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Abstract— The employment of surface electromyo-
graphic (sEMG) signals in the estimation of hand kinemat-
ics represents a promising non-invasive methodology for
the advancement of human-machine interfaces. However,
the limitations of existing subject-specific methods are
obvious as they confine the application to individual mod-
els that are custom-tailored for specific subjects, thereby
reducing the potential for broader applicability. In addition,
current cross-subject methods are challenged in their abil-
ity to simultaneously cater to the needs of both new and
existing users effectively. To overcome these challenges,
we propose the Cross-Subject Lifelong Network (CSLN).
CSLN incorporates a novel lifelong learning approach,
maintaining the patterns of sEMG signals across a varied
user population and across different temporal scales. Our
method enhances the generalization of acquired patterns,
making it applicable to various individuals and temporal
contexts. Our experimental investigations, encompassing
both joint and sequential training approaches, demon-
strate that the CSLN model not only attains enhanced
performance in cross-subject scenarios but also effectively
addresses the issue of catastrophic forgetting, thereby aug-
menting training efficacy.

Index Terms— sEMG, cross-subject, continuous estima-
tion, lifelong learning, hand kinematics.

I. INTRODUCTION

THE advancements in robotics, intelligent devices, and
internet technologies have significantly increased the
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demand for efficient Human-Machine Interfaces (HMI), espe-
cially in areas like smart homes, industrial automation, and
healthcare. User-friendly and high-quality interaction signals
are essential in these contexts. Surface electromyography
(sEMG) is a promising technology in this regard, playing a
critical role in interpreting human intentions from biological
signals. Accurate extraction of motion intentions from sEMG
signals is crucial in high-precision related tasks of HMI,
ensuring reliable and responsive control. The effectiveness of
sEMG, as demonstrated in various studies [1], [2], [3], [4],
[5], also shows considerable potential in the development of
HMI.

Deep learning methods are widely applied in sEMG-
based motion estimation tasks. Techniques employing artificial
neural networks (ANNs) [6] have been proposed for joint
motion estimation, although they are typically limited to
specific degrees of freedom. Subsequent advancements intro-
duced methods based on Recurrent Neural Networks (RNNs)
for hand pose estimation [7], despite facing computational
challenges. Recent developments include the integration of
Convolutional Neural Networks (CNNs) with Long Short-
Term Memory (LSTM) networks [4], [8], enhancing both
performance and efficiency. However, existing methods pri-
marily focus on individual subjects, underscoring the necessity
for more universal approaches capable of handling mul-
tiple subjects and supporting knowledge transfer among
them.

sEMG signals are markedly varied among individuals, pre-
senting substantial challenges in developing versatile models
for wide-ranging applications. Subject-specific models excel
in certain gesture recognition tasks, yet they are impractical
for broader applications, such as those in public facilities
and industrial settings. The use of a unique model for each
individual, coupled with frequent personnel changes, can lead
to substantial costs. Thus, there is a clear need for a singu-
lar, adaptable model that ensures seamless integration across
various users, devices, and scenarios. This model must be
robust and flexible, capable of accommodating the unique
characteristics of surface electromyography (sEMG) signals
from each user without requiring extensive training.

Recent advancements in cross-subject studies tackle sEMG
signal variability through two primary strategies. Transfer
learning techniques, such as those described in [9], adapt
subject-specific models for a broader user base. For example,
Fan et al. [10] developed a hand gesture recognition method
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benefiting both intact-handed individuals and amputees.
Yet, these methods encounter practical limitations, includ-
ing increased memory demands and scalability challenges,
necessitating distinct models for each user. As an alter-
native, cross-subject methods have emerged. Our previous
research [5] introduced a BERT-based approach with µ-
law normalization, enabling effective cross-subject training.
Similarly, Long et al. [11] utilized adversarial transfer in
a multi-scale model for sEMG signal interpretation across
subjects. However, these prevalent transfer learning methods,
including those of Long et al. [11], often prioritize new users
and struggle to maintain robust predictions for previous users,
leading to catastrophic forgetting and an inability to retain
information from earlier users. In contrast, self-contained
models like our BERT-based approach [5] focus on current
training data but face difficulties in preserving knowledge from
past users.

