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Prediction of Dexterous Finger Forces
With Forearm Rotation Using

Motoneuron Discharges
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Abstract— Motor unit (MU) discharge information
obtained via electromyogram (EMG) decomposition can be
used to decode dexterous multi-finger movement intention
for neural-machine interfaces (NMI). However, the variation
of the motor unit action potential (MUAP) shape resulted
from forearm rotation leads to the decreased performance
of EMG decomposition, especially under the real-time
condition and then the degradation of motion decoding
accuracy. The object of this study was to develop a
method to realize the accurate extraction of MU discharge
information across forearm pronated/supinated positions
in the real-time condition for dexterous multi-finger
force prediction. The FastICA-based EMG decomposition
technique was used and the proposed method obtained
multiple separation vectors for each MU at different forearm
positions in the initialization phase. Under the real-time
condition, the MU discharge information was extracted
adaptively using the separation vector extracted at the
nearest forearm position. As comparison, the previous
method that utilized a single constant separation vector
to extract MU discharges across forearm positions and
the conventional method that utilized the EMG amplitude
information were also performed. The results showed
that the proposed method obtained a significantly better
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performance compared with the other two methods,
manifested in a larger coefficient of determination (R2) and
a smaller root mean squared error (RMSE) between the
predicted and recorded force. Our results demonstrated
the feasibility and the effectiveness of the proposed
method to extract MU discharge information during
forearm rotation for dexterous force prediction under the
real-time conditions. Further development of the proposed
method could potentially promote the application of the
EMG decomposition technique for continuous dexterous
motion decoding in a realistic NMI application scenario.

Index Terms— Finger force prediction, forearm rotation,
online EMG decomposition, motor unit action potential.

I. INTRODUCTION

THE hands carry out numerous significant daily tasks and
is crucial to our ability to live a normal and independent

life. Neural-machine interfaces (NMI) can decode movement
intention from biological signals and use them to control
rehabilitation devices, prosthetics [1], and exoskeletons [2],
which improves the quality of life for people with hand
dysfunction. As one of the commonly used physiological
signals, surface electromyography (sEMG) can be captured by
electrodes affixed to the skin surface, which is non-invasive,
secure, and easy to operate [3]. sEMG can be used to perform
neuromuscular characterization [4] and is generally employed
in motion decoding using the pattern recognition-based
method or the proportional control-based method. In the
pattern recognition process, a feature extraction stage is used
to increase the information density of the EMG signals [5] and
classifiers are used to identify the preset motion categories.
Typically, characteristics in the time and frequency domain
are extracted [6], [7], [8]. The proportional control is more
applicable when controlling individual degrees of freedom in
a continuous manner is needed.

The sEMG is composed of superimposed motor unit action
potentials (MUAP) generated from the recruited motor units
(MU). There might be several limitations of sEMG global
features for accurate motion decoding, such as the noise intro-
duced by conduction and the signal acquisition procedures [9],
signal crosstalk generated from adjacent muscles or muscle
compartments [10], signal amplitude cancellation caused by
the superimposition of MUAP waveforms [11]. Unlike the
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EMG global features, MU discharge activities directly reflect
the neural commands sent by the central nervous system in
binary codes [12], and the MU discharge information can be
extracted through the EMG decomposition techniques includ-
ing the template matching [13], the blind source separation
(BSS) [14], [15], and the machine learning [16] methods.
The neural drive information that can be estimated as the
compound firing rate at the group level of MUs has been
demonstrated to be superior to the conventional global EMG
features in hand gesture recognition [17], [18] and continuous
estimation of muscle force [19], [20], [21], torque [22], and
joint angle [23], [24].

For a realistic NMI system, motion decoding needs to be
performed in real-time. Currently, online EMG decomposition
techniques typically assume the steadiness of the MUAP pro-
files. Therefore, the MU feature (e.g., the separation vector in
the BSS-based method) to extract the discharge activity can be
estimated in the initialization phase and kept constant during
online decomposition. However, it has been demonstrated that
the MUAP shape can be affected by multiple geometric and
anatomical factors such as the muscle fiber length and the
electrode location and orientation [25]. Among these, electrode
shifts can cause the change of the MUAP shape and have
been shown to reduce the classification accuracy and real-
time controllability [26], [27]. Forearm rotation (pronation and
supination) may be one of the major and unavoidable factors
that can change the musculoskeletal geometry [28] and cause
the electrodes to shift relative to the muscle [29] in the realistic
application scenarios. The variation of the MUAP shape could
lead to the decreased detection accuracy of the discharge
activity and the performance degradation of motion decoding
using the pre-estimated constant MU features. The previous
study [30] showed that the neural drive method did not always
have better performance than the conventional EMG global
features in motion decoding across forearm postures if the
MU features were extracted at, to some degree, an arbitrary
forearm posture. Although some previous studies proposed
to use separate motion decoding models for individual limb
positions [31], [32], [33], they did not demonstrate the applica-
bility of the decoding models obtained at some specific limb
positions when used at other limb positions. This is crucial
because the limb position changes continuously in a realistic
scenario, and it is impossible to obtain the decoding models
or separation vectors in every successive limb position.

