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Using Force Myography: A Universal Model for
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Abstract— Gesture recognition has emerged as a sig-
nificant research domain in computer vision and human-
computer interaction. One of the key challenges in gesture
recognition is how to select the most useful channels
that can effectively represent gesture movements. In this
study, we have developed a channel selection algorithm
that determines the number and placement of sensors
that are critical to gesture classification. To validate this
algorithm, we constructed a Force Myography (FMG)-based
signal acquisition system. The algorithm considers each
sensor as a distinct channel, with the most effective chan-
nel combinations and recognition accuracy determined
through assessing the correlation between each channel
and the target gesture, as well as the redundant correlation
between different channels. The database was created by
collecting experimental data from 10 healthy individuals
who wore 16 sensors to perform 13 unique hand ges-
tures. The results indicate that the average number of
channels across the 10 participants was 3, corresponding
to an 75% decrease in the initial channel count, with an
average recognition accuracy of 94.46%. This outperforms
four widely adopted feature selection algorithms, including
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Relief-F, mRMR, CFS, and ILFS. Moreover, we have estab-
lished a universal model for the position of gesture
measurement points and verified it with an additional five
participants, resulting in an average recognition accuracy
of 96.3%. This study provides a sound basis for identifying
the optimal and minimum number and location of channels
on the forearm and designing specialized arm rings with
unique shapes.

Index Terms— Gesture recognition, channel selection,
force myography (FMG), sensor placement, recognition
accuracy.

I. INTRODUCTION

UPPER limb amputation often results in both severe
physical dysfunction and psychological imbalance to

patients [1], [2]. Intent recognition is the capability of
machines to accurately interpret human intent. The integra-
tion of advanced intention recognition methods with active
prosthetics and the real-time control of prosthetics through
a Human-Machine Interface (HMI) can enable patients to
effortlessly perform a variety of functions in diverse environ-
ments [3], [4]. Through the indirect monitoring of forearm
muscle activities associated with hand movements, gesture
recognition can be captured effectively and conveniently.
Prominent methodologies for this purpose include gaze track-
ing [5], [6], Surface Electromyography (SEMG) [7], [8], [9],
Electroencephalography (EEG) [10], and Mechanomyography
(MMG) [11]. SEMG, in particular, records the electrophysio-
logical activities of muscle tissues, offering a direct reflection
of the real-time neural and muscular status during move-
ment. This has led to its extensive application in prosthetic
control and neurorehabilitation engineering [12]. However,
SEMG faces several unresolved challenges, such as low sig-
nal strength (in microvolts), inferior sensor signal quality,
susceptibility to crosstalk from other biopotentials, signif-
icant system power consumption, and the complexity of
signal interpretation. Moreover, SEMG-based systems typi-
cally depend on electrodes that must be precisely positioned;
these electrodes are susceptible to electromagnetic interference
and other noises and are sensitive to various physiological
conditions, including skin resistance, perspiration, body hair,
and fatigue [13]. Contrasting with techniques that measure
bioelectrical activities, there exists a category focused on

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-4214-1672
https://orcid.org/0000-0002-3981-7160
https://orcid.org/0000-0002-1826-945X
https://orcid.org/0000-0002-0049-822X


XIAO et al.: CHANNEL SELECTION FOR GESTURE RECOGNITION USING FORCE MYOGRAPHY 2017

the measurement of mechanical activities in muscles [14].
For example, MMG leverages microphones, accelerometers,
or laser displacement sensors to capture the mechanical
vibrations or acoustic signals of muscles, facilitating the
detection of muscle contractions and relaxations [15]. MMG
is particularly advantageous for assessing muscle fatigue and
quality, exhibiting lower sensitivity to changes in skin surface
conditions such as sweating.

