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BiLSTM-Based Joint Torque Prediction From
Mechanomyogram During Isometric

Contractions: A Proof of Concept Study
Jongsang Son , Member, IEEE, Fandi Shi , and William Zev Rymer , Life Member, IEEE

Abstract— Quantifying muscle strength is an important
measure in clinical settings; however, there is a lack of
practical tools that can be deployed for routine assessment.
The purpose of this study is to propose a deep learn-
ing model for ankle plantar flexion torque prediction from
time-series mechanomyogram (MMG) signals recorded dur-
ing isometric contractions (i.e., a similar form to manual
muscle testing procedure in clinical practice) and to eval-
uate its performance. Four different deep learning models
in terms of model architecture (based on a stacked bidi-
rectional long short-term memory and dense layers) were
designed with different combinations of the number of
units (from 32 to 512) and dropout ratio (from 0.0 to 0.8), and
then evaluated for prediction performance by conducting
the leave-one-subject-out cross-validation method from the
10-subject dataset. As a result, the models explained more
variance in the untrained test dataset as the error metrics
(e.g., root-mean-square error) decreased and as the slope
of the relationship between the measured and predicted
joint torques became closer to 1.0. Although the slope
estimates appear to be sensitive to an individual dataset, >
70% of the variance in nine out of 10 datasets was explained
by the optimal model. These results demonstrated the
feasibility of the proposed model as a potential tool to
quantify average joint torque during a sustained isometric
contraction.

Index Terms— Manual muscle testing, muscle/joint
strength, machine/deep learning model, clinical
assessment.

I. INTRODUCTION

MUSCLE strength is considered an important measure
in our clinics, as significantly reduced muscle strength

is closely associated with severe motor impairments across a
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wide range of clinical populations [1], [2], [3], [4]. In fact, pre-
vious studies have demonstrated a strong correlation between
muscle strength and reduced motor function in a variety of
activities such as balance, walking, reaching, and grasping [5].
This underscores the significance of assessing and quantifying
muscle strength in routine clinical practice so that clinicians
can not only monitor the progress of rehabilitation over time
but also tailor rehabilitation strategies based on the individual’s
function.

Manual muscle testing (MMT), using a 6-point grading
scale, is widely considered to be the gold standard to assess
muscle strength in real clinical settings. However, the MMT
scale is quite subjective and less reliable probably due to
differences in experience and strength of examiners [6], [7].
To address these limitations, some investigators have attempted
to use a dynamometer (e.g., an isokinetic device) or a hand-
held device, which is available to better quantify muscle
strength [8], [9]. Unfortunately, such approaches appear to
be impractical for a routine assessment in real-life clinical
settings. Thus, there is a need of an alternative, more practical
approach for quantifying muscle strength-related measures.

It has been widely accepted that the electromyogram
(EMG) is closely related to muscle force [10]. Indeed, sev-
eral approaches have leveraged the EMG signals to estimate
muscle force [11], [12]. However, the acquisition of EMG
signals can be challenging due to technical constraints; for
example, proper placement of the EMG electrodes, careful
skin preparation and management of electrode-skin contact,
and environmental noise (for review, see [13]). In addition to
these technical challenges, other barriers can limit its routine
application in real clinical settings [14], [15].