In order to alleviate this issue, a simple framework was
proposed in this study to extract MU discharge activities in
real-time across forearm positions for dexterous multi-finger
force prediction. The proposed method utilized the BSS-based
EMG decomposition technique and assumed that the multiple
separation vectors extracted at different forearm positions
for each MU can obtain improved EMG decomposition
accuracy by using the separation vector extracted at the
nearest forearm position. The previous method that utilized
a single constant separation vector to extract MU discharges
across forearm positions and the conventional method that
utilized the EMG amplitude information was also performed
as comparison. The three methods were tested on the
dexterous force prediction across different forearm positions

Fig. 1. Experimental setup. (a) High-density EMG signals were
recorded with an 8 × 16 electrode array covering the extensor digitorum
communis muscles and extension forces were recorded with four load
cells. Forearm pronation and supination positions were adjusted using
the angle-adjustable device. (b) The five forearm positions at which
subjects performed finger extensions. (c) The trapezoidal force target
of a trial.

during an isometric multi-finger extension experiment. Our
results showed that the proposed method obtained the best
performance (a higher correlation and a smaller prediction
error) in force prediction, which demonstrated the feasibility
and the effectiveness of the proposed method to extract MU
discharge information across forearm positions for dexterous
force prediction under the real-time conditions.

II. METHOD

A. Experiment
Ten subjects (21-26 years old) without any known hand

movement dysfunctions were recruited in this study. All sub-
jects gave informed consent with protocols approved by the
Ethics Committee in Xi’an Jiaotong University.

Subjects were seated at a chair adjusted to the appropriate
height. The wrist was fixed into an angle-adjustable device,
with the elbow supported to keep the arm in a horizontal
position (Fig. 1(a)). The index, middle, ring, and pinky fin-
gers were tapped on four load cells (DJSX Pressure Sensor,
Shanghai Di Jia, China) separately to record finger extension
forces. The wrists and palms were restrained from both the
anterior and posterior positions to prevent forces from the wrist
onto the load cells.

Monopolar high-density EMG signals were recorded with
the 8 × 16 electrode array placed on the extensor digitorum
communis (EDC) muscle (Fig. 1(a)). The diameter of each
electrode is 3 mm and the distance between the adjacent
electrodes is 10 mm. EMG signals were sampled at 2048 Hz
and amplified with a gain of 150 and a pass band of 10–500Hz
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Fig. 2. Flow chart of the NRL-mulSV and the NRL-sinSV methods to predict finger (for example, index) forces with forearm rotation. (a) Offline
EMG decomposition on all single-finger trials using the FastICA algorithm. (b) MU pool refinement for individual fingers according to the correlation
between MU firing rates and finger forces. Only partial representative MUs are shown to save space. (c) The collection of separation vectors for a
specific MU across forearm positions according to the spike consistency values. (d) The multiple separation vector strategy proposed in this study
and the previous single separation vector strategy as the control. (e) A multivariate linear regression model for individual fingers to map MU firing
rates to finger forces.

(Quattrocento, OT Bioelettronica). The reference and the
common ground were located at the elbow and the wrist,
respectively. The extension force of individual fingers was
recorded synchronously at 1000Hz.

The experiments were conducted at five forearm positions
from pronation to supination, defined as 30◦, 60◦, 90◦ (neutral
position), 120◦ and 150◦ in this study (Fig.1 (b)). At each
forearm position, subjects were asked to extend four fingers
alternatively with the maximal effort to measure maximum
voluntary contraction (MVC) at the beginning of the experi-
ment. Due to the relatively large enslaving effect between the
ring and pinky fingers [34], [35], subjects were requested to
extend the ring and pinky fingers (termed the ring-pinky finger)
together and their extension forces were always summed up
for further analysis.

At each forearm position, subjects were asked to perform
two types of tasks, i.e., the extension of a single finger (single-
finger task) or multiple fingers (multi-finger task) to follow
the target force trajectory as shown in Fig. 1(c). The force
trajectory for the single-finger and multi-finger trials were the
same and consisted of 9 pseudorandom trapezoids with a total
of 180-second length. In the single-finger trials, subjects were
asked to extend one of the three (index, middle and ring-
pinky) fingers throughout the whole trial and co-contractions
of other fingers should be limited to the minimum. In the
multi-finger trials, the index, middle, and ring-pinky fingers
extended alternately in a trial (Fig. 1(c)) with a random order
instructed from the experimenter. At any moment, the subjects
need to control the extension force of the target finger to follow

the force trajectory while the other two non-target fingers can
be extended at will. Only one target finger was assigned at any
moment because it would be hard for subjects to follow three
force trajectories for three fingers simultaneously. At each
forearm position, three single-finger trials with each for a
finger and one multi-finger trial were performed, resulting in
15 single-finger trials and 5 multi-finger trials in total for each
subject across 5 forearm positions.