Force Myography (FMG) is a technology for gesture control
that operates through the detection of changes in muscle
hardness or volume [16], [17], [18]. As muscles engage
in activities, such as contraction, their volume and shape
undergo alterations. These changes are detectable by deploying
pressure sensors, strain gauges, or other devices capable of
sensing muscle deformation on the muscle surface. The signals
generated from these sensors are utilized to identify specific
muscle activities or gestures. The advantages of FMG are
primarily highlighted in the following areas:

1) High signal-to-noise ratio and strong anti-interference
capability [14];

2) Cost-Effectiveness with comparable recognition accu-
racy [19];

3) Ease of use and superior performance in dynamic
motions [20];

4) Low sampling frequency and simplified signal process-
ing [21].

Over the past two decades, researchers have developed
a variety of methods for upper limb movement prediction
and finger angle estimation using FMG [22], [23]. Many
scientific studies have shown that FMG has been proven to
be a safe, stable, reliable, and non-invasive active prosthetic
control interface [24], [25].

The muscles and nerves of the human upper limb are
complex and have many degrees of freedom. Due to the
specific muscle pressure targeted by the FMG technology,
the placement of the FSR sensor has a significant impact
on the accuracy of the motion classification [26]. A study
of upper limb movements showed that increasing the spa-
tial coverage location of FSR sensors significantly improves
accuracy and that different combinations of FSR arm bands
produced different results [27]. A study on the minimum
number of channels for gesture recognition showed that using
eight sensors can achieve good gesture classification, and that
optimizing the sensor layout can significantly improve the
classification accuracy [28]. Despite its relatively low cost,
the complexity of the FMG system increases as the number
of sensors used increases. This leads to an increase in storage
space and computational overhead required for the growing
sample data, along with a overflow of redundant features.
Feature selection is a technique that reduces the number of
irrelevant features without sacrificing prediction accuracy [29],
[30]. In this research, we examine the possibility of treating
each sensor as a feature and apply feature selection methods to
eliminate channels that are less relevant. This approach reduces
the number of sensors and computational overhead, leading to
improved classification accuracy.

Chakaveh Ahmadizadeh et al. [31] evaluated five commonly
used feature selection methods, including Sequential Forward
Selection (SFS) with two different stopping criteria, Min-
imum Redundancy-Maximum Relevance (mRMR), Genetic
Algorithm (GA), and Boruta. The results showed that three of
the five methods were able to significantly reduce the number
of channels while maintaining decent classification accuracy
of all datasets, demonstrating the feasibility of dimensionality
reduction using feature selection methods. Wang et al. [32]
studied the optimization of sEMG channels using a genetic
algorithm. Six healthy participants performed 13 gestures, and
the results showed that using 11 electrodes achieved a 97%
accuracy rate in gesture recognition, and placing the electrodes
in the middle of the forearm resulted in better performance
than placing them at the front of the forearm. Although feature
selection algorithms have been proven to be applicable in
dimensionality reduction for gesture recognition systems, there
are still some important shortcomings:

1) ignoring sensor distribution, sensor weight coefficient
allocation and redundancy.

2) converging too quickly, easily falling into local optima.
3) insufficient richness of candidate subsets.
While FMG technology holds potential for gesture clas-

sification, the precise placement and quantity of sensors on
the upper limb have not been extensively explored. Therefore,
an algorithm for directly determining optimal sensor quantity
and placement is crucial for gesture classification. Addition-
ally, investigating the general sensor quantity and arrangement
on the upper limb is significant. Unlike prior studies that
reduce dimensionality post-data extraction, our novel approach
treats each sensor as an individual feature and proposes a
sensor grouping-based feature selection method.

This study employed a three-arm circular device equipped
with a total of 16 sensors, which focused on exploring the
essential 13 gestures in daily life. Our proposed feature
selection method is compared with the well-known Relief-
F, ILFS, CFS, and mRMR methods, and the results showed
that our method has superior performance. The results from a
further experiment demonstrated that even for the experiment
participants who were not pre-trained, using only the recom-
mended four measurement points to train the 13 gestures could
still achieve a testing accuracy of over 90%. In conclusion, the
findings of this study can not only help users to collect data
from high-density FMG systems and determine the optimal
number and location of sensors that contribute the most
to gesture recognition, thereby enabling personalized device
design, but also propose the general number and location of
measurement points that provide a foundation for the next
generation of universal and simplified technology devices.