For the past several decades, the mechanomyogram (MMG)
has been used to record small vibration signals from skeletal
muscle. Skeletal muscle is known to generate low-frequency
mechanical vibrations (< 100 Hz) during muscle contractions,
which are presumably linked to changes in the shape of muscle
fibers (e.g., cross-sectional area and length) in response to
neural excitation of active motor units (for review, see [16]).
Given that such mechanical signals propagate through soft tis-
sues, MMG can provide some advantages over EMG, in terms
of the sensor location, sensor-skin contact, and environmental
noise [17], [18], [19].
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Along with these advantages, a large number of studies
have demonstrated significant relationships between several
features (e.g., root-mean-square (RMS) MMG, median/mean
frequency, or zero-crossing of the MMG signals) and mean
muscle force/joint torque during a sustained isometric con-
traction [20], [21], [22], [23], [24]. Moreover, there have been
attempts to estimate joint torque from some selected features
of the MMG signals based on the machine learning models,
demonstrating a reasonably good performance [25], [26], [27],
[28]. However, in most of the previous studies, data collected
from the same participant were used for both training and test
datasets, and it is thus uncertain whether the models would
perform well with untrained test data from a new individual.
Given that there is no consistent relationship established,
it is plausible that such features may not always contain key
necessary kinetic information required for predicting muscle
force/joint torque accurately. In addition, since a slope of the
relationships between observed and predicted values has not
been often reported, there is a lack of information on whether
the previous models underpredict or overpredict the outcomes.

Recently, deep learning models have been extensively
deployed in many applications, likely due to their ability
to automatically extract features from raw sensor signals.
For example, some studies demonstrated a deep learning
model application with features from a few seconds of raw
(or processed) MMG signals. However, most studies sought
to address human movement recognition or muscle action
recognition [29], [30].

Thus, the purpose of this proof-of-concept study is to
propose a deep learning model for ankle plantar flexion torque
prediction from MMG signals and to evaluate its performance.
Considering that an isometric contraction protocol in research
is a similar form to the MMT procedure in clinical practice,
our deep learning model was designed to predict a single
numeric value corresponding to an average ankle plantar
flexion torque for a given time-series MMG signals during
isometric plantar flexion contraction.

II. METHODS

A. Dataset
This study used the dataset collected from our previ-

ous study with 10 healthy young individuals (age: 25.8 ±

2.2 years; height: 170.0 ± 10.3 cm; body mass: 66.9 ±

12.5 kg; F/M: 4/6) without any relevant medical history of
neuromuscular diseases in their lower limb [24]. Briefly, the
participants performed three isometric plantar flexion contrac-
tions at each of different contraction intensities, i.e., 10%,
20%, 30%, 50%, 70%, and 100% of maximum voluntary
isometric contraction (MVIC), and at each of different ankle
joint angles, i.e., plantar flexion of 26◦, plantar flexion of 10◦,
and dorsiflexion of 3◦ based on the neutral position (0◦ defined
as perpendicular between the shank and sole). Given that the
average maximum ankle plantar flexion torque was observed
at plantar flexion of 10◦, only the data collected at plantar
flexion of 10◦ were used for this study. During the contrac-
tions, ankle torque signals (in N m) were recorded, using
a 6-axis force measuring device (Omega160, ATI Industrial
Automation, Apex, NC, USA), and MMG signals (in mm/s2)

Fig. 1. Architecture of the proposed bidirectional long short-term
memory (BiLSTM)-based models for a joint torque prediction from time-
series 3-axis MMG signals during a sustained isometric contraction.
Four different models are based on a stacked BiLSTM and dense layers.
The hyperparameter values for the number of units of the BiLSTM and
dense layers and the dropout ratio of the dropout layer are summarized
in Table I.

were collected from the medial gastrocnemius (MG) muscle,
using a 3-axis accelerometer with z-direction perpendicular
to the skin surface over MG muscle (ADXL335, Analog
Devices, Wilmington, MA, USA; sensitivity: 300 mV/g).
These signals were collected at a sampling frequency of
2 kHz (NI USB-6259 BNC, National Instrument, Austin, TX,
USA). All procedures described above were approved by the
Northwestern University’s Institutional Review Board, and the
subjects gave informed consent forms before participating in
this study.