Lifelong learning is crucial for addressing catastrophic
forgetting in sEMG-based tasks, combining adaptability and
knowledge preservation. This method overcomes the limita-
tions of subject-specific models and boosts efficient learning
and memory usage. Progressive neural networks [12], [13]
have notably tackled catastrophic forgetting in gesture classifi-
cation. Classic lifelong learning methods like Learning without
Forgetting (LwF), Elastic Weight Consolidation (EWC), and
Gradient Episodic Memory (GEM) [14] have been applied in
sequential time series. Nonetheless, applying lifelong learning
to continuous sEMG estimation presents unique challenges,
such as complex feature extraction and balancing between
preserving existing knowledge and adapting to new users.
Research exploring specific lifelong learning strategies for
continuous sEMG estimation remains limited.

In this study, we introduce an innovative cross-subject
model that incorporates lifelong learning, effectively address-
ing variability in sEMG-based tasks and demonstrating
superior performance. Notably, this research marks the first
adaptation of lifelong learning to sEMG-based regression
tasks.

Our contributions are summarized as follows:
• We propose a cross-subject model that excels in contin-

uous sEMG prediction.
• Our model incorporates a novel lifelong learning strategy

within the CSLN, which rapidly adapts to new users while
retaining knowledge from previous users.

• Our method achieves state-of-the-art performance in hand
kinematics estimation, surpassing existing methods not
only in cross-subject settings but also in lifelong learning
scenarios.

II. RELATED WORK

A. Transfer Learning
Transfer learning [9] is a paradigm in artificial intelligence

where knowledge gained from solving one problem is applied
to a different but related problem. This approach has garnered
significant attention due to its ability to leverage pre-existing
knowledge and adapt it to new tasks, often leading to improved
performance or efficiency, especially when labeled data for
the target task is limited. By transferring knowledge learned
from a source domain to a target domain, transfer learning

enables models to generalize better and requires less training
data, making it particularly useful in scenarios where data
collection is expensive or time-consuming. Fine-tuning and
Domain Adaptation are two widely used transfer learning
methods.

B. Lifelong Learning
Lifelong learning, alternatively known as continual or incre-

mental learning, has risen as a key approach to counter
catastrophic forgetting, a phenomenon causing models to
underperform or fail with changing data distributions. This
leads to a rapid decline in performance on previously learned
tasks. Recent research in this field, exemplified by works
such as [15], [16], and [17], can be categorized into four
main strategies [15]: gradient-based, modularity, memory-
based, and meta-learning methods.

Gradient-based methods focus on modulating task gradients,
utilizing techniques such as gradient alignment [18], [19],
regularization [20], and knowledge distillation [21], [22] to
mitigate forgetting.

Modularity methods aim to balance between a single net-
work that is prone to forgetting and multiple networks that
impede task transfer. These methods adapt by adding new
parameters for new tasks [23], [24] or implementing sparsity
strategies [25], [26].

Memory-based methods excel in long-term knowledge
retention, typically involving replay or rehearsal techniques
[27], [28], [29], [30] and generative memory models [31],
[32], [33].

Finally, meta-learning approaches [34], [35] focus on auto-
matically learning inductive biases related to architecture, data,
and learning parameters, which traditionally required manual
design.

III. CROSS-SUBJECT MODEL WITH LIFELONG
LEARNING

A. Data Preprocessing
In this study, the Root Mean Square (RMS) feature is

extracted utilizing a sliding window of 100 ms with a 0.5 ms
step, as per the long exposure method [4]. This window
size and step are chosen to balance temporal resolution and
computational efficiency, effectively reducing noise and reveal-
ing more sequential features in the data. Following feature
extraction, a logarithmic normalization, specifically µ-law
normalization [36], [37], is applied to standardize the extracted
features. The normalization can be formulated as:

F(xt ) = sign(xt )
ln(1 + µ|xt |)

ln(1 + µ)
(1)

Here, xt denotes the input raw data, and µ is a hyperparameter,
set to µ = 220 in our study. The choice of µ is based on
an exploration range from 25 to 225, optimizing for the best
performance in data normalization.

