations of sequential movements
lasted longer. Besides, the contralateral effects could also be
observed for the sequential bimanual movements.

D. Event-Related Oscillations
Fig. 3 shows the time-frequency plots of unimanual, simul-

taneous bimanual, and sequential bimanual movements. For all
movements, a spectral power decrease before movement onset
and a power increase after movement onset were observed in
the low-frequency band. Compared with the unimanual and
simultaneous bimanual movements, two serial low-frequency
power increments were observed for the sequential biman-
ual movements, which were related to the motor sequence.
Wilcoxon signed-rank test showed that, for the power sum
in the frequency band of [0.01, 4] Hz, there were significant
differences between simultaneous bimanual movement and
sequential bimanual movement at Electrode Cz in [0, 2] s. The
power increment in the low-frequency band could be related
to the amplitude’s offsets in time domain, and according to
Parseval’s theorem, the signals’ energy in the time domain
is equal to that in the frequency domain. Thus, the first
power increment in [0, 1] s could be related to the negative
offset of movement initiation, as shown in Fig. 2(a) and
the second power increment in [1, 2] s could be related to
the positive rebound of rest after movement, as shown in
Fig. 2(a). Besides, in the alpha band, an obvious event-related
desynchronization (ERD) showed for all movements, and it
was more prominent and lasted longer time for the sequential
bimanual movements compared to others.

E. Discriminating Simultaneous-and-Sequential
Bimanual Movements

For both simultaneous and sequential bimanual movements
in our experiment, the movement targets of both hands were
the same. They represented different ways in which two
hands coordinated to reach the same task targets, i.e., left
and right hands moving simultaneously (L&R), left and right
hands moving sequentially (L-R), and right and left hands
moving sequentially (R-L). Thus, we aimed to explore whether
the simultaneous and sequential bimanual movements for
the same targets could be discriminated against. Fig. 4 (a)
gives the continuous decoding results of simultaneous and

sequential bimanual movements using the sliding windows in
the pre-movement period and the movement execution period.
The decoding windows were shifted from −5 s to −0.5 s
in the pre-movement period and from −0.5 s to 3 s in the
movement execution period. The length of the window was 1 s,
and the step size of the window shift was 0.1 s. Each time point
corresponds to the center point of each window. The decoding
results were averaged across all subjects. In the pre-movement
period, the decoding performance raised from the chance level
(0.33 for three-class classification), peaked at around -2.6 s
with an accuracy of 50.7%, and then gradually decreased.
Similarly, in the movement execution period, the decoding
accuracy rose and peaked at 0.5 s with an accuracy of 68.7%.
It showed the feasibility of discriminating the simultaneous
and sequential bimanual movements both before and after
movement onset. Further discussions on the decoding results
were given in Section IV.

F. Sequential Movements’ Sets and Elements
Planning and executing complex motor skills need the

well-organization of motor elements. The sequential bimanual
movements in our experiment contained two sequential motor
elements of unimanual movements. It meant that the sequential
bimanual movement set was comprised of unimanual move-
ment elements, and in the first stage of sequential bimanual
movements (L-R and R-L), the motor execution was similar to
that of unimanual movements (L and R). Thus, in this section,
we aimed to discuss the relationships between the sequential
movement sets and elements by comparing the decoding per-
formance between them and also testing the decoding models’
generalization ability between them.

Fig. 4 (b) presents the continuous decoding performance
comparisons between the unimanual movements (L and R)
and the sequential bimanual movements (L-R and R-L) in
the pre-movement and movement execution periods. It could
be seen that, overall, the binary classification of sequen-
tial movements showed better performance, especially in the
pre-movement period. In the pre-movement period, the clas-
sification of sequential movements peaked at −2.6 s with
an accuracy of 70.7%, and the classification of unimanual
movements peaked at −2.7 s with an accuracy of 61.3%. In the
movement execution period, the classification of sequential
movements peaked at 0.5 s with an accuracy of 84.7%, and the
classification of unimanual movements peaked at 0.4 s with
an accuracy of 81.0%.

Besides, considering the first elements of sequential
bimanual movement subsets were the same as unimanual
movements, we tested the generalization ability of the mod-
els established based on these two motor tasks. For each
decoding window, the decoding model trained from the data
of unimanual tasks was tested using the data of sequential
bimanual tasks, and vice versa. There generalization test from
unimanual tasks to sequential bimanual tasks was named GT1
and the opposite generalization test was named GT2. Fig. 4 (c)
shows the generalization performance comparisons of the two
models. For both models, they showed above-chance-level
generalization performance in both pre-movement and motor
execution periods. This implied that the unimanual movements
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and sequential bimanual movements contained similar motor
information, which had been learned by the training models.
Besides, in the movement execution period, better generaliza-
tion performance was obtained for GT1, which suggested the
training models established based on unimanual tasks could
generalize to sequential bimanual movements better.