B. Force Prediction Using Neural Drive Information

Force prediction using the neural drive information included
two procedures, the offline initialization procedure, and the
online force prediction procedure. In the offline initialization
phase (Fig. 2), the EMG signals from the single-finger trials
were used to obtain the MU features and the force prediction
model for individual fingers. In the online force prediction
phase, the multi-finger trials were used to validate the perfor-
mance of predicting multi-finger forces concurrently.

1) Offline EMG Decomposition: The Fast Independent Com-
ponent Analysis (FastICA) algorithm was used to perform
EMG decomposition in this study [14], [36]. The raw EMG
signal x = [x1(t), x2(t), · · · , xm(t)]T, t = 1,2,. . . , L with m
as the number of EMG electrodes was extended by adding R
(R = 7 in this study) delayed versions of each channel and
whitened, resulting in the Rm×L matrix z. Then, 200 loops of
iteration in the FastICA algorithm were performed on z, and
each loop converged to the feature of one MU including its
separation vector w, the source signal s and the spike train t.
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TABLE I
AVERAGE NUMBER OF MUS

The source signal can be obtained as

s = wTz (1)

and the spike train was obtained through the binary classifi-
cation of the peaks in the source signal using the Kmeans++

algorithm [37]. Then, the Silhouette (SIL) value was calculated
to quantify the distance between two classes of source peaks
and the MUs with a SIL value smaller than 0.6 and duplicates
of other MUs were removed from further analysis.

After the offline EMG decomposition was performed on all
single-finger trials, several MUs with their separation vectors
and spike trains were obtained for individual fingers at each
forearm position (Fig. 2(a)). The feature of the i th MU for
finger j at position k was termed as {w j,k

i , t j,k
i } with i =

1,2,. . . , j ∈{index, middle, ring-pinky} and k ∈{30◦, 60◦,
90◦, 120◦, 150◦}. At this stage, j was determined as the finger
to perform the corresponding single-finger trial. The average
numbers of MUs obtained after offline decomposition across
subjects are shown in Table I.

2) MU Pool Refinement: Although subjects were requested
to extend only one finger in the single-finger trials, the
co-activation of other fingers cannot be completely avoided.
This led to the fact that the MUs obtained in the single-finger
trials may not exclusively belong to the specific finger.
Therefore, a MU classification procedure was used to refine
the MU pool for individual fingers (Fig. 2(b)) and has been
demonstrated to improve the estimation performance of
multi-finger forces in the previous study [38]. Specifically, for
a single-finger trial, the time courses of the firing rate were
estimated using a sliding window with a 0.5-second length
and a 0.2-second step. In the subsequent text, the sliding
windows are the same if not specified. The forces of the three
fingers were also processed using the sliding window. Then,
the Pearson correlation coefficient was calculated between the
firing rate of all MUs and the force of all fingers, resulting in
the value r j,k

i,p representing the correlation coefficient between
the firing rate of the i th MU and the force of finger p from the
single-finger trial of finger j at the forearm position k. The i th
MU was removed from the pool {w j,k

i } of finger j if r j,k
i,p > r j,k

i, j

with p ̸= j existed. The average numbers of MUs removed in
the refinement procedure across subjects are shown in Table I.

3) Multiple Separation Vectors for One MU: Due to the
variation of the MUAP shape across forearm positions, the
separation vectors of the same MU might be markedly distinct
at different positions. This might result in the inaccurate
detection of spikes if a single constant separation vector is
used across forearm positions. In order to solve this issue,
a multi-separation vector strategy was proposed in this study.
Specifically, for each MU, multiple separation vectors at dif-
ferent forearm positions were extracted, and the one extracted
at the nearest forearm position was always used during online
decomposition (Fig. 2(c) and 2(d)).

The same MU can be captured via offline decomposition
multiple times from different forearm positions. In order to
collect the separation vectors for a specific MU, the measure-
ment of spike consistency (SC) between two spike trains was
used in this study and calculated as:

SC = 2nsyn
/
(n1 + n2) × 100% (2)

where nsyn was the number of synchronized spikes between
two spike trains, and n1 and n2 were the number of spikes in
the two spike trains, respectively.

First, for a given finger j , the EMG signals from all its
single-finger trials were concatenated head-to-tail and the MU
separation vectors of finger j from all forearm positions were
grouped together{w j,30◦

1∼N1
, w j,60◦

1∼N2
, w j,90◦

1∼N3
, w j,120◦

1∼N4
, w j,150◦

1∼N5
},

with N1, N2, N3, N4 and N5 as the number of MUs
obtained at the corresponding forearm positions. Second,
the resultant 900-second EMG segment was extended
and whitened. The source signals and then the spike
trains corresponding to individual separation vectors were
obtained using (1), resulting in the 900-second spike trains
{t j,30◦

1∼N1
, t j,60◦

1∼N2
, t j,90◦

1∼N3
, t j,120◦

1∼N4
, t j,150◦

1∼N5
}. Third, the SC values

were calculated between any pair of spike trains from any
two forearm positions, resulting in SC j,k1k2

i1i2
as the SC

value between spike train t j,k1
i1

and spike train t j,k2
i2

. The

corresponding two separation vectors w j,k1
i1

and w j,k2
i2

were
considered to belong to the same MU if SC j,k1k2

i1i2
> 0.7.