B. Deep Learning Model Architecture
Since our application is to predict an average ankle plantar

flexion torque value from time-series MMG signals during
isometric plantar flexion contraction for typically 3-10 seconds
(i.e., many-to-one regression problem), our deep learning
model architecture was based on a stacked bidirectional long
short-term memory (BiLSTM) and dense layers (Figure 1).
Typically, input sequential data for BiLSTM are supposed to
have the same data length (i.e., the same time step) across
trials, and were thus zero-padded to the maximum length
among all of the trials. A masking layer was added to
use original sequential data for training a model. Afterward,
as summarized in Table I, different combinations of BiLSTM,
dense, and dropout layers were implemented to explore the
effects of the model architecture and hyperparameters on the
performance of the ankle plantar flexion torque prediction.
A rectified linear unit activation layer and a dense layer with
one unit were then added to output a single, positive plantar
flexion torque value.

C. Data Preprocessing
The torque signals were lowpass filtered using a zero-

phase 4th order Butterworth filter with a cutoff frequency



TABLE I
MODEL ARCHITECTURES

of 6 Hz. For each trial, a 4-s segment in the middle of
the sustained contraction was automatically selected with the
minimum standard deviation of the segment, and the mean
ankle plantar flexion torque value of the segment was then
calculated. These mean values were normalized to body mass,
and the normalized mean torque data (i.e., N m/kg) were used
as output data of the deep learning models.

The 3-axis MMG signals were bandpass filtered using
a zero-phase 4th order Butterworth filter with a passband
of 4–40 Hz. In order to improve the performance of the
trained models, data augmentation was applied to the filtered
signals. Nine random durations ranging between 0 and 3 s
with an interval of 0.1 s were chosen, and the data points
corresponding to each of the durations from the beginning and
end of the signals were removed (e.g., for a given 1-s duration,
the first 1-s data and the last 1-s data were removed), leading
to 10 different filtered signals (i.e., original plus nine random
durations). A moving RMS filter with a 100-ms window size
was applied to each axis of the filtered MMG signals. Principal
component analysis was conducted to determine the scores
of the moving RMS-filtered signals, and the three time-series
scores were then downsampled 10 Hz to ensure that the
maximum data length is less than 300 (i.e., up to 30-s long
data). Finally, these processed signals were used as input
data for the deep learning models. This preprocessing process
was performed in MATLAB (R2022b, The MathWorks, Inc.,
Natick, MA, USA).

D. Model Training and Evaluation
The proposed models were implemented, trained, and tested

in Python 3 using Keras (v2.10.0) [31] and TensorFlow
(v2.10.0) [32]. Most of the layer arguments were not defined,
so default arguments were used. Only the Dense1 and Dense2
layers in Figure 1 had an L2 kernel regularizer with a reg-
ularization factor of 0.01. The adaptive momentum (Adam)
optimization algorithm was used to minimize the loss function
(i.e., mean squared error) during the training of the proposed
models. The batch size and maximum number of epochs were
set to 32 and 500, respectively. During the training process,
the validation loss was calculated at the end of each epoch,
and the model with the best validation loss out of 500 epochs
was saved as the final model.

Given that the purpose of this study is to develop a deep
learning model that predicts an average ankle plantar flexion
torque value for given time-series 3-axis MMG signals from
a new individual, the prediction performance of each model
was evaluated by conducting a leave-one-subject-out cross-
validation (LOSOCV) method. The data from all subjects
except one (i.e., nine subjects in this study) were randomly

separated into training set (80%) and validation set (20%)
and were then used to train a model. The remaining data
from the left-out subject were used only to test the model
prediction performance on untrained test data. This procedure
was applied to each subject, resulting in 10 different subject
models for each combination of the hyperparameters.

The mean absolute error (MAE), RMS error (RMSE), and
RMSE normalized to interquartile range (RMSEIQR) between
the measured and predicted normalized mean torque data were
calculated as performance metrics to assess the prediction per-
formance of each trained model. Moreover, linear regression
analyses were conducted to determine the slope and coefficient
of determination (R2) of relationships between the measured
and predicted normalized mean torque data. Briefly, as the
predicted value is closer to the measured value, both slope and
R2 values are closer to 1.0. Considering that these performance
metrics may vary according to different datasets randomly
separated into training and validation, the LOSOCV procedure
for each subject model was repeated 10 times (i.e., a repeated
random sub-sampling method) and the average value of the
performance metrics from the 10 models was then used as a
representative prediction performance for each subject model.
Finally, the prediction performance for each combination of
the hyperparameters was assessed by the overall mean and
standard deviation of the representative performance metrics
across the 10 different subject models for each combination
of the hyperparameters. These model evaluations were done in
MATLAB (R2022b, The MathWorks, Inc., Natick, MA, USA).

