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Abstract— Remodeling of the Achilles tendon (AT) is
partly driven by its mechanical environment. AT force can
be estimated with neuromusculoskeletal (NMSK) model-
ing; however, the complex experimental setup required
to perform the analyses confines use to the labora-
tory. We developed task-specific long short-term memory
(LSTM) neural networks that employ markerless video data
to predict the AT force during walking, running, counter-
movement jump, single-leg landing, and single-leg heel
rise. The task-specific LSTM models were trained on pose
estimation keypoints and corresponding AT force data from
16 subjects, calculated via an established NMSK modeling
pipeline, and cross-validated using a leave-one-subject-out
approach. As proof-of-concept, new motion data of one par-
ticipant was collected with two smartphones and used to
predict AT forces. The task-specific LSTM models predicted
the time-series AT force using synthesized pose estima-
tion data with root mean square error (RMSE) ≤ 526 N,
normalized RMSE (nRMSE) ≤ 0.21, R2 ≥ 0.81. Walking
task resulted the most accurate with RMSE = 189±62 N;
nRMSE = 0.11±0.03, R2 = 0.92±0.04. AT force predicted
with smartphones video data was physiologically plausible,
agreeing in timing and magnitude with established force
profiles. This study demonstrated the feasibility of using
low-cost solutions to deploy complex biomechanical analy-
ses outside the laboratory.

Index Terms— Long short-term memory (LSTM) neural
network, artificial intelligence (AI), pose estimation, neu-
romusculoskeletal (NMSK) model, Achilles tendon (AT),
rehabilitation.

I. INTRODUCTION

ASSESSING Achilles tendon (AT) biomechanics could
enhance rehabilitation programs and improve clinical
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outcomes [1]. The AT responds to mechanical stimuli; in vitro
assessments showed that optimal strain promoted expression of
collagen type I, reduced cell apoptosis, and improved material
properties [2], [3]. Human in vivo studies of the AT also
showed that loading at 6.5% strain and 0.17 Hz (3 s on, 3 s
off) for 5 sets, 4 days/wk over 14 weeks increased mechanical
stiffness compared to loading at a 3% strain and 0.50 Hz
(1 s on, 1 s off) using the same regimen [4]. As the AT
mechanical properties can be lumped into a phenomenological
model describing the mathematical relationship between force
and strain [5], the AT force becomes a viable surrogate to
target specific mechanobiological adaptations [6], [7]. How-
ever, measuring AT forces in vivo via implanted sensors
is invasive and infeasible for routine assessments [8], [9].
As such, accurate and practical estimation of AT force during
dynamic motor tasks remains challenging.

Neuromusculoskeletal (NMSK) models can estimate AT
force through static optimization [10], [11] or electromyo-
gram (EMG)-informed approaches [7], [12], and high-levels
of agreement between predicted free AT forces and inva-
sive measurement have been reported [12]. While established
NMSK modeling pipelines have been successfully applied
in laboratory conditions [13], [14], [15], [16], their reliance
on specialized equipment, such as force plates and marker-
based stereophotogrammetry systems, coupled with extensive
processing steps, has prevented their applicability in real-world
settings [17]. Shear wave tensiometry, which leverages wave
propagation delays to measure force, has been used to study
the AT during a variety of motor activities [18], [19] even
outside the research laboratory [20], [21]. However, shear
wave tensiometry still requires calibrating the model param-
eters using dynamometry prior being used, thereby limiting
widespread adoption.