B. Cross-Subject Lifelong Network
The Cross-Subject Lifelong Network (CSLN) features an

encoder-decoder architecture with two main branches: a
regression branch and a classification branch. In the regres-
sion branch, a Temporal Convolutional Network (TCN) based
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Fig. 1. CSLN Model Architecture: A Dual-Branch Cross-Subject Model for sEMG-Based Hand Motion Prediction with Enhanced Knowledge
Retention. The regression branch is responsible for predicting motion based on learned knowledge, while the classification branch functions to
select relevant knowledge. Common knowledge is stored by the TCN and regressor in the regression branch, whereas individual knowledge is
stored in the adapters.

encoder extracts shared knowledge from sEMG signals, while
individual features are generated through adapters. The clas-
sification branch, also employing a TCN, predicts subject
labels, aiding in selecting specific knowledge for the regression
branch. Two decoders then reconstruct the input signal using
these features, enhancing cross-subject task performance.
Figure 1 shows the CSLN structure.

The final phase of CSLN involves regression and classi-
fication tasks to predict hand motion and classify subjects.
Adapters and linear layers with distinct parameters are used
for adapting to new tasks, maximizing the utility of extracted
features.

Adapters, as defined by Houlsby et al. [38], are compact
neural network modules placed between pre-trained base lay-
ers and task-specific layers. They efficiently adapt models
to new tasks or domains by learning limited task-specific
parameters. In CSLN, adapters play a crucial role in acquir-
ing subject-specific parameters, supporting the adaptation to
various subjects and the lifelong learning process. Figure 2
displays the adapter structure used in CSLN, with the adapter
function Ada(x) specified as follows:

xdown = FC(c,c/2)(x)xnl = GELU(xdown)

output = FC(c/2,c)(xnl) + x (2)

where GELU represents the Gaussian Error Linear Unit activa-
tion function and FC(cin ,cout ) denotes a linear layer with input
channel cin and output channel cout .

Several key components are essential to outline the model’s
procedural steps. The input sEMG signal is denoted as x ∈

Rc×t , with c representing the number of channels and t the
window size. Regression and classification tasks use encoders
Er and Ec, and their corresponding decoders are Dr and Dc.
The outputs include the classification soft label ŷc, motion pre-
diction ŷr , and reconstruction x̂ . The overall logical procedure
is:

hc = Ec(x) ŷc = C(hc) hr = Er (x, ŷc)

ŷr = R(hr ) x̂r = Dr (hr ) x̂c = Dc(hc) (3)

Fig. 2. The Lightweight and Modular Adapter Architecture in CSLN for
Knowledge Retention.

where the hr and hc represent the features extracted for
regression and classification, respectively. In order to describe
the process, we define the process T C N(ci ,co)(I) as follows:

o1 = F1
(ci ,co)(I) + I o2 = F2

(co,co)(o1) + o1

o3 = F4
(co,co)(o2) + o2 O = F8

(co,co)(o3) + o3 (4)

Here, I and O represent the input and output, ci , co represents
the input and output channel of the whole T C N(ci ,co) process,
Fd

(cin ,cout )
refers to the causal and dilated convolutions used in

TCN [39], where d is the dilation rate, and cin and cout are
the input and output channels of F , respectively.

Then, the operation of hc = Ec(x), hr = Er (x, ŷc) and
x̂ = D(h) is further detailed as follows:

hc = Ec(x) = T C N(c,ch)(x)

ai = Adai (T C N(c,ch)(x))

hr = Er (x, ŷc) = ŷT
c A

x̂ = D(h) = T C N(ch ,c)(h) (5)

where c signifies the channel number for the input RMS fea-
ture of sEMG, and ch represents the hidden feature channel in
our proposed model. N represents the total number of subjects
among all trained tasks. The vector A = {a1, a2, . . . , an}, n
represents the number of subjects in all the previous tasks.
x̂ is the reconstructed sEMG signal. The decoder is divided
into two parts: Dr for regression and Dc for classification,
operating on the respective hidden features hr and hc.