II. THE OPTIMAL CHANNEL SELECTION ALGORITHM

The developed channel (feature) selection algorithm is
divided into three parts, schematically shown in Fig. 2 and
the pseudo code is shown in Fig. 3.

A. Ranking of Channel Importance
We calculate the correlation between channels to rank

the importance of each one, thereby discovering the best
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Fig. 1. Individual FMG sensor signals during gesture recognition.

combination of channels. Consider a set of M object classes
{O1, . . . ,Om}, L channels, and Q armbands. In the context of
FMG, let xt∈ ÊRt denote the observable state of the muscle,
which reflects the mechanical deformation of the skin and
underlying tissues due to the contraction of the muscle fibers.
Each participant’s measurement generates a labeled FMG
signal training dataset ϕ:

ϕ = {(x1, y1) , . . . , (x1, yN ) , . . . , (xL , yN )} (1)

where column N is the product of the measurement time t and
the sampling frequency f, reflecting the number of columns
in the raw data. Each action is measured twice for each
participant to reduce measurement noise and variability.

The data ϕL×N from L sensors capturing the same action are
concatenated into a matrix ∅(2×L×M)×N, which contains all the
raw data for a participant’s set of actions. This matrix, which
can be quite large, may be subjected to various preprocessing
steps, such as filtering and artifact removal, to improve the
quality of the signals. Once the preprocessing is complete,
each column of the matrix corresponds to a channel, resulting
in the matrix D =∅̃n×l = {X, Y }. The rows of this matrix rep-
resent the measurements taken over time, while the columns
correspond to L different channels, each of which is associated
with a specific muscle group. To improve the convergence
speed and accuracy of the subsequent model, the matrix D is
standardized using min-max normalization. The transforma-
tion function is defined as follows:

xnew =
x − xmin

xmax − xmin
(2)

Let the weight matrix of the channels be W = (0, . . . , 0)L,
and the weight matrix of the armbands be V = (0, . . . , 0)Q,
with the number of nearest neighbor samples being k(The
exact value of k is determined by the cross-validation method,
while also taking into consideration factors such as dataset size
and feature size). We randomly select a sample R from D∗ and
find the k nearest neighbor samples Hj (j = 1, 2, . . . , k) of R
from the same-class sample set. Find the k nearest neighbors
Mj (C) (j = 1, 2, . . . , k) from each different-class sample set.
The weight statistics of each channel are calculated using the
following formula:

W (x)

= W (x) −

k∑
j=1

di f f
(

A, R, H j
)/

(mk)

+

∑
C ̸=Class(R)


p (C) ×

k∑
j=1

di f f
(

A, R, M j (C)
)

1 − p (Class (R))


/

(mk)

(3)

In the above formula, p(C) represents the proportion of
the channel, and p(Class(R)) represents the proportion of
a randomly selected sample. di f f (R1 − R2) represents the
difference between sample R1 and R2 on feature A, and M j
represents the jth nearest neighbor sample in class C , as shown
in the following formula:

di f f (A, R1, R2)

=


0, i f A is discrete and R1[x] = R2[x]

|R1 [x] − R2 [x]|
max (x) − min (x)

, i f A is continuous

1, i f A is discrete and R1[x] ̸= R2[x]

(4)

Repeat the above steps multiple times to update the sta-
tistical indicators of each channel, and record them in the
weight matrix W of the channel in descending order. Calculate
the canonical correlation coefficient ρQ for each of the Q
armbands and the classification categories using the following
formula:

ρQM =
Cov (x, o)

√
V ar (x)

√
V ar (o)

(5)

Let the total weight be W (Q), and update the weight matrix
of each channel as follows:

V (x) =
W (x)

W (Q)
+

ρQ

sum
(
ρQ

)/
m (6)

which represents the final channel weights obtained.