Markerless pose estimation models, such as OpenPose [22],
offer an alternative to laboratory-bound marker-based
stereophotogrammetry systems. Via markerless approaches,
the two- (2D) or three-dimensional (3D) kinematics of an
individual can be estimated without any prior preparation or
change of clothes [23], [24]. Pose estimation models have
been combined with neural networks to predict clinically
relevant biomechanical variables. For example, 2D pose
estimation data were used to train a long-short term memory
(LSTM) neural network to accurately predict ground reaction
forces (GRF) across a variety of motor tasks [25]. Similarly,
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Fig. 1. The overview of workflow for model training and validation of AT force using synthesized pose estimation data and further testing using
real world pose estimation data (NMSK: neuromusculoskeletal; GRF: ground reaction force; EMG: electromyography; AT: Achilles tendon; MOCAP:
motion capture system; US: ultrasound; LSTM: long short-term memory neural network).

a feed-forward neural network was developed to predict peak
knee adduction moment using pose data synthesized from
marker-based stereophotogrammetry data, thereby showcasing
how low-fidelity pose estimation could inform the treatment of
patients with knee osteoarthritis within clinical settings [26].
Neural networks have been used to fast-track the prediction of
key biomechanical features from marker data, inertial sensors,
and EMG [27], [28], [29], [30], [31], and therefore have
potential to provide feedback of internal tissue states (e.g.,
hip contact force) [32] that could be used to enhance training
programs in accordance with known mechanisms of tissue
adaptation [6], [33], [34]. Nonetheless, this hypothesis cannot
be experimentally verified until technological approaches
exist to enable internal biomechanics to be readily estimated
with low-cost, portable, and easy-to-use solutions.

Extending upon our prior work which demonstrated that
a LSTM network yielded good estimates of AT strain dur-
ing running relative to a NMSK model [5], the objective
of this study was to compare the time-series of AT force
prediction from synthesized pose estimation data using LSTM
neural networks with the ground truth estimated by NMSK
model for a variety of motor tasks, namely walking, running,
countermovement jump (CMJ), single-leg landing (SLL), and
single-leg heel rise (SLHR). Video data from two smartphones
was used to demonstrate the feasibility of our proposed model
outside the laboratory.

II. METHODS

A. Experimental Data Collection and Processing
The dataset used in the present study included running

data from our prior study [5]. Data collection was previously
published [12], [35] and is described here in brief. Sixteen
trained middle-distance runners (female: 6, age: 25.2±5.0 yr,

height: 175.5±7.3 cm, body mass: 64.4±8.4 kg) with no
history of AT injuries performed a series of motor tasks in the
biomechanical laboratory, comprising walking at 1.3± 0.1 m/s,
running at 3.0±0.3 m/s and 5.0±0.5 m/s, CMJ, SSL, and
SLHR at 1 and 1.2 body weight (BW) conditions. The 3D
marker trajectories, GRFs and EMG signals for lower body
muscles were synchronously collected by a motion capture
system (Vicon Vantage Cameras, Vicon Motion Systems Ltd.,
Oxford, UK) at 250 Hz, force plates (Kistler Instrument Cor-
poration, Amherst, NY) at 1000 Hz, EMG devices (TELEmyo
DTS, Noraxon U.S.A. Inc., Scottsdale, AZ) at 1500 Hz.
Additionally, magnetic resonance imaging (MRI) scans of the
ankle joint were acquired to personalize the NMSK model.

The estimation of individual AT forces for different move-
ment tasks was carried out using the EMG-informed NMSK
modeling pipeline with MOtoNMS [36], OpenSim [37], and
CEINMS [38] (Figure 1, a and b). Personalization of the
NMSK model (gait2392) was achieved by linear scaling via
anatomical marker coordinates obtained from a static trial.
The muscle maximal isometric forces [39], moment arm
of triceps surae muscles [40], [41], and Hill-type muscle
model parameters [42] were also personalized as described
previously [12]. Inverse kinematics, inverse dynamics, and
muscle analysis, were employed in OpenSim to calculate joint
angles, joint moments, and musculotendon kinematics across
all trials [43]. Within CEINMS, a calibration procedure was
conducted to fine-tune the model parameters of musculotendon
units that spanned the ankle, subtalar, and knee joints [38],
[44]. Subsequently, the experimental muscle excitations were
mapped to the complete set of muscles in the model [45].
The calibrated model was then used to estimate triceps surae
muscle forces based on musculotendon kinematics and muscle
excitations using the EMG-assisted mode in CEINMS [46].
The AT force was calculated as the sum of forces generated
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by the medial gastrocnemius, lateral gastrocnemius, and soleus
muscles. The estimates of AT force were compared with direct
measurements of AT force for walking, running and CMJ
available in the literature [8], [9], [47].