G. Visualization of Manifold Learning

For the decoding model, we applied the LSDA method to
discover the intrinsic geometrical structure of the underlying
data manifold for feature dimension reduction. Specifically,
we aimed to find a sub-manifold mapping y that could keep
the within-class points closer and the between-class points far-
ther. To visualize the effectiveness of sub-manifold mapping,
we plotted the projected features’ scatter plot of one subject
using a projection matrix A with the first two eigenvalues,
as shown in Fig. 4 (d). It could be seen that the LSDA found a
projection mapping in which the within-class points kept close
and the between-class points kept away, especially for the
binary classification. Besides, the topographic plots of aver-
aged projection matrixes are presented in Fig. 4 (e). It could
be seen that the electrodes in the central, frontal-central,
and parietal-central areas were most weighted, related to the
cognition of motor task, motor planning and motor execution,
indicating the effectiveness of the manifold learning-based
feature extraction method.

IV. DISCUSSIONS AND CONCLUSION

Previous studies have explored bimanual motor BCIs
based on EEG signals, including motor tasks of simultane-
ous bimanual reaching movements, bimanual reach-and-grasp
movements, and bimanual motor imagination. However, few
studies have focused on the neural correlate and movement
decoding of simultaneous-and-sequential bimanual move-
ments. For the same bimanual movement tasks, besides
reaching targets using both hands simultaneously, planning
and performing motor tasks into sequential motor elements
are more natural. Since the reaching targets for both hands
can be reached simultaneously or sequentially, the difference
in the motor encoding patterns of these two different motor
behaviors and whether it is feasible to discriminate them from
EEG signals need to be explored.

In this study, we designed an experiment including the
unimanual, simultaneous bimanual, and sequential bimanual
movements. Neural correlates in the view of the MRCPs,
event-related oscillations, and source imaging were done, and
a manifold learning-based method was applied for movement
decoding. Experimental results suggested unique neural encod-
ing patterns of sequential movements compared to unimanual
and simultaneous bimanual movements, especially in low fre-
quency. The simultaneous and sequential bimanual movements
were discriminated, and the decoding showed good perfor-
mance in the pre-movement period, which could be associated
with more brain source allocations for the working memory
encoding of the motor sequence. Besides, the relationships
between motor sequence subsets and elements were discussed.

A. Encoding of Sequential Bimanual Movements
Bimanual coordination is a fundamental motor skill of

humans, which involves planning motor behavior ahead of
movement initiation, performing motor elements of biman-
ual movements, and regulating motor behavior dynamically
according to real-time neurofeedback. Simultaneous and
sequential bimanual movements are two bimanual coordi-
nation manners for the same motor task. By the neural
correlates, we found the different motor-encoding patterns
of simultaneous-and-sequential bimanual movements. For the
simultaneous bimanual movement, symmetric activations in
bilateral hemispheres were observed, while for the sequential
bimanual movements, asymmetric activations with contralat-
eral effects were observed, as shown in Fig. 2. The sequential
contralateral activations were associated with the sequential
unimanual motor elements. Maximum negative amplitude hap-
pened at 0 s in Fig. 2(a), and strongest activation happened at
0.1 s in Fig. 2(b). Considering the MRCPs are time-locked and
the calculation of the forward model and inverse estimation in
source space are not precise, the strongest neural activation
could be seen as happening at 0 s.

In our experiment, sequential bimanual movements con-
tained two sequential unimanual movements. Correspondingly,
two sequential spectral power increments in the low frequency
were observed in the time-frequency maps (as shown in
Fig. 3). Besides, in the MRCP plots, two sequential negative
offsets after movement onsets were observed (as shown in
Fig. 2 (a)). The sequential negative offsets were only observed
in the contralateral electrodes of the second motor element,
which were associated with stronger activities in the con-
tralateral hemisphere. For the ipsilateral electrodes of the
second motor element, it could be seen that its negative
offsets were almost canceled out with the positive rebound
associated with the first motor element. Besides, it should be
noted that the negative peaking time of the second element
was accorded with the movement onset time calculated in
Section II. A, which verified the neurophysiological correlates
between motor behavior and neural patterns in our study.

B. Decoding Simultaneous-and-Sequential Bimanual
Movements From Pre-Movement Period

In this study, we applied a manifold learning-based method
to discriminate the simultaneous-and-sequential bimanual
movements. Good continuous decoding performance above
chance level was obtained in both pre-movement and
movement execution periods. Besides, compared with the
classification of unimanual movements, the classification of
sequential bimanual movements showed better performance
in both pre-movement and movement execution periods. The
continuous decoding results in the movement execution peri-
ods were in accordance with previous studies on motor
BCIs [17], and the better performance of sequential move-
ments could be associated with the stronger difference in brain
activities between sequential movements.