B. Channel Reduction
Correlation coefficients serve as pivotal metrics for quantify-

ing the degree of association between variables, with Pearson,
Spearman, and Kendall emerging as the three predominant
measures in this domain. Notably, Spearman correlation [33],
distinguished by its suitability for bivariate analyses, inde-
pendence from several assumptions inherent to Pearson’s
correlation, and its applicability to ordinal data, finds particular
utility in addressing issues involving nominal and ordinal data
relationships.

In the present study, we adopt the Spearman correlation
coefficient to investigate the interchannel relationships in
a complex system. Specifically, we employ a hierarchical
approach that involves selecting the most informative channels
based on their importance ranking and iteratively removing the
channels with high correlation values until a matrix is obtained
that consists of only uncorrelated channel combinations. To be
more precise, for a given set of channels, we compute the
rho value and pval value for each pair of channels using the
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Fig. 2. Diagram of the channel selection algorithm.

Spearman correlation coefficient, its calculation formula is as
follows:

rho (x, y) = 1 −
6

∑
d2

n
(
n2 − 1

) (7)

In this regard the variable d represents the difference
between the ranks of two columns, while n denotes the length
of each column. The Spearman rank correlation coefficient is
represented by the rho value, and the corresponding p-value is
denoted by pval. Channels with rho values exceeding 0.80 or
pval values exceeding 0.05 are considered highly correlated
and are removed from further analysis. This process is repeated
iteratively until a matrix is obtained that consists of only
uncorrelated channel combinations, where each row represents
a unique combination of channels, and the correlation between
any two combinations is less than 0.80.

C. Final Output
Prior research suggests that Linear Discriminant Analysis

(LDA) excels in gesture classification [34]. Quadratic Dis-
criminant Analysis (QDA), a variant of LDA, employs a
similar implementation approach but employs distinct covari-
ance matrices for each category, enhancing its flexibility. This
study’s data analysis demonstrates QDA’s superior practical
classification performance over LDA, leading to the selection
of QDA as the classifier.

Once the channel combination matrix that has undergone
correlation filtering is obtained, each combination (row) is
sequentially input into the QDA classifier, and its classification
accuracy is recorded and sorted based on accuracy. To avoid
the limitations of fixed partitioning of the dataset and the
problem of overfitting, ten-fold cross-validation is performed
on each set of data. Finally, based on the user’s input accuracy
requirement, the channel combination with the fewest number

of channels and the highest accuracy under the accuracy
requirement is selected, and the corresponding combination
and accuracy are output. If none of the combinations that
rank first in accuracy meet the accuracy requirement, the
first combination and its corresponding accuracy are directly
outputted.

III. MATERIALS AND METHODS

A. Participants
Fifteen participants were recruited [all males; age:

24.3 years (STD = 2.4); height: 174.7cm (STD = 4.7);
weight: 67.7Kg (STD = 6.9); wrist circumference: 16.4cm
(STD =0.7); forearm length: 24.7cm (STD = 0.9)], as shown
in Table I. All participants were confirmed to be right-handed
and possessed a healthy, unimpaired right arm and hand. They
received adequate rest before the experiments to ensure no
fatigue or stress during testing. Research assistants explained
the procedure and purpose, obtaining written consent. Partici-
pants were assisted in placing arm straps on their right arms.
They sat in standard chairs, following on-screen instructions
for tasks. They were required to maintain stable posture to
minimize external vibrations during data recording.

B. FMG Signal Acquisition System
We have designed an FMG signal acquisition system tai-

lored for measuring the tendons and muscles responsible for
finger movement and muscle activity. To meet experimental
specifications, this apparatus is classified into two distinct
types based on sensor quantity, and their respective inter-
nal configurations are illustrated in Fig. 5(a) and Fig. 5(b).
This system consists of three FMG bands, four W504 sig-
nal amplification and filtering circuits, an STM32_F4VE
microcontroller, a WCH CH340G Universal Serial Bus
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Fig. 3. Channel selection algorithm pseudocode.

Fig. 4. A collection of 13 gestures selected from American Sign
Language gestures needed to simulate daily life.