Linear layers, in conjunction with adapters, function as clas-
sifiers and regressors in our model, enabling the inference and
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output generation from hidden features, the final processing
steps are summarized as:

ŷc = C(hc) = Softmax(FC(c,N )(Adapter(hc)))

ŷr = R(hr ) = FC(c,co)(Adapter(hr )) (6)

Here, C and R denote the classifier and regressor, respectively,
where N is the number of subjects and co signifies the output
channels, with co = 10 in this study.

The loss function is formulated as:

Ltotal = Lr + Lrec + λLc (7)

In this equation, Lr , Lrec, and Lc represent the regression loss,
reconstruction loss, and classification loss, respectively. The
hyperparameter λ is employed to balance these components.

Specifically, the loss functions are defined as:

Lr = MSE(ŷr , yr ) Lc = CE(ŷc, yc)

Lrec = MSE(x̂r , x) + MSE(x̂c, x) (8)

Here, MSE refers to the mean square error loss and CE to the
cross-entropy loss. The terms yr and yc are the ground truth
labels for hand motion and subject classification, respectively.

C. Lifelong Learning Strategy
While the Cross-Subject Lifelong Network (CSLN) demon-

strates proficiency in cross-subject scenarios, a challenge
arises in generalizing to new users without compromising the
knowledge acquired from previous users. To tackle this issue,
we integrate a lifelong learning strategy into CSLN.

Inspired by existing research in transfer and lifelong learn-
ing [33], [40], our approach employs a hybrid strategy that
combines modularity with rehearsal. This method utilizes the
modularity concept to transform the lifelong learning regres-
sion challenge into a more manageable classification problem,
which is then addressed using a rehearsal technique.

For the regression branch, we employ a modularity
method [15], adopting the adapter structure commonly used in
transfer learning for fields such as natural language process-
ing [38] and computer vision [41]. This structure facilitates
efficient parameter expansion and retraining for new tasks.

The classification branch aids in selecting knowledge via the
outputs of multi-head adapters. These adapters produce feature
outputs that are aggregated to form a comprehensive feature
vector. The vector, when multiplied by individual classification
labels, produces the regression feature, enabling the network to
learn continually from new users while preventing catastrophic
forgetting. For transferring knowledge in the classification
branch, we implement a replay strategy, incorporating a mem-
ory module.

The memory module comprises a storage buffer and a
sampler. The buffer stores observed RMS features with asso-
ciated subject labels, assigned sequentially as array indices for
efficient memory usage. It ensures equal capacity for the data
from each subject. The sampler uniformly selects inputs from
all subjects to maintain consistent batch sizes. After training,
it randomly adds new observations to the buffer, supporting
continuous learning and effective memory management.

The lifelong learning process in our model is delineated into
three critical phases:

(1) Preparing Phase: Before embarking on new tasks, the
model undergoes an expansion process. This involves integrat-
ing new adapters and inheriting parameters from previously
used adapters linked to user classification. To accommodate
an increasing number of subjects across all tasks, we expand
the linear layer in the classifier C accordingly.

(2) Training Phase: In this phase, the model trains on
new tasks. A sampler effectively merges input data from new
subjects with replay data proportionately, based on the number
of subjects. Due to the absence of ground truth for hand motion
in old data, we modify the loss function to:

Lli f elong = Lr + L′
rec + λL′

c (9)

Here, L′ signifies the loss derived from uniformly sampled
data, whereas L pertains to the loss from solely new data.
This equation aims to balance the input from different data
sources in the lifelong learning framework. The parameter λ,
which is pivotal for the role classification plays in maintaining
knowledge of previously trained subjects, is set to 1 × 104 in
our study.

(3) Storing Phase: Post-training, the sampler randomly
selects an equal number of observations for each new sub-
ject, allocating them to the memory buffer. In our approach,
100 observations per subject are stored in the buffer.