Lastly, the separation vectors from different forearm
positions were categorized into different MUs based on the
above matching procedure. Since some MUs may have no
corresponding separation vectors obtained at some forearm
positions after the above matching procedure, the separation
vector from the adjacent forearm position with a higher SIL
value was selected. In the end, five separation vectors for
5 forearm positions were available for each MU of finger j .
In the subsequent text, the neural drive-based force prediction
method that adaptively used the separation vector obtained at
the nearest forearm position to extract MU discharge activities
was termed the ‘NRL-mulSV’ method. The average numbers
of MUs used for online force prediction across subjects are
shown in Table I.

The previous method [30] that used a single separation
vector across forearm positions was also performed as the
comparison. Instead of selecting the separation vector from the



1998 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 32, 2024

neutral position for all MUs [30], an optimization procedure
was carried out in this study. After the five separation vectors
were assigned to individual MUs as described in the NRL-
mulSV method, five 900-second spike trains corresponding
to 5 separation vectors can be obtained for each MU. The
spike trains together with the corresponding force data were
processed using the sliding window. Then, a linear regression
was performed between the firing rate and the force, resulting
in 5 values of the coefficient of determination (R2). At last,
the separation vector corresponding to the largest R2 value
was selected as the only separation vector applied to all
forearm positions (termed the NRL-sinSV method). This
procedure was repeated until the optimal separation vectors
of all MUs from all fingers were found.

4) Multivariate Linear Regression Model: A multivariate lin-
ear regression model for individual fingers was built to map
MU firing rates to finger forces:

Force j
=

∑
i

ai F R j
i + b (3)

with j ∈{index, middle, ring-pinky} and F R j
i as the firing rate

of the i th MU of finger j , and only the single-finger trials were
used to estimate the coefficient ai and b for individual fingers
independently. For a given finger j , the EMG data from all the
single-finger trials were collected and the corresponding spike
trains were obtained using the NRL-mulSV and NRL-sinSV
methods, respectively. In the NRL-mulSV method, different
separation vectors were used for a MU based on the forearm
position of the corresponding trial. In the NRL-sinSV method,
the selected optimal separation vector was used consistently
for an MU. The firing rate and the force were obtained using
the sliding window and all the firing rate and force values from
all forearm positions were used to perform the multivariate
linear regression analysis using (3) for the NRL-sinSV method
and the NRL-mulSV method, respectively.

5) Online Finger Force Prediction: The EMG signals of the
multi-finger trails from all forearm positions were used to eval-
uate the force prediction performance. The EMG signals were
segmented with the sliding window for online decomposition.
Within each window, the EMG signals were extended and
whitened, and the spike trains of individual MUs for individual
fingers were then obtained via both the NRL-sinSV and NRL-
mulSV methods. The obtained firing rate values of individual
MUs were put into the multivariate linear models to predict
the force of individual fingers. Finally, the predicted force was
smoothed with a Kalman filter.

C. Force Prediction Using EMG Amplitude
EMG amplitude (root mean square, RMS) information was

also used to predict multi-finger forces for comparison in
this study (termed the EMG-Amp method). Same as the two
neural drive-based methods, the single-finger trials were used
to optimize the selection of EMG channels for individual
fingers and train the multivariate linear regression model, and
the multi-finger trials were used to validate the performance
of force prediction. Figure 3 illustrates the EMG amplitude
distribution during the extension of the index, middle and

Fig. 3. The normalized EMG amplitude distribution by the maximum
for individual fingers across 5 forearm positions. The “×” represent the
centroids of the amplitude distribution.

ring-pinky fingers, respectively across forearm positions from
a representative subject. The heatmap shows that the activated
regions overlapped a lot between fingers. Meanwhile, the
activated region shifted when the forearm position changed.
Therefore, a channel selection procedure was needed to select
the optimal channels to calculate the EMG amplitude for indi-
vidual fingers. The EMG amplitude values in the single-finger
trials were obtained using the sliding window for individ-
ual channels and the original force signals of three fingers
were also processed using the sliding window. The Pearson
correlation coefficient r̄ j,k

i,p was calculated between the EMG
amplitude of channel i and the forces of finger p using the
single-finger trial of finger j at forearm position k. The EMG
signals of channel i would be used for finger j if r̄ j,k

i, j > r̄ j,k
i,p1

and r̄ j,k
i, j > r̄ j,k

i,p2
with j ̸= p1 ̸= p2. This procedure was

first performed for individual forearm positions separately,
resulting in three channel groups for three fingers at each
forearm position. Then, the intersection of the channel groups
for the same finger across forearm positions was obtained as
the optimal channels for individual fingers.