(USB) transmission module, and a personal computer. The
Force-sensitive Resistor (FSR) used is a lightweight, small-
sized, highly sensitive, and ultra-thin pressure-sensitive device
(FSR, Interlink Electronics, Inc., Camarillo, CA, USA).
Despite its reduced repeatability under high forces, it exhibits
nearly linear behavior under low-force conditions. Among
FSR sensor models, the FSR 402 with a relatively large
contact area, chosen for FMG signal detection, is susceptible

TABLE I
PHYSICAL DATA OF ALL PARTICIPANTS

to bending during measurement. To ensure reliable sensor
support, uniform force distribution, and freedom of movement
on the elastic band, we enclosed the sensor with two 2.7 cm
diameter thin sponges and attached a nylon strap to its back.

To enhance the flexibility of armband placement, we created
three 28 cm long and 2.5 cm wide elastic bands. Sixteen sen-
sors were evenly spaced at 3.5 centimeters intervals along each
band, with four, six, and six sensors designated as F1, F2, and
F3, respectively. These bands are longer than the participants’
average forearm size, allowing for multiple parallel wrist or
forearm placements to maximize sensor utilization during data
collection. Each sensor was connected to signal amplification
and filtering circuits and processed using the STM32_F4VE
microcontroller’s embedded 12-bit resolution A/D converter.
Finally, the system connected to a standard laptop through a
built-in USB interface for further processing and analysis.

This study also developed a Graphical User Interface (GUI)
using Python for real-time FMG signal data collection. The
GUI provides real-time data information for each channel and
allows participants to perform gesture actions according to
instructions. The operator can manually select when to start,
pause, and save data. Before each data collection, a 5-second
countdown prepares the participant. Upon completion, the data
is automatically saved in CSV format and the panel is updated
to display the next gesture.

C. Gesture Set and Experimental Design
In this study, offline FMG data was collected from 15 par-

ticipants under various wearing conditions that simulated
typical real-life usage scenarios using our equipment. The
gesture set includes 13 hand gestures selected from American
Sign Language (ASL), as shown in Fig. 4, which are often
used in daily life rehabilitation training. The experiment was
divided into two groups, with 10 participants in the first group
using 16 sensors to collect gesture data. Fig. 5(d) displays
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Fig. 5. (a) Experimental setup one is a three armbands FMG signal
acquisition system containing 16 wrapped FSR 402 sensors. (b) Exper-
imental setup two is a three armbands FMG signal acquisition system
containing four wrapped FSR 402 sensor. (c) Block diagram of the main
hardware structure that makes up the FMG signal acquisition system.
(d) Example of a raw waveform recorded from all 16 channels in a
gesture action.

an example waveform of all 16 channels recorded during the
measurement of a certain gesture action. After analyzing and
organizing the collected data to obtain a universal measuring
point combination, the remaining 5 untested participants were
used to verify the experiment. The experimental protocol was
approved by the Ethics Committee of Huazhong University of
Science and Technology.

Before conducting the experiments, participants underwent
a washing procedure on their right arm followed by complete
drying to prevent measurement data errors caused by dirt. The
three armbands were then placed in proximity to the wrist,
with each band (F1, F2, and F3) being sequentially positioned
towards the arm. The armband F1, which was equipped with
four-channel sensors, was positioned nearest to the wrist. The
first sensor of each armband was roughly aligned with the
styloid process of the ulna, while the other sensors were evenly

TABLE II
ACCURACY OF PARTICIPANTS AFTER DIFFERENT CHANNEL

SELECTION

spaced around the arm. The distance between the upper edge
of F1 and the styloid process of the ulna at the right wrist was
2 cm, and the distance between the upper edges of F1, F2,
and F3 was 3 cm, thereby creating three parallel rings.