IV. EXPERIMENTS

A. Dataset
The Ninapro dataset [42], a widely recognized resource

in the field of sEMG, provides comprehensive data cov-
ering both intact and amputated hands, encompassing over
300 acquisitions from 10 datasets, provides a diverse range
of electromyography and kinematics data. This dataset is
notable for its extensive collection of sEMG signals captured
using the Delsys Trigno Wireless System with 12 electrodes.
Additionally, it includes hand kinematics data measured by
22 joint angles via CyberGlove II data gloves. The sEMG
data is sampled at a frequency of 2 kHz, while the hand
kinematics, initially recorded at 20 Hz, are resampled to
match the 2 kHz sEMG data. As such, the Ninapro dataset is
an invaluable benchmark for evaluating sEMG-based human-
machine interfaces.

In this study, focus is placed on six hand movements related
to grasping, targeting 10 finger joints to ensure data quality. All
40 subjects from DB2 are included in cross-subject settings,
showcasing our structure’s effectiveness. In all settings, 7/10
of each subject is used for training and 3/10 for testing.
In lifelong learning experiments, these subjects are divided
into 5 tasks (ti , where i ∈ 1, . . . , 5), with sequential training
on each task. To facilitate a thorough evaluation and address
potential biases, 5 varied task sequences are generated, detailed
in Table I.

B. Evaluation Criteria
To rigorously assess and benchmark our method against

other models, we utilize several key evaluation criteria:
1) Pearson Correlation Coefficient (CC): The Pearson Cor-

relation Coefficient (CC) is a commonly employed metric
that quantifies the linear relationship between two variables.
Ranging from −1 to 1, a higher CC value indicates a stronger
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TABLE I
THE DETAIL OF ALL THE TASK SEQUENCES. THE NUMBERS IN THE TABLE REPRESENT THE NUMBER OF SUBJECTS IN NINAPRO DB2. Sx

REPRESENTS A TASK SEQUENCE, WHILE Tx REPRESENTS A TASK

Fig. 3. Data description for this work. CyberGlove channels are shown
in (a), where the red dots represent the ten joints to be estimated while
the yellow dots represent the unchosen joints. Six hand movements are
introduced and shown in (b).

correlation between the predicted and actual movements,
denoting enhanced performance in motion estimation.

2) Normalized Root Mean Square Error (NRMSE): NRMSE,
a derivative of Root Mean Square Error (RMSE), quantifies
the deviation between predicted and observed values. It is
normalized for joint angles as follows:

N RM SE =
RM SE

θmax − θmin
(10)

where θmax and θmin represent the maximum and minimum
true joint angle values, facilitating comparison across different
joints.

3) Unbiased Standard Deviation (σ ): The unbiased standard
deviation (σ ) measures the dispersion of data, assessing the
stability of our method. The σ for 10 joints per subject is
calculated, with smaller values indicating reduced dispersion
and thus higher estimation consistency.

4) Lifelong Learning Evaluation: For evaluating lifelong
learning performance, we adopt criteria from gradient episodic
memory [18]:

Average Accuracy on Tasks (ACCT): This metric reflects
the overall proficiency of the model across all tasks, indicating
its ability to preserve prior knowledge while adapting to new
tasks.

ACCT =
1
T

T∑
i=1

RT,i (11)

where Ri, j means the performance of model trained after
previous i tasks performed on the j th task. T means the total
number of tasks, and the same applies throughout.

Average Accuracy on Subjects (ACCS): Focused on the
final model, ACCS evaluates the average accuracy across
all subjects, indicating the model’s effectiveness in retaining
knowledge and adapting across subjects.

ACC S =
1
N

N∑
i=1

CC(Yi , Ŷi ) (12)

where CC represents the calculation of PCC, Yi denotes the
true movement of the i th subject and Ŷi denotes the predicted
movement of the i th subject.

Backward Transfer (BWT): This measures the effect of
learning new tasks on the performance of previous tasks,
revealing the capability to maintain performance on earlier
tasks.