Three-way analysis of variance (ANOVA) was conducted to
evaluate the main effects of the model architecture, the number
of units, and the dropout ratio as well as the three two-way
interaction effects on each of the aforementioned performance
metrics. Multiple comparisons were done with Tukey’s HSD
test. These statistical analyses were performed using JMP Pro
(16, JMP Statistical Discovery LLC., Cary, NC, USA) with a
significance level (α) of 0.05.

III. RESULTS

The average MAE, RMSE, and RMSEIQR across the models
were 0.021 ± 0.016, 0.028 ± 0.021, and 0.066 ± 0.050 for
training dataset, 0.033 ± 0.016, 0.054 ± 0.019, and 0.129 ±

0.044 for validation dataset, and 0.219 ± 0.006, 0.281 ±

0.007, and 0.668 ± 0.016 for untrained test dataset, respec-
tively. The linear regression analyses demonstrated that the
average slope and R2 were close to 1 for the training dataset
(slope: 0.962 ± 0.064, R2: 0.995 ± 0.005) and for the
validation dataset (slope: 0.937 ± 0.063, R2: 0.976 ± 0.013).
Based on the average slope value of 0.830 ± 0.062 and R2

value of 0.684 ± 0.032 for the untrained test dataset, it appears
that the models predict the normalized torque data reasonably
well, although the models slightly underpredicted the joint
torques.

In general, the ANOVA results demonstrated a significant
interaction between the model architecture and the number of
units and between the number of units and the dropout ratio
for all the performance metrics (p < 0.05). The interaction
between the model architecture and the dropout ratio was
significant for MAE (p = 0.013) and slope (p = 0.016) but
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Fig. 2. Correlation matrix of performance metrics including mean average error (MAE), root-mean-square error (RMSE), RMSE normalized to
interquartile range (RMSEIQR), and slope (Slope) and coefficient of determination (R2) of the regression between predicted and measured ankle
plantar flexion torque. A significance level of the correlation is presented as a different marker color: red (p < 0.05) or green (p > 0.05). The diagonal
elements present the histogram of the performance metrics.

TABLE II
PERFORMANCE METRICS BY MODEL ARCHITECTURE

not for RMSE (p = 0.076), RMSEIQR (p = 0.087), and R2

(p = 0.160).

A. Effects of Model Architecture on
Prediction Performance

Table II summarizes performance metrics for the model
architectures. There was a significant difference in the average
values of MAE, RMSE, RMSEIQR, slope, and R2 among
four different model architectures (p < 0.0001). The models
with 1 BiLSTM and 2 Dense layers (Model 2) yielded the
smallest average values of MAE, RMSE, and RMSEIQR (p <

0.05). The models with 2 BiLSTM and 1 Dense layer (Model

TABLE III
PERFORMANCE METRICS BY NUMBER OF UNITS

3) yielded the best slope of 0.849 ± 0.037. Model 3 and
the models with 2 BiLSTM and 2 Dense layers (Model 4)
yielded a significantly better slope value than the models with
1 BiLSTM and 1 Dense layer (Model 1) and Model 2 (p <

0.05) as well as a significantly higher R2 value than Model 1
(p < 0.05).

B. Effects of Number of Units on Prediction Performance
Table III summarizes performance metrics for the models

with different numbers of units. There was a significant
difference in the average values of MAE, RMSE, RMSEIQR,
slope, and R2 among the models with five different numbers
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Fig. 3. Slope and coefficient of determination (R2) of the regression between predicted and measured ankle plantar flexion torque by conducting
a leave-one-subject-out cross-validation method.