Each participant was instructed to perform the 13 gestures
according to the instructions provided in the GUI. The sam-
pling frequency of the acquisition system was set to 70Hz.
To avoid the influence of the start and end buttons on the
data, the recording time of each measurement was slightly
longer than 20 seconds. During a single data recording process,
participants had 5 seconds to transition, 2 seconds to maintain
the gesture, 2 seconds to relax and return to a static state,
and 2 seconds to maintain the gesture again, alternating back
and forth. To avoid fatigue, participants rested for 10 seconds
between each pair of gestures, and each gesture was measured
twice. The data collected during this period was arranged into
a matrix, with each row corresponding to the data of each
sensor, and the data was saved in a CSV file.

The FMG signal data collected during the experiment was
processed offline using MATLAB software by MathWorks.
Continuous measurements were taken from participants while
they performed each action, yielding data without significant
fluctuations, thus negating the necessity for intricate feature
extraction. A sliding average filter was initially applied to
the raw FMG signal samples to mitigate noise arising from
instruments and the environment. As recommended in [12]
and [35], a window length of 200 ms and a moving step
size of 50 ms were employed for sliding filtering, aligning
with the suggested range of 150-250 ms. Given the relatively
concentrated values and to neutralize the impact of individual
sample data, the filtered data underwent normalization using
the min-max normalization method.

IV. RESULTS AND DISCUSSION

A. Results of Channel Selection
Table II displays the results of ten participants who utilized

the proposed channel selection algorithm. The comparison is
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Fig. 6. Overall experimental flow diagram.

Fig. 7. Confusion matrix of the classification of a standard participant
whose stature meets the WTO criteria.

made to four benchmark algorithms to identify the optimal
channel combination. The results indicate that four channels
were the most commonly selected by the participants, with
recognition accuracies ranging from 90.64% to 96.87%. The
average number of channels selected by the participants was
four, which is equivalent to an 75% reduction in the original
number of channels. This finding demonstrates the effective-
ness of the proposed channel selection algorithm in eliminating
redundant channels. We obtain a satisfactory average recog-
nition accuracy of 94.46%. Fig. 7 displays the classification
confusion matrix to illustrate the prediction performance of a
male participant who met the body size and health standards
set by the World Health Organization (WHO), i.e., a height
of 175 cm and BMI of 22.9. We observe that the “Three”
gesture had the worst prediction performance for the standard
individual, with a 76.2% classification accuracy. This implies
that the muscles used in the “Three” gesture are similar to
those utilized in the “Four” and “Two” gestures.

Relief-F, Max-Relevance Min-Redundancy (mRMR),
Correlation-based Feature Selection (CFS), and ILFS are
four commonly used and highly effective feature selection
algorithms in the field of gesture recognition.

Relief-F [36] assigns weights to variables based on their
ability to distinguish nearby data points in binary classifi-

cation. mRMR attempts to find a subset of variables with
high correlations with the target variable, while also having
low mutual correlation between variables. Similarly, CFS [37]
algorithm is based on the assumption that a good subset
of features should contain highly correlated features with
the target, while being unrelated to each other. ILFS [38],
[39], a 2017 algorithm, excels by considering all possible
feature subsets, thus bypassing combinatorial issues, and out-
performing advanced selection methods. Since all three feature
selection algorithms, Relief-F, mRMR, and ILFS, only perform
importance ranking without a specified stopping criterion, the
ranking of the entire 16 channels will be obtained after data
processing. To address this, we initially apply our proposed
channel selection algorithm to the data of ten participants,
obtaining a reduced feature set and corresponding accuracy
assessment. Subsequently, we proceed to sequentially extract
the top n features from the Relief-F, mRMR, and ILFS
methods, ensuring a consistent number of features as selected
in the previous step. Furthermore, for the CFS algorithm,
we establish a maximum feature count equivalent to the num-
ber of channels selected. The search process is halted either
when the identified feature subset reaches this predetermined
count or when consecutive iterations fail to yield a superior
feature subset. Perform QDA classification on the selected
feature sets from each method and record the accuracy.