B. Input and Output Data Pre-Processing
Five motor tasks (i.e., walking, running, CMJ, SLL and

SLHR) were used to train task-specific LSTM models. The
walking and running tasks focused on the stance phase, which
is the period when the foot is in contact with the ground. The
CMJ task targeted the push-off phase. The SLL task involved
the landing period of a single leg jump. Finally, the SLHR
included the heel lifts from a wooden slant board that sloped
downward by 10 degrees from toe to heel. For each motor task,
ten keypoints matching the OpenPose model were synthesized
from the marker trajectories [22] (Figure 1, c). For each trial,
the bilateral hips, knees, ankles, and big toes were directly
extracted by point kinematics tool of OpenSim. The pelvis and
neck keypoints of the pose estimation model were computed
as the mid-point of bilateral acromial landmarks and hips joint
centers, respectively. The dataset was augmented 10 times by
adding noise to the x, y, and z coordinates of each keypoint
(Figure 1, d). The noise was applied using axis-specific and
keypoint-specific Gaussian distribution representing the errors
of OpenPose compared to gold standard optical motion cap-
ture [5], [48]. As the noise levels for certain tasks (i.e., SLL
and SLHR) were not reported in the literature, the noise from
similar motion pattern (i.e., CMJ and walking) were used,
respectively. For the unreported joints (i.e., neck, pelvis, and
toe), the noise distribution of adjacent keypoints was used [5].
Noisy position data were low-pass filtered using a 2nd order
Butterworth low-pass filter with a cut-off frequency of 10 Hz,
as recommended for real-time applications [49]. Velocities
of the keypoints were calculated using backward numerical
differentiation of filtered keypoint positions. Through this
approach, a total of 910 trials for walking, 1510 trials for
running, 600 trials for CMJ, 1310 trials for SLL and 1870 trials
for SLHR containing positions and velocities of synthetized
keypoints were generated for subsequent model training.

Prior to model training, the keypoint information from
10 frames (i.e., 40 ms) was used to predict the AT force in the
last frame of the time window. The height and mass of each
participant were appended to each time frame. To make the
prediction start from the first frame of the trial, nine frames of
zero-padding were prepended to the beginning of each trial.
All the input features were mean-removed and scaled to unit
variance to facilitate convergence of gradient descent [50].

C. LSTM Model Training and Validation
The models for each motor task were trained and validated

using a leave-one-subject-out cross validation (LOSOCV)
(Figure 1, e). The LSTM neural network with two bi-
directional LSTM layers was selected from the preliminary
tests. The masking layer was applied directly after input
layer to mask the zero-padding for input information. Batch-
normalization and drop-out were introduced after each

bi-directional LSTM layer to minimize overfitting and improve
model prediction performance [51]. For each motor task,
hyperparameter tuning was implemented to search for the
optimal number of LSTM cells of each layer, dropout rate,
learning rate and batch size. The hyperband algorithm [52]
was applied to tune hyperparameters by minimizing the mean
square error of the model predictions and ground truth. During
the tuning process, the dataset was randomly split into 14 par-
ticipants for training and 2 participants for validation. The
weights of the LSTM model were optimized by Adam [53],
using early stopping with 10 epochs of patience to monitor the
validation loss, which stops model training when the loss does
not improve further. Hyperparameter tuning was performed
using TensorFlow (v2.6.0) in Machine Learning eResearch
Platform (MLeRP) (32GB RAM and Tesla A100 GPU) on
Cloud.