BW T =
1

T − 1

T −1∑
i=1

RT,i − Ri,i (13)

Forward Transfer (FWT): FWT assesses the impact of
prior learning on new tasks, indicating the ability to utilize
previous knowledge for new tasks.

FW T =
1

T − 1

T∑
i=2

Ri−1,i − bi (14)

The Wilcoxon signed-rank test, adjusted by the Bonferroni
correction, is used to evaluate the statistical significance of our
method.

C. Baseline Methods
In this study, our method is compared against two transfer

learning approaches (fine-tuning and domain adaptation) and
two lifelong learning techniques (EWC and LwF).

Fine-tuning adapts pre-trained models to specific tasks,
refining parameters with new data. Domain adaptation trans-
fers knowledge between different domains, assessing the
ability of our model to mitigate catastrophic forgetting.

EWC and LwF are lifelong learning methods focusing on
knowledge preservation from previous tasks. EWC regularizes
model parameters based on their task significance, while LwF
utilizes knowledge distillation for transitioning knowledge
between tasks. These methods evaluate the efficacy of our
strategy in a lifelong learning context.

D. Experimental Results
The effectiveness of our method in continuous hand move-

ment estimation tasks is rigorously evaluated against previous
cross-subject approaches. All models are developed using the
PyTorch framework [43] and trained on an NVIDIA GeForce
RTX 3090 GPU with adam optimizer. The training process
spans 400 epochs, with 200 epochs dedicated to each transfer
phase. Our experiments are conducted under two distinct
scenarios: cross-subject training and cross-subject lifelong
learning.

In the cross-subject training scenario, models are simulta-
neously trained and validated using data from all 40 subjects.
For cross-subject lifelong learning, models undergo sequential
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TABLE II
PARAMETER STUDY OF µ W.R.T. CC AND NRMSE ON

ALL 40 SUBJECTS

TABLE III
AVERAGE PERFORMANCE OF DIFFERENT MODELS ON 10 JOINTS

AND 6 MOVEMENTS OF 40 DIFFERENT SUBJECTS IN

CROSS-SUBJECT SETTING

training across tasks segmented by subjects. To assess perfor-
mance, we calculate metrics such as NRMSE and PCC, along
with monitoring the average training time per epoch and the
total convergence time for each training session.

Parameter selection was meticulously conducted after exten-
sive trials with various configurations. We standardized all
models to train with a learning rate of 0.0001, which is halved
post-200 epochs. The µ parameter in µ-law normalization
is fixed at 220, as determined from a parameter range study
spanning 25 to 225. The results of this study are detailed in
Table II. Additionally, the λ parameter is set at 1 × 104,
optimizing the balance between different loss components.

1) Cross-Subject Settings: To demonstrate the efficacy of
our method in a cross-subject context, we conducted compar-
ative training with state-of-the-art cross-subject models [5] and
our CSLN. This training encompassed all 40 subjects, and the
results are detailed in Table III.

Our method showcases the superior performance, achieving
average Pearson Correlation Coefficient (CC) and Normalized
Root Mean Squared Error (NRMSE) values of 0.8552 ±

0.08 and 0.0782 ± 0.03, respectively, for individual subjects.
These results significantly outperform all BERT-based meth-
ods, including standard BERT (0.8051 ± 0.08, p < 0.005;
0.09 ± 0.03, p < 0.005), sBERT (0.8300 ± 0.09, p < 0.005;
0.09 ± 0.03, p < 0.005), BERT-GHM (0.7908 ± 0.14, p <

0.005; 0.10 ± 0.03), sBERT-GHM (0.7878 ± 0.09, p < 0.005;
0.09 ± 0.03, p < 0.005), BERT-OHEM (0.7768 ± 0.10,
p < 0.005; 0.10 ± 0.03), and sBERT-OHEM (0.7975 ± 0.11,
p < 0.005; 0.09 ± 0.03, p < 0.005), as confirmed by the
Wilcoxon signed-rank test.