Then a linear regression model for individual fingers was
built to map the EMG amplitude to the finger force:

Force j
= ā Amp j

+ b̄ (4)

with j ∈ {index, middle, ring-pinky} and Amp j as the average
EMG amplitude across all optimal channels for finger j .

For the online force prediction phase, the EMG amplitude
was calculated within the sliding window and put into the
linear regression model to obtain the predicted force of each
finger. Finally, the predicted force was smoothed with the same
Kalman filter.

D. Evaluation of Force Prediction Performance
The force prediction performance was evaluated by

comparing the predicted force using different methods
with the recorded force data in the multi-finger trials. Two
measurements were used including the root mean square
error (RMSE) and the R2. In each multi-finger trial, the
RMSE and the R2 value were calculated for individual fingers
independently, resulting in three RMSE and three R2 values.
The two measurements were first compared using the repeated
measures ANOVA to verify whether significant differences
existed across the three methods and the post-hoc t-test with
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Fig. 4. The online force prediction results of a representative multi-finger trail at the 90◦ forearm position. (a)-(c) The MU spike trains and firing
rates used to predict the force of index, middle, and ring-pinky fingers in the NRL-mulSV method and the NRL-sinSV method. (d) The comparison
between the predicted force using the three methods and the recorded force.

the Holm–Bonferroni correction was used to compare any pair
of the three methods. The significant level was set at 0.05.

III. RESULT

A. Performance of Finger Force Prediction
Figure 4 illustrates the force prediction results from a

representative multi-finger trial with little co-activation of
fingers. The MU spike trains and the corresponding firing
rates employed in force prediction of the index, middle,
and ring-pinky fingers in the NRL-mulSV method and the
NRL-sinSV method were presented in Fig. 4(a)-(c), respec-
tively. The predicted finger forces using three methods and
the corresponding recorded force was shown in Fig. 4(d) for
individual fingers. The results showed that the EMG-Amp
method cannot tell the extending finger, always leading to
the overestimation of the other two fingers’ force when a
specific finger exerted force. Compared with the NRL-mulSV
method, the NRL-sinSV method had more underestimation
issues, possibly because the inappropriate separation vectors
resulted in the quality degradation of the source signal. Then,
fewer spike events can be identified and the firing rate was
underestimated.

1) Overall Performance: In order to evaluate the overall
performance of the three methods, the R2 and RMSE values
were first averaged across fingers and then averaged across

trials from all forearm positions for individual subjects as
shown in Fig. 5(a) and 5(b). The repeated measures ANOVA
indicated that the method had a significant influence on the
R2 (F(2,18) = 13.79, p = 0.0002) and RMSE (F (2,18) =

30.05, p < 0.0001) values. Further post-hoc t-test with
the Holm–Bonferroni correction showed that the R2 of
the NRL-mulSV method was significantly larger than the
EMG-Amp method (p < 0.01) and the NRL-sinSV method
(p < 0.001). The RMSE of the NRL-mulSV method was
significantly lower than the other two methods (p < 0.001),
and the RMSE of the NRL-sinSV method was significantly
lower than the EMG-Amp method (p < 0.01).

2) Performance for Individual Fingers: To further compare
the force prediction performance of different methods for
individual fingers, the R2 (Fig. 5(c)) and RMSE (Fig. 5 (d))
values of individual fingers were averaged across all the
multi-finger trials for individual subjects. The repeated
measures ANOVA was performed and revealed that the
method had a significant influence on the R2 (F(2,54) = 18.53,
p < 0.0001) and the RMSE (F(2,54) = 16.16, p < 0.0001).
However, there was no significant interaction between the
method and finger factors on the R2 (F(4,54) = 0.93,
p > 0.05) and the RMSE (F(4,54) = 2.06, p > 0.05). The
post-hoc test with the Holm–Bonferroni correction showed
that the R2 of the NRL-mulSV method was significantly
larger than the NRL-sinSV method (p < 0.05) and the
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Fig. 5. The average R2 (a) and RMSE (b) between the predicted
and actual forces. The average R2 (c) and RMSE (d) between the
predicted and actual forces for individual fingers. (e) The average R2

across forearm angles for the three methods. ∗, p<0.05, ∗∗, p<0.01,
∗∗∗, p<0.001.

EMG-Amp method (p < 0.01) for both the index and
the middle fingers. For the ring-pinky finger, the R2 of
the NRL-mulSV method was significantly higher than the
NRL-sinSV method (p < 0.05) but showed no significant
superiority compared with the EMG-Amp method (p = 0.15).
The RMSE of the NRL-mulSV method for the index was
significantly smaller than the NRL-sinSV method (p < 0.05)
and the EMG-Amp method (p < 0.01). The RMSE of the
NRL-mulSV method for the middle was significantly smaller
than the EMG-Amp method (p < 0.05). As for the ring-pinky
finger, there were no significant differences in the RMSE
between any pair of the three methods (p > 0.05).