The classification results from the ten participants are
compared for the five methods, with results better than ours
being emphasized in Table II. Our method produces supe-
rior performance over Relief-F and ILFS. However, for the
mRMR method, three participants had slightly lower results
than mRMR (1.20%±0.28), and for the CFS method, one
participant had a slightly lower result than CFS (0.8%). Since
the ten-fold cross-validation in QDA has inherent randomness,
the classification accuracy can vary slightly depending on the
grouping, and the difference in accuracy is only about 1%
compared to the other results. Therefore, it can be considered
that our method is equivalent to the other two on these four
participants. Observing the average recognition accuracy of
the ten participants for each method, it can be seen that our
method outperformed the other four methods, with a recogni-
tion accuracy of 94.41%. Thus, our method for selecting the
optimal combination of measurement points and outputting its
accuracy in gesture recognition has demonstrated superiority.

B. Location and Validation of the General Sensors
Combination

Due to variations in measurement point positions, which can
result in different muscle change data, the accuracy and stabil-
ity of measurement point placement have a significant impact
on experimental outcomes [40]. To provide a universal set of
measurement points, the number of times each of the 16 chan-
nels appeared in all channel combinations selected by ten
participants was recorded. The more times a channel appeared,
the more important it was. To facilitate subsequent modeling,
a two-dimensional coordinate system was established with the
back of the hand facing upward, the styloid process of the ulna
on the right forearm as the origin, the direction perpendicular
to the wrist as the x-axis and the direction along the arm as
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Fig. 8. Ten participants performed 13 gesture recognition experiments with results obtained after channel selection. (a) Schematic diagram of the
placement of three armbands and 16 sensors used in the experiments. A plane rectangular coordinate system was established with the styloid
process of the ulna as the origin, the y-axis along the arm and the x-axis perpendicular to the arm. (b) Statistics on the number of occurrences
of channels selected after channel selection for ten participants. The x-axis and y-axis in the figure correspond to the X and Y directions of the
rectangular coordinate system, respectively. Each cylinder corresponds to a channel in Figure (a). The higher the cylinder, the more frequently the
channel occurs. (c) Optimal position of the selected channel in the armbands.

the y-axis, as show in Fig. 8(a). The number of times each
channel appeared was recorded as shown in the Fig. 8(b). F1,
F2, and F3 represent three armbands, and F1-1, F2-1, and F3-
1 represent the first points on each armband, all on the y-axis,
with the remaining measurement points arranged equidistantly
on each arm strap. From the Fig. 8(b), it can be seen that
the measurement points F2-1, F2-6, and F3-3 appeared the
most frequently and equally among all measurement points,
with a total of four times each. To ensure the completeness
of the selected channel combinations, the point F1-1 with the
highest frequency of appearance on strap F1 was added. The
final universal measurement point combination selecte include
F1-1, F2-1, F2-6, and F3-3. The position in the armbands is
shown in Fig. 8(c).

The actual position of the same measurement point may
vary due to many exterior factor. To improve the precision of
the position of the universal measurement points combination,
the four universal measurement points of ten participants were
mapped and standardized onto a planar Cartesian coordinate
system. This was achieved by dividing the x value of the actual
measurement position of each point by the circumference of
the participant’s wrist and dividing the y value by the length of
the participant’s forearm. Fig. 9 illustrates the position of all
mapped points of the ten participants in the coordinate system.
By computing the minimum covering circle of the position of
the four points, the x and y coordinates of the circle center
represent the recommended universal measurement points in
the upper arm coordinate system.

Table IV presents the coordinate positions of the selected
universal measurement points after mapping. Consequently,
the normalized positions and coverage size (Xn, Yn, Rn) of the
universal measurement points combination comprising the four
points are computed as (0.408, 0.364, 0.065), (0, 0.240, 0.001),
(0.906, 0.248, 0.034), and (0, 0.128, 0.003). Fig. 10 depicts
the position of the universal measurement points combination
on the upper arm of the human body. To use this system,
the experimenter first measures the wrist circumference and

forearm length of the participant, then multiplies them by the
corresponding x and y values of the four points to obtain the
position of the points on the participant’s upper arm.