An interesting observation is that the training convergence
time increased with the number of subjects included. How-
ever, it is noteworthy that in the lifelong learning setup, the
convergence time per subject was, on average, approximately
120 seconds shorter compared to direct task training. This
indicates enhanced efficiency in the lifelong learning scenario.

2) Lifelong Learning Settings: In the lifelong learning exper-
iments, a random shuffle is performed on the 40 subjects
from the Ninapro DB2 dataset. These subjects are then ran-
domly divided into 5 tasks, forming various task sequences.
To mitigate potential biases, this process is repeated, creating

TABLE IV
PERFORMANCE OF EVERY TASK SEQUENCE ON 10 JOINTS

AND 6 MOVEMENTS OF 40 DIFFERENT SUBJECTS IN LIFELONG

LEARNING SETTING WITH DIFFERENT LEARNING STRATEGIES

Fig. 4. The memory ratio, which is defined as the ratio of memory
usage between the model after direct training or transferring and the
model after the lifelong learning procedure.

5 task sequences as documented in Table I. These sequences
are referred to as Si (where i ∈ 1, . . . , 5), with their detailed
division provided in Table I. The evaluation criteria, based on
the correlation coefficient (CC), are presented in Table IV.

Furthermore, significant improvements are observed in the
average performance in terms of ACCT and ACCS, compared
to other approaches. The consistent results in FWT across
various methods underscore the comparable efficacy of the
proposed strategy.

A detailed analysis reveals that lifelong learning meth-
ods excel in BWT, surpassing transfer learning methods
and affirming their superiority in retaining knowledge. This
demonstrates their effectiveness in preserving previously
acquired knowledge while adapting to new tasks. Specifically,
our lifelong learning approach shows exemplary performance
in BWT, ACCT, and ACCS, underscoring its robustness
in knowledge retention. However, a lower performance in
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TABLE V
DETAILED CC RESULT OF EACH TASK OF TASK SEQUENCE S1

ON 10 JOINTS AND 6 MOVEMENTS OF 40 DIFFERENT SUBJECTS IN

LIFELONG LEARNING SETTING WITH DIFFERENT LEARNING

STRATEGIES

Fig. 5. The variation of ACCS after each training procedure using
different strategies on different task sequences.

the FWT criterion indicates a potential avenue for further
enhancement.

The experimental results reveal that the arrangement and
order of subjects minimally impact the performance of our
method. Similar levels of performance are observed across
all generated task sequences in various evaluation criteria,
indicating that the specific arrangement of subjects within
task sequences does not significantly influence the overall effi-
cacy. This finding implies that flexibility in selecting subject

division and order can be tailored to practical requirements
without adversely affecting the effectiveness of the lifelong
learning approach. To demonstrate the impact of knowledge
retention on overall performance, Fig. 5 illustrates the varia-
tion in ACCS following each training session using different
strategies.

As depicted in Figure 6, the knowledge retention perfor-
mance of our method is showcased on two channels of subject
s8, corresponding to task T1 in task sequence S1 from the
Ninapro DB2 dataset. The figure highlights three distinct
periods for each strategy: after training on T1, after training
on T3, and after completing the final task, T5.

While our method effectively mitigates catastrophic for-
getting, it cannot completely eliminate it. Each new task
introduces a heightened risk of forgetting the old tasks,
inevitably leading to a decline in average performance across
all tasks, especially as the number of tasks in a sequence
increases. Here, we present an extreme case involving 40 sub-
jects divided into 40 tasks, resulting in an accuracy shrinkage
to 0.70. However, even in this scenario, our method still
outperforms other methods on 5 tasks, underscoring its
superiority.

Furthermore, the lifelong learning strategy exhibits acceler-
ated convergence compared to training models from scratch for
each task. Utilizing knowledge from previous tasks facilitates
more efficient learning on subsequent tasks, thereby reducing
the convergence time. This efficiency gain enhances training
speed, potentially expediting model deployment in practical
scenarios.