The LOSOCV of each task-specific model was implemented
through the best combination of the hyperparameters selected
by previous tuning process (Table I). To avoid overfitting,
early stopping with 20 epochs of patience was used during
the training process. The difference between the LSTM and
NMSK model estimates of AT force for each trial were
quantified using coefficient of determination (R2), root mean
square error (RMSE), and normalized RMSE (nRMSE). The
RMSE was normalized by dividing the peak value of the cor-
responding ground truth data for each trial. As the raw dataset
was augmented 10 times with noise, the average nRMSE of
each sub-dataset was calculated. For each task-specific model,
the two-tailed paired sample t-test for 1D statistical parametric
mapping (1D-SPM) [54] was run to compare the predicted AT
force with the ground truth based on the sub-dataset with the
lowest average nRMSE and the differences were considered
statistically significant for p-values < 0.01. The bias of each
model was also calculated through the subtraction of the mean
of predicted values and ground truth.

D. LSTM Model Testing Using Real Pose Estimation
Data

The final task-specific models were retrained using the
whole available training data for model testing. These models
were further assessed using in-field video data collected for
one participant (height = 175 cm; mass = 66 kg) who was
not included in the training dataset (Figure 1, f∼i). The high
frequency videos (sample rate: 240 Hz; resolution: 1080 ×

1920) were recorded from two smartphones (iPhone 8 and
iPhone 13, Apple) on the sports track and manually synchro-
nized using pulses. Prior to data collection, the smartphones
were mounted on tripods and the cameras were calibrated
using a checkerboard (5 × 6, square length: 3cm) to find the
distortion coefficients, and the intrinsic and extrinsic camera
properties [55]. The participant completed walking, running,
CMJ, SLL, and SLHR consecutively with the same instruction
as the previous laboratory session. The actual walking and
running speeds were 1.19±0.05 m/s and 3.12±0.32 m/s,
respectively. The motion data were cropped to the same
phase as the training data and OpenPose (v1.7.0) was used to
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TABLE I
HYPERPARAMETERS USED FOR DIFFERENT TASK-SPECIFIC MODELS

Fig. 2. Comparison of AT force prediction with NMSK modeling pipeline for different motor tasks. AT force estimates from a variety of literature
sources were also displayed for walking, running and CMJ based on use of fiber optic (Finni et al. [8]), tendon tapper (Keuler et al. [47]), and buckle-
type transducer (Komi et al. [9]). The bias in each case was calculated by using the prediction minus ground truth. Shaded time-series areas indicate
1 standard deviation from the mean. Green horizontal bars: significant difference between LSTM predictions and NMSK modeling outputs using
1D-SPM. SLL: single leg landing; CMJ: countermovement jump; SLHR: single leg heel rise; AT: Achilles tendon; NMSK: neuromusculoskeletal;
LSTM: long short-term memory neural network; R2: coefficient of determination; nRMSE: normalized root mean square error.

automatically obtain 2D pose keypoints. Finally, the keypoints
were triangulated and transformed to the world coordinates,
consistent with the training data, and used as input to the final
LSTM models to predict AT force. The predicted AT forces

for each task were compared to the training data for visual
evaluation and R2 was calculated between the predicted curves
and directly measured AT force reported in the literature for
walking at 1.1 m/s [8], running at 3.1m/s and CMJ [9].
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III. RESULTS

The performance of the task-specific LSTM models for
time-series AT force prediction varied according to the task.
The 1D-SPM testing indicated that the developed models
underestimated the peak force region during walking and
running tasks, as well as the middle stage (from 40% to 86%)
for the SLHR task (Figure 2). R2 values for the correspondence
between NMSK estimates of AT force from the present study
and those reported in the literature for walking, running, and
jumping [8], [9], [47] ranged from 0.86 to 0.94. The subject-
level comparison revealed that the walking task achieved the
most accurate individual predictions, showing lower nRMSE
and higher R2 for overall and individual level compared to
other tasks (Figure 3). However, poor AT force prediction for
specific participants occurred in CMJ, SLL, which manifested
nRMSE more than 0.3 and R2 less than 0.7. When testing
the real-world pose estimation data for the new participant,
each task-specific model was able to generate plausible AT
force predictions, which aligned well with the training outputs
(Figure 4) and with direct measurement of AT tendon force
reported in the literature (R2 0.71±0.13 for walking [8],
0.68±0.11 for running and 0.81±0.03 for CMJ [9]).