In the multi-finger trials, different fingers extended one
after the other. Although co-contractions were allowed, the
co-contraction level was low for some subjects. In order to
further verify the performance of the proposed method when
strong muscle co-contractions exist, four more subjects were
recruited and finished the multi-finger trials in which all the
fingers need to extend simultaneously. The results showed that
the NRL-mulSV can still obtain the best performance com-
pared with the other two methods (Supplementary Materials).

3) Performance at Different Forearm Positions: In order to
clarify if there were differences in the force prediction per-
formance across forearm positions, the R2 values in different
forearm positions were averaged across trails from all fingers.
The one-way ANOVA was performed on the R2 values of the
three methods separately. The results showed that the forearm
position had a significant influence on the R2 values using the
NRL-sinSV method (F(4,36) = 3.22, p = 0.024) and had no
significant influence on the NRL-mulSV method (F(4,36) =

0.59, p = 0.67) and the EMG-Amp method (F(4,36) =

0.97, p = 0.43). The post-hoc test with the Holm–Bonferroni
correction showed that, for the NRL-sinSV method, the R2

at the 90◦ forearm position was significantly larger than that
at the 30◦ (p < 0.01), 60◦ (p < 0.05), and 150◦ (p < 0.05)
forearm position.

B. Effects of Forearm Rotation
1) Centroid of EMG Amplitude Distribution: To examine the

effect of forearm rotation on the EMG activities, the centroid
shift of the EMG amplitude distribution between forearm
positions was analyzed. The centroid of the EMG amplitude
distribution was first estimated for individual forearm positions
using the corresponding single-finger trials (Fig. 3). Then,
the centroid shifts between any two forearm positions (e.g.,
30◦ and 120◦) were calculated and divided into different
groups based on the corresponding angle displacement (e.g.,
120◦

−30◦
= 90◦) between the two forearm positions. Next,

the centroid shift values were averaged within the same
group for individual fingers and individual subjects (Fig. 6(a)).
As expected, the shift increased as the angle displacement
between forearm positions got larger. The further two-way
(finger vs. angle displacement) ANOVA demonstrated that the
angle displacement factor had a significant influence on the
centroid shift (F(3,27) = 5.80, p = 0.004)while the finger
factor had no significant influence (F(2,18) = 1.43, p > 0.05).
The interaction between the angle displacement and finger was
not significant (F(6,54) = 0.97, p > 0.05).

2) Variation of MUAP Profiles: The MUAP shape variation
across forearm positions was also evaluated. The MUs that can
be captured at all 5 forearm positions were selected for this
analysis (96 MUs in total). The MUAP template was calcu-
lated using the spike-triggered averaging (STA) method [39]
for individual forearm positions. Then, the correlation coef-
ficient of MUAP waveforms was calculated for individual
channels and the weighted average of the correlation coeffi-
cient across channels was calculated to quantify the similarity
of MUAP profiles of the same MU between any two forearm
positions. Lastly, the MUAP correlation coefficients with the
same angle displacement were averaged across MUs for indi-
vidual subjects. The results showed that as the forearm rotated
over a larger angle displacement, the MUAP profile variation
became larger, manifested as the decreased MUAP correlation
coefficient (Fig. 6(b)). The two-way ANOVA (angle displace-
ment vs. finger) demonstrated that the angle displacement
factor had a significant influence on the MUAP correlation
across forearm positions (F(3,27) = 8.82, p < 0.001) the
finger factor had no significant influence (F(2,18) = 0.25,
p > 0.05). And there was a significant interaction between
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Fig. 6. The influence of the forearm rotation angle displacement on the
centroid shift of the EMG amplitude distribution (a), the MUAP shape
variation (b) and the online decomposition accuracy (c).

the angle displacement and finger factors (F(6,54) = 2.76,
p = 0.02).

3) Decomposition Accuracy: As mentioned in the
introduction, the applicability of the separation vectors
extracted at a specific forearm position when applied to other
forearm positions is critical because we cannot extract the
separation vectors corresponding to all successive forearm
positions for a MU in realistic applications. Therefore,
it is necessary to investigate the influence of the angle
displacement between the forearm positions for separation
vector extraction and online decomposition, respectively on
the decomposition accuracy. The same 96 MUs were used for
this analysis and their spike trains corresponding to individual
separation vectors obtained during the offline decomposition
phase were taken as the “ground-truth”. The spike trains were
then obtained in the online decomposition manner by applying
the separation vectors from a specific forearm position to
the same forearm position or other forearm positions. The
resultant spike trains were compared with the corresponding
“ground-truth” and the spike consistency was estimated as the
accuracy of online decomposition. Similarly, the calculated
SC values were divided into different groups according to
the angle displacement between the forearm position for
separation vector extraction and the forearm position for online