Regarding memory usage, the lifelong learning model
consistently outperforms models that are directly trained or
fine-tuned. The CSLN model maintains a fixed memory foot-
print based on the number of subjects, whereas the memory
requirements of directly trained models escalate with the
number of tasks. In scenarios with 40 subjects divided into
40 tasks, the memory consumption of direct training or fine-
tuning models can be nearly 20 times greater than that of
the lifelong learning approach. However, achieving an optimal
scenario of one task for all 40 subjects remains a challenge
in real-world contexts. As visualized in Figure 4, the memory
ratio—defined as the ratio of memory usage between models
post-direct training or transfer and post-lifelong learning—
consistently favors lifelong learning models, with a ratio
greater than or equal to 1. This consistent efficiency advantage
highlights the value of lifelong learning in optimizing memory
usage.

V. DISCUSSION

The CSLN model, as proposed in this study, demonstrates
remarkable efficacy in estimating finger joint movements from
sEMG signals for the environments that need a singular,
adaptable model. It exhibits superior performance in both
cross-subject and lifelong learning scenarios. Moreover, the
adaptability to various temporal scales is implied by the
utilization of Root Mean Square (RMS) features extracted
with a sliding window, allowing it to accommodate sEMG
data at different temporal resolutions. Additionally, its cross-
subject training capability suggests the ability to generalize
across individuals, including variations in the temporal pat-
terns of their sEMG signals, further highlighting its practical
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Fig. 6. Performance Variation of Model on Subject s8 from T1 of S1. The figure displays the estimation results of subject s8, comparing method
performance across three periods: after training on T1, T3, and the final task T5. “FT” and “DA” denote fine-tuning and domain adaptation techniques,
respectively. Red curves represent ground truth, while blue curves depict the estimation. All the results are smoothened by the AvgSmooth method
mentioned in [5].

relevance in the field. Utilizing evaluation metrics such as CC
and NRMSE, the model achieves a best CC of 0.8552 and
an NRMSE of 0.0782, underscoring its advancement over
previous cross-subject models, particularly for subjects with
intact hands. Such results solidify the position of our method
as state-of-the-art in cross-subject settings, highlighting its
practical relevance in the field.

In addition, the novel lifelong learning method integrated
into CSLN demonstrates remarkable efficiency in training.
This approach surpasses traditional model training from ran-
dom initialization, showcasing enhanced knowledge retention
and faster adaptation to new tasks. With the highest BWT of
about -0.10, the model leverages adapters and a memory mod-
ule for more rapid convergence and reduced training duration.
The model’s expansion, facilitated by lightweight adapters, not
only augments its practicality and scalability but also achieves
optimal memory utilization, requiring approximately only

one-twentieth of the parameters compared to other methods.
However, the underutilization of previously learned knowledge
may account for the lower performance in the FWT.

While the CSLN model presents a versatile solution for
cross-subject sEMG applications, it is also crucial to acknowl-
edge certain limitations. The model’s assumption of distinct
subjects within each task sequence may affect its generaliza-
tion to scenarios with repeated subjects, potentially impacting
real-world applicability. There is also room for improvement
in inference efficiency, which is a vital aspect for practical
deployment.

VI. CONCLUSION

This paper introduces the CSLN, a novel method for accu-
rate continuous hand gesture estimation. Employing a lifelong
learning strategy, CSLN adeptly navigates the complexities
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of hand movement dynamics, effectively addressing cross-
subject task challenges and significantly reducing catastrophic
forgetting. Our method outperforms existing approaches in
terms of accuracy and knowledge retention, making it a
promising solution for practical applications such as in fac-
tory settings and smart home environments. These scenarios
demand versatile methods that adapt seamlessly across various
subjects and diverse spatial-temporal contexts. The application
of CSLN to wider domains and an array of hand motion tasks
promises to enhance its practical utility further. Future research
directions include expanding the capabilities to encompass a
broader spectrum of hand gesture dynamics and exploring its
potential in other relevant fields. The aim is to contribute
substantially to the advancement of hand motion estimation
systems, fostering the development of robust and adaptable
solutions.
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