To validate the results of the universal measuring points,
we use five participants who had not undergone prior exper-
iments. The experimenter measured the wrist circumference
and forearm length of each participant, and then multiplied
the x and y values of the four universal measuring points
by the respective participant’s body values to calculate the
positions of the four points. The four sensors were then placed
on the corresponding positions on the participants’ arms for
the 13-gesture recognition experiment, with data collection
and processing procedures similar to previous experiments.
The results, as shown in Table III, indicate that using only
four measuring points, the recognition accuracy for the five
participants reached 96.5%, 94.2%, 96.8%, 95.7%, and 98.2%,
respectively. This demonstrates that the universal measuring
point coordinates exhibit strong robustness and recognition
performance in actual gesture recognition tasks.

V. LIMITATIONS AND FUTURE WORK

While our investigation has yielded encouraging outcomes
in the advancement of intelligent channel selection method-
ologies for gesture recognition, several hurdles merit attention
for future inquiry.

1) Limitations of FMG Signals: Firstly, the acquisition
of FMG signals is susceptible to the influence of mus-
cle movements, which may result in decreased signal
quality or distortion due to muscle fatigue or movement
instability. Additionally, physiological and environmen-
tal factors can also impact FMG, such as sweat and
dirt, which may reduce the quality of sensor-to-skin
contact, thereby affecting the accuracy and quality of
FMG signals. During signal transmission and process-
ing, delays and instabilities may exist, particularly in
scenarios requiring rapid responses, potentially affecting
real-time performance and accuracy. Furthermore, the
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Fig. 9. Optimal channel positions selected by the 10 participants plotted on the plane rectangular coordinate system. Using F1-1, F2-1, F2-6, and
F3-3 as the universal channel combination, the minimum coverage circles for all positions of these four points were calculated and magnified, with
the coordinates of the circle centers representing the optimal channel positions.

TABLE III
DATA FROM PARTICIPANTS WHO VALIDATED THE OPTIMAL COMBINATION OF MEASUREMENT POINTS

TABLE IV
COORDINATES OF THE OPTIMAL COMBINATION OF MEASUREMENT

POINTS

sensitivity of FMG signals is limited, especially in
cases of weak or inconspicuous muscle contractions,
making signal extraction challenging and increasing data
uncertainty. Additionally, the analysis and processing of
FMG signals face challenges such as noise removal,
feature extraction, and classification algorithm design.
Therefore, when applying FMG to gesture recognition
systems, it is necessary to comprehensively consider

Fig. 10. The location of the universal channel combination on the arm
is provided, with the red dot indicating the styloid process of the ulna.

these limitations and take corresponding measures to
overcome them, ensuring system performance and reli-
ability.
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2) Participant Diversity: Notably, our study was confined
to a cohort comprising solely 15 healthy male individ-
uals, thereby potentially limiting the representativeness
of our findings to the broader populace. Therefore, it is
imperative to encompass a more heterogeneous par-
ticipant pool, encompassing individuals across diverse
genders, age groups, and health statuses, to bolster the
accuracy and applicability of the proposed methodology.

3) Customized Arm Band Development and Disability
Applications: The development of tailored arm bands
predicated on optimal sensor positioning, coupled with
the deployment of gesture recognition technology in
individuals afflicted with upper limb disabilities, repre-
sent promising avenues for future research endeavors.
Such applications hold the potential to markedly enhance
the usability and accessibility of gesture recognition
systems across diverse domains.

In summation, the resolution of these challenges will be
pivotal for the progression and practical deployment of our
proposed intelligent channel selection methodology within
gesture recognition frameworks.

VI. CONCLUSION

In this investigation, we propose a novel approach to chan-
nel selection, enabling users to determine the optimal number
and location of sensors for gesture recognition through data
collected from a high-density FMG system. This approach
facilitates the design of customized devices that cater to indi-
vidual needs. Additionally, a universal model for sensor place-
ment is established based on upper limb muscle change data
obtained from ten participants and validated on other five sub-
jects. Our approach takes into account the distribution of arm-
bands and sensors in specific experiments, the assignment of
sensor weight coefficients, which greatly enriching the subset
of candidates and effectively avoiding falling into local optima.
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