Fig. 7. The applicability of separation vectors is further verified by using
the single-finger trials from the 30◦, 90◦ and 150◦ forearm positions for
offline initialization, and the multi-finger trials from the 60◦ and 120◦

forearm positions for online force prediction (a). The average R2 (b) and
RMSE (c) between the predicted and actual forces for individual fingers.
∗, p<0.05, ∗∗, p<0.01.

decomposition and then averaged across MUs for individual
fingers and individual subjects (Fig. 6(c)). The results showed
that the online decomposition accuracy decreased as the
angle displacement increased. The two-way ANOVA (angle
displacement vs. finger) showed that the angle displacement
had a significant influence on the online decomposition
accuracy (F(4,36) = 31.33, p < 0.0001) and the finger factor
had no significant influence (F(2,18) = 0.63, p > 0.05). The
interaction between the angle displacement and finger was
not significant (F(8,72) = 1.50, p > 0.05). This demonstrated
that for all three fingers, the online decomposition accuracy
at a specific forearm position got improved if the separation
vector obtained from a nearer forearm position can be used.

C. Applicability Validation of Separation Vector
In order to further verify the applicability of separation

vectors extracted at some specific forearm positions when
they are applied to other forearm positions, the three meth-
ods were compared via the following procedure. Specifically,
the single-finger trials from the 30◦, 90◦ and 150◦ forearm
positions were used for offline initialization of the three
methods, and the multi-finger trials from the 60◦ and 120◦

were used for online force prediction (Fig. 7(a)). The steps
for the offline initialization and online force prediction were
the same as mentioned in the Method section. The resultant R2

(Fig. 7(b)) and RMSE (Fig. 7(c)) values of individual fingers
were calculated and averaged across all the multi-finger trials
for individual subjects. The repeated measures ANOVA was
performed and revealed that the method had a significant
influence on the R2 (F(2,54) = 14.37, p < 0.0001) and
the RMSE (F(2,54) = 15.56, p < 0.0001). The post-hoc
test with the Holm–Bonferroni correction showed that the R2
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of the NRL-mulSV method was significantly larger than the
NRL-sinSV method (p < 0.05) and the EMG-Amp method
(p < 0.01) for both the index and the middle fingers. For
the ring-pinky finger, there were no significant differences
between any pair of the three methods (p > 0.05). The RMSE
of the NRL-mulSV method was significantly smaller than the
other two methods (p < 0.05) for the index and middle fingers.
For the ring-pinky finger, The RMSE of the NRL-mulSV
method was significantly smaller than the NRL-sinSV method
(p < 0.05) but showed no significant superiority compared
with the EMG-Amp method (p > 0.05).

IV. DISCUSSION

Although a number of previous studies have demonstrated
that the motoneuron discharge information can obtain
better performance on motion decoding compared with the
conventional global EMG features, the factors that can lead to
the non-stationary of the MUAP profiles could easily eliminate
the superiority [30]. In a realistic application scenario, forearm
rotation is one of the most prominent factors that can lead to
the variation of the MUAP waveforms from the extensor/flexor
digitorum muscle, resulting in the lower EMG decomposition
accuracy and then the degradation of dexterous motion
decoding. This study aimed to find an effective way to extract
MU discharge information accurately across forearm positions
for the online prediction of multi-finger dexterous forces.
Basically, the proposed NRL-mulSV method supposed that,
for a given forearm position, the MU features, i.e., separation
vector, extracted from the nearer forearm position was
typically more accurate than the one extracted from a farther
forearm position. Therefore, multiple separation vectors were
extracted at different forearm positions for each MU and the
one extracted at the nearest forearm position was always used
for online decomposition. As comparison, the NRL-sinSV
method always used the single separation vector extracted
at the ‘optimal’ forearm position. The overall results showed
that the NRL-mulSV method showed significant superiorities
compared with both the NRL-sinSV and the EMG-Amp
methods, while the superiority of the NRL-sinSV method
compared with the EMG-Amp method was not significant
under some circumstances. These results indicated that
the proposed method improved the robustness of the neural
drive-based method for motion decoding and could potentially
facilitate its application in the realistic NMI system.