TABLE IV
PERFORMANCE METRICS BY DROPOUT RATIO

of units (p < 0.0001). There was a general trend of improved
performance metrics with an increase in the number of
units. On average, the models with the number of units
of 512 yielded the smallest values of MAE, RMSE, and
RMSEIQR (p < 0.05), demonstrating the best slope (0.876 ±

0.030) and R2 (0.707 ± 0.018) values.

C. Effects of Dropout Ratio on Prediction Performance
Table IV summarizes performance metrics for the models

with different dropout ratios. The models with each of the
four different dropout ratios revealed a significant difference
in the average values of MAE, RMSE, RMSEIQR, slope, and
R2 (p < 0.0001). The models with the dropout ratio of 0.8
(DR 0.8) yielded the smallest average values of MAE, RMSE,
and RMSEIQR compared to the others (p < 0.05), but the
average values of the slope (0.771 ± 0.083) and R2 (0.668 ±

0.028) were also significantly smaller (p < 0.05). On average,
the models with the dropout ratio of 0.0 predicted the best
slope (0.857 ± 0.043) and best explained the variance in the
normalized mean torque data by ∼70% (p < 0.05), yielding
comparable average values of MAE, RMSE, and RMSEIQR to
DR 0.8.

D. Summary of Prediction Performance Across Models
The correlation matrix revealed that across the models, there

are strong correlations (r > 0.9; p < 0.001) between error
metrics (i.e., MAE, RMSE, and RMSEIQR) and moderate
negative correlation (r < –0.3; p < 0.01) of R2 with the error
metrics (Figure 2). The slope-R2 relationship was significant
(p < 0.001), but the slope did not significantly correlate with

the error metrics (p > 0.05). These correlations indicate that
R2 increases likely as the error metrics decrease and as the
slope becomes closer to 1.0. Interestingly, the R2-slope plot
demonstrates that most models predicted the mean torque
value for the untrained test dataset with a reasonable slope
(i.e., close to 1) and a moderate to strong effect size (i.e.,
R2 > 0.65).

Based on the performance metrics, the model with
2 BiLSTM and 1 Dense layers with the number of units of
512 and the dropout ratio of 0.0 was selected as an optimal
model for this study. Although the overall mean slope was
close to 1.0, the slope for each subject dataset was not always
close to 1.0, ranging between 0.35 and 1.99 (Figure 3A).
However, the prediction from the selected optimal model had
a strong effect size for the untrained test dataset (Figure 3B),
explaining >70% of the variance in the normalized plantar
flexion torque except one subject dataset (ID 9, R2

= 0.293).

IV. DISCUSSION

The purpose of this proof-of-concept study was to pro-
pose a BiLSTM-based model that predicts an average ankle
plantar flexion torque value for a given time-series 3-axis
MMG signal recorded during a sustained isometric contrac-
tion. We designed the different deep learning models in terms
of model architecture, the number of units, and dropout ratio,
and then evaluated its prediction performance by conducting
the LOSOCV method. Across the models, there was a general
trend showing that the models tend to better account for the
variance in untrained test datasets as the error metrics decrease
and as the slope becomes closer to 1.0. From the optimal
model prediction for the untrained test dataset, the slope
estimates appear to be sensitive to an individual dataset, but
>70% of the variance in nine out of 10 datasets was explained
by the model. These results demonstrate the feasibility of the
proposed model as a potential tool to quantify average joint
torque during a sustained isometric contraction.