For the continuous decoding in the pre-movement period,
the good performance of sequential movements’ decoding
could be attributed to that more brain source was allocated
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Fig. 4. The decoding performance of movements using the manifold-based decoder. (a) The continuous decoding results of simultaneous and
sequential bimanual movements (three-class classifications, R&L vs R-L vs L-R) in both pre-movement and movement execution periods. (b) The
decoding comparisons between the unimanual movements and sequential bimanual movements, of which the first motor element was the same with
the unimanual movements. (c) Generalization performance comparisons between the unimanual movements and sequential bimanual movements.
GT1 represents the generalization test from unimanual tasks to sequential bimanual tasks and GT2 represents the opposite one. (d) One example
of scatter plots of sub-manifold mapping using the projection matrix with the first two eigenvalues. (e) Topographic plots of projection matrixes.

for the working memory encoding of a motor sequence.
For sequential movements, a person would plan the motor
sequence prior to movement execution, instead of planning
and executing each motor element of sequence individually
and separately. The movement preparation period comprised
planning motor sequence and encoding the plan in the
working memory. The plan and memory of complex motor
sequences would correspond to more brain source allocations,
which could result in better decoding performance in the
pre-movement period.

C. Relationships Between Motor Set and Motor Element
of the Motor Sequence

In our experiment, the motor sequence consisted of two
motor elements, i.e., two sequential unimanual movements.
Sequential movement requires a well-ordered organization
of individual motor elements and was held as a subset in
working memory, as opposed to the separate encoding of each
individual element [20]. Thus, when developing the decoding
model, we regarded the motor sequence as a set. Now, we want
to discuss the relationships between motor sequence and
its motor elements by the generalization test. The decoding
models established using data of sequential movements were
tested using data of unimanual movements, i.e., the first
motor element of the sequence, and vice versa. Results in
Fig. 4 (c) showed the above-chance-level performance in both
pre-movement and movement execution periods, which indi-
cated the generalization ability between the motor sequence
set and its motor elements. Previous studies in the rhesus
monkey also discovered that most neurons within the premotor
cortex encoded significant information about only the first
or the second motor elements during the working-memory
period, and adding new information about the second motor

element would not incur the loss of information about the first
motor element [29]. This indicated that the introduction of the
second motor element would not corrupt the working memory
holding the first motor element, which corresponded to the
good generalization ability between models established based
on the sequence subset and element in this study.

D. Comparisons With Existing Research

In recent years, decoding bimanual movements from
EEG signals has attracted much attention. In 2018,
Vuckovic et al. [30] presented a classifier to decode uni-and
bi-manual MI with features based on band common spatial
patterns and band specifics common spatial patterns. In 2020,
Schwarz et al. [15] utilized the low-frequency time-domain
feature and shrinkage linear discriminant analysis classifier
to discriminate the unimanual and bimanual reach-and-grasp
actions with 7-class-classification accuracies of 38.6 ± 6.6%.
Besides, in our previous work, we discriminated unimanual
and bimanual movements’ directions with temporal feature and
support vector machine classifier, and six-class classification
accuracy reached 70.29%± 10.85% [17]. Different from previ-
ous studies, we discriminated different bimanual coordination
movements from EEG signals in this study. Using LSDA to
extract embedded temporal features and LDA classifier, three-
class accuracy reached an average of 68.7%. It should be noted
that comparing decoding accuracies across studies directly
is not fair because there are differences in experimental
paradigms, participants, signals collection devices, decoding
methods, etc. Apart from decoding methods, this work is more
valuable because it is the first study to correlate and decode
different bimanual coordination movements of the same task
target from EEG signals.
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E. Limitations and Future Work
In this work, we studied the simultaneous-and-sequential

bimanual movements for the same task targets. Though we
compared the neural correlates of simultaneous-and-sequential
bimanual movements, discriminated the bimanual movements,
and also discussed the generalization relationships between
the motor subset and elements, some further work could be
dedicated to the following directions.

In our experiment, we designed the bimanual motor
sequence that consisted of two sequential unimanual move-
ments, and more complex motor sequences that consisted of
more motor elements could be studied in the future to study
their encoding patterns and decoding performance. Besides,
in this study, the simultaneous-and-sequential bimanual move-
ments in reaching tasks were explored as preliminary work,
and more tasks in real application scenarios can be explored
in the future. Besides, more basic works about the neural
correlates of simultaneous and sequential bimanual movements
could be built upon. Up to now, the neural correlates and
movement decoding were analyzed using offline data. In future
work, an online test with two manipulators could be done
to develop a more natural bimanual-coordination BCI for
neurorehabilitation and daily assistance, and intelligent assis-
tive technologies could be introduced to enhance the online
performance [31].
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