IV. DISCUSSION

Our study demonstrated the feasibility of using computer
vision to predict tissue biomechanics outside the laboratory.
While accurate muscle force estimation currently requires
comprehensive NMSK model personalization and calibra-
tion [14], [56], these processes are not easily implementable
outside the laboratory. We trained LSTM models using data
attained by a personalized EMG-informed NMSK modeling
pipeline. After training, the LSTM models required keypoints
and anthropometric information as input, which are promptly
available through computer vision approaches. The developed
LSTM models could predict AT force for specific tasks across
all subjects (RMSE ≤ 526 N, nRMSE ≤ 0.21, R2

≥ 0.8).
Additionally, the trained LSTM models showed good gen-
eralizability for real world pose estimation data, predicting
physiologically plausible time-series of AT force when using
smartphone videos as input. Overall, the proposed setup is
low cost and could be rapidly deployed outside the laboratory
to enhance training and rehabilitation after AT injury or
disease.

The AT force is an internal biomechanics variable that
cannot be directly measured in the clinical environment; yet,
task-specific LSTM predictions of AT force demonstrated
excellent tracking of ground truth (i.e., NMSK model) data,
when assessed via LOSOCV (Figure 2). For walking, the
LSTM prediction accuracy (RMSE = 189±62 N; nRMSE =

0.11±0.03, R2
= 0.92±0.04) was comparable with prior

studies that investigated other internal biomechanics variables,
such as hip and knee contact forces, via recurrent (nRMSE =

0.11, r = 0.93∼0.91) [57] and convolutional neural network
(r = 0.84∼0.90) [31]. However, the performance reported
in these prior studies was achieved by including GRFs and
EMGs as input features, thereby limiting translation outside
the laboratory environment.

Fig. 3. The AT force prediction metrics for 16 participants across
different motor tasks (The number of trials for each task was shown
in bottom of figure and the first participant missed CMJ task. CMJ:
countermovement jump; SLL: single leg landing; SLHR: single leg heel
rise; NMSK: neuromusculoskeletal; LSTM: long short-term memory
neural network; R2: coefficient of determination; nRMSE: normalized
root mean square error).

At individual level, when assessing AT force predictions
in different motor tasks, walking consistently exhibited the
most accurate predictions and CMJ and SLL showed the least
(Figure 3). One possible explanation for the lower accuracy
during certain tasks could be the limited data employed
in the training of the LSTM network, which could have
resulted in some participants (e.g., participants 04, 13, 15 and
16, Figure 3) being underrepresented in the training dataset,
despite data augmentation being applied to increase variation
of the pose data [30]. Furthermore, the variation in muscle
activation patterns (e.g., co-contraction of tibialis anterior
and gastrocnemii) can significantly influence muscle force
generation [44]. Muscle activations were not captured in our
LSTM models and kinematic information alone may not be
sufficient to achieve accurate predictions for all motor tasks.

Using as input standard video data collected outdoor from
two tripod-mounted smartphones, our models predicted phys-
iologically plausible AT force. The time-series closely aligned
with the training data in timing and magnitude (Figure 4),
and accounted for 68∼81% of the variance in directly mea-
sured AT forces reported in the literature for walking [8],
[9], [47]. These findings demonstrated the viability of the
proposed approach and the future possibility of translation
to clinical settings or sporting field. A degree of degradation
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Fig. 4. Comparison of AT forces from real pose estimation data with training output. AT force estimates from a variety of literature sources
are also displayed for walking, running and CMJ based on use of fiber optic (Finni et al. [8]), tendon tapper (Keuler et al. [47]), and buckle-
type transducer (Komi et al. [9]). CMJ: countermovement jump; SLL: single leg landing; SLHR: single leg heel rise; AT: Achilles tendon; NMSK:
neuromusculoskeletal; LSTM: long short-term memory neural network.