The two neural drive-based methods, especially the
NRL-mulSV method showed significantly improved perfor-
mance compared with the EMG-Amp method in dexterous
multi-finger force prediction. The EMG crosstalk, muscle
coactivation, and limited sampling depth have been demon-
strated to compromise the ability to estimate dexterous motor
intention [5]. The forearm rotation that would vary the relative
position between muscle fibers and electrodes can vary the
EMG amplitude distribution (Fig. 6(a)) and further intensify
the crosstalk issue [29]. Also, the degree of muscle coactiva-
tion and the musculoskeletal geometry varied across forearm
postures [28], leading to more complicated components of
crosstalk. In addition, a previous study found that the forces

were reduced when the forearm deviated from the neutral posi-
tion, but EMG amplitude did not always reflect the changes
in force [29]. All these make it more challenging to select the
appropriate EMG channels to predict the force of individual
fingers independently. Our results showed that the EMG-Amp
method failed to distinguish individual finger forces (Fig. 4(d))
even though an optimization procedure had been performed
to select the EMG channels for individual fingers. As for the
neural drive-based method, the MUs can be classified into
individual fingers according to the correlation between MU
firing rate and finger force proposed in the previous study
[19], [38]. This procedure helped to eliminate the impact of
the cross-talk issue because the EMG amplitude information
was not used in the neural drive-based method (Fig. 4(d)).

Comparing the two neural drive-based methods, the
NRL-mulSV method outperformed the NRL-sinSV method
significantly. This indicated that the constant separation
vector extracted at a specific forearm position, even after
the optimization procedure, was still not accurate enough to
decompose EMG signals from other forearm positions for
accurate multi-finger force prediction. Our results showed that
the MUAP profile variation became larger when the forearm
rotated over a larger angular displacement (Fig. 6(b)). This
further led to the consequence that the online decomposition
accuracy decreased more if the separation vector extracted
from a farther forearm position was used (Fig. 6(c)). For the
NRL-sinSV method, the force prediction performance showed
significant differences between forearm positions (Fig. 5(e)).
Specifically, the R2 at the 90◦ forearm position was higher
compared with other forearm positions, possibly because the
90◦ forearm position, i.e., the neutral position had the smallest
average angle displacement to other forearm positions,
resulting in the highest average decomposition accuracy.
These results indicated the superiority and necessity to vary
the separation vector according to the forearm positions.

Overall, the influence of the forearm rotation on the cen-
troid shift of the EMG amplitude distribution, the MUAP
shape variation and the online decomposition accuracy showed
consistency across fingers (Fig. 6). Basically, as the rotation
angle displacement increased, the centroid shift and the MUAP
variation increased, and therefore the online decomposition
accuracy decreased. When comparing the three fingers, the
centroid shift and the MUAP variation of the middle fingers
were relatively smaller compared with the other two fingers
although not significant. This possibly explains why the middle
finger can obtain relatively better force prediction performance
compared with the other two fingers on average for three
methods.

The forearm position changes continuously and we cannot
extract the separation vector at every successive forearm
position for a MU. Therefore, there should be a clear strategy
about how to use the limited number of separation vectors
for all possible forearm positions. Although some previous
studies proposed to use separate motion decoding models
for individual arm positions [31], [32], [33], the data for
model training and performance testing are from the same
arm positions, and therefore, the applicability of the decoding
model to other arm positions is not known. In this study, it has
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been demonstrated that the online decomposition performance
of the separation vectors would decrease when they were used
at a farther forearm position. Therefore, a simple strategy
could be obtained that the separation vector from the nearest
forearm position should always be used, in order to obtain the
best performance. The effectiveness of the strategy was further
verified by comparing the three methods when the data for
offline initialization and online force prediction were not the
same (Fig. 7). Although the selection of the number (three)
and combination (30◦/90◦/150◦) of forearm positions used to
extract the separation vectors in this study was, to some degree,
arbitrary, the effectiveness of the proposed strategy should not
be affected. The major reason was the performance of the
separation vector relies on the angle displacement between
the position where it was used and where it was extracted
rather than the specific position where it was extracted only
as demonstrated in the results (Fig. 6).

One limitation of this study was that only a limited number
of forearm positions without complete pronation and supina-
tion were tested and the EMG and force signals were not
recorded during continuous forearm rotation, mainly because
there was a varying passive pressure onto the load cells
from fingers, resulting in a continuous slow drift of the off-
set of force signals. However, our results showed that the
online decomposition accuracy can be improved by using the
separation vectors extracted from a nearer forearm position
(Fig. 6(c)). This indicated that the strategy proposed in our
study has the potential to deal with continuous forearm rotation
only if separation vectors can be extracted at more forearm
positions. In addition, the NRL-mulSV method relies on the
knowledge of the forearm position, and the method to acquire
the forearm position information in a realistic application was
not involved in this study. It is planned to utilize the IMU
sensors to measure the forearm rotation angles, which will be
tested in our further study on the online decoding and control.

V. CONCLUSION

This study provided a solution to extract MU discharge
information accurately across forearm positions for dexterous
multi-finger force prediction in real-time. The results showed
that the proposed NRL-mulSV method using the neural
drive information extracted with multiple separation vectors
obtained the best performance compared with the conventional
EMG amplitude information and the neural drive information
extracted with a single constant separation vector. Our results
demonstrated the robustness of the proposed method for
dexterous finger force prediction during forearm rotation,
which could potentially promote the application of the EMG
decomposition technique for continuous motion decoding in
a realistic NMI application scenario.
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