(i.e., non-smooth curves) was however observed in the AT
force predictions relative to the corresponding data from the
training dataset. The putative cause of degradation might be
related to differences between the noise distribution of the
synthesized and experimental pose estimation data. Indeed,
while employing Gaussian noise to synthesize realistic key-
point data could be an acceptable initial assumption [58],
the real-world noise might be distributed differently. As such,
better strategies to apply noise to synthetized pose estimation
data might be required in the future to improve the training
of LSTM models. Pose estimation has been implemented
to aid clinical assessments estimating external biomechanics
variables, such as the maximum trunk angle of sit-to-stand
or temporal-spatial gait parameters [59], [60]. Additionally,
pose estimation has been combined with neural networks to
reduce the dependency on instrumentation when collecting
gait data, for example predicting GRF and peak knee joint
moments without force plates [25], [26]. Similarly, our pro-
posed approach to AT force estimation could be applied to
remote monitoring of rehabilitation progression and for rapid
screening without any additional hardware. Critically, the real-
time capabilities of LSTM models could be also used in
personalized biofeedback rehabilitation paradigms to target
ranges of AT force magnitude and rate [6], [34], promoting
desired tissue adaptations [34].

The current study demonstrated the feasibility of predicting
the time-series AT force based on low-cost 3D pose estimation
data outside the laboratory. To the best of our knowledge,
this is the first study to demonstrate internal tissue loading
could be predicted from real-world pose estimation data.
Albeit the developed models produced physiological plausible

outputs for the in-field pose data, the AT force predictions
still require validation through laboratory-based experiments.
It would be desirable to validate AT force predictions using a
similar approach to what done for joint contact forces, wherein
comprehensive datasets of direct measurement enabled val-
idation of computational models [61]. However, no dataset
is currently available that combines invasive measurements
of AT force with non-invasive motion capture, making such
validation infeasible. AT force estimates of our NMSK model-
ing pipeline were previously shown to produce physiological
plausible estimates on joint contact forces [13], [15], [56],
[62], muscle forces [63], [64], and AT forces [12]; as such,
we considered the NMSK model estimates as the best avail-
able proxy for ground truth in the present study. Additional
confidence in our AT force estimates from the NMSK model
came from the strong correspondence with AT forces for
walking, running and jumping reported in the literature [8], [9],
[47] (R2

= 0.86∼0.94). Nonetheless, given these limitations,
we suggest caution when interpreting the presented results or
when employing similar neural networks for clinical applica-
tions. Future work should focus on assessing whether model
predictions are sufficiently accurate to detect clinically mean-
ingful changes during and following training. There is also
a need to validate these task-specific LSTM models against
a concurrently measured ground truth outside the laboratory.
Additionally, a task classifier to enable real-time selection
of the most appropriate task-specific LSTM model would
facilitate clinical applications. To ease translation to outside
the lab, the current study only incorporated the kinematic
and anthropometric information as model input. Using EMG
as an additional LSTM model input in future studies may
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have potential to improve model accuracy and generalizability.
Finally, current models only effectively work for videos with
high sample frequency (i.e., ∼250 Hz); nonetheless, high-
speed cameras are common in modern smartphones.

V. CONCLUSION

We demonstrated that time-series AT force could be pre-
dicted using smartphone video data. This proof of concept
could enable rapid assessment of AT biomechanics in large
cohorts, for clinic and remote rehabilitation, and realize the
development of mechanobiology inspired exercise programs
to drive optimal tissue adaptation.
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