There have been attempts to estimate joint torque from some
features of the MMG signals (e.g., RMS MMG, mean/median
power frequency, zero-crossing, etc.) based on machine learn-
ing models, demonstrating a good performance assessed by
the coefficient of determination (R2). For example, Youn and
Kim [26] introduced a multiple linear regression model that
predicted the time-series elbow joint torque with an average R2
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of 0.84 for the same-subject validation and of 0.82 for cross-
subject validation. Ibitoye, et al. [27] developed a support
vector regression model that predicted an average knee exten-
sor torque evoked by neuromuscular electrical stimulation
with R2 of 0.89 for stratified random sampling validation.
Other studies also demonstrated promising results (R2 range:
0.77–0.87) based on artificial neural network models [25],
[26], [28]. However, in most of these studies, data collected
from the same participant were used for both training and test
datasets, likely yielding a better prediction performance with
a higher R2 value compared to the LOSOCV method that was
used in this study. Thus, it is uncertain whether the previous
models would perform well with untrained test data from a
new individual. In addition, as these studies did not report
a slope of the relationships between observed and predicted
values, there is a lack of information on whether the previous
models underpredict or overpredict the outcomes.

Given that our primary goal of the proposed model was
to predict an average joint torque value for given time-series
3-axis MMG signals during a sustained isometric contraction
from a new individual (i.e., a similar form to the MMT pro-
cedure in clinical practice), the model prediction performance
was evaluated by conducting the LOSOCV method. In general,
the overall mean slope was reasonably close to 1.0 regardless
of the tested models, whereas the slope estimates for each
untrained test subject ranged between 0.35 (i.e., underpredict)
and 1.99 (i.e., overpredict). We confirmed that this wide range
of the slope estimates was unlikely due to the proposed model
issues, by conducting a repeated random sub-sampling method
(i.e., split the whole dataset into training (80%), validation
(10%), and test (10%) dataset randomly 10 times) with the
optimal model (for the test dataset, slope: 0.975 ± 0.033 rang-
ing between 0.889 and 1.008; R2: 0.978 ± 0.020 ranging
between 0.936 and 0.997). Given this superior performance of
the proposed model over the previous models, it is plausible
that the MMG signals contain subject-specific features that
make muscle force/joint torque prediction from MMG signals
more challenging.

Indeed, MMG signals are known to be affected by many
factors. For example, the MMG amplitude tends to increase
as the muscle contraction intensity increases [21], [24], [33],
[34]. Regarding the mean/median frequency of the MMG
signals during contraction at different intensities, there was
mixed evidence demonstrating an increase (e.g., first dor-
sal interosseus [22], biceps brachii [20], [21]) or decrease
(e.g., tibialis anterior [34]). These changes in the mechanical
response appear to be associated with neuromuscular factors
such as global motor unit behavior (e.g., recruitment and
rate coding) [20], muscle architecture [34], muscle fiber type
composition [35], muscle length [24], muscle stiffness [36],
intramuscular pressure [37], subcutaneous thickness [38], skin-
fold thickness [39], and arm circumference [40]. Given these
uncertainties, widely accepted variables that feature the ampli-
tude and frequency components of MMG signals may not
likely contain all the necessary information to predict kinetic
variables such as joint torque. In this regard, we proposed a
BiLSTM-based model that predicts an average joint torque
from time-series 3-axis MMG signals during a sustained

isometric contraction, rather than features of the signals. The
proposed model outperformed the previous machine learning
models when evaluated with a comparable cross-validation
method (an average R2 of 0.97), promising that the proposed
deep learning model may be more capable of learning subject-
specific features, especially from a larger training dataset.

It is also worth considering the possible effects of other
factors on the relationship between the MMG signals and
ankle plantar flexion torques across participants. Since this
study only used the MMG signals collected from MG (i.e.,
one of the plantar flexors), it is plausible that the contribution
of the other plantar flexors to the net joint torque (i.e., load-
sharing) may be different across trials and/or participants.
Moreover, co-contraction of other muscles (e.g., dorsiflexors)
could also contribute to the net joint torque slightly differently
across trials and/or participants. In addition, these neighboring
muscle contractions may likely influence the MMG signals
collected from MG (i.e., crosstalk), as observed in the forearm
muscles [41], [42], elbow flexors [43], and quadriceps femoris
muscles [44]. Considering that multiple sensors may improve
the prediction performance [45], [46], it would be interesting
to test whether the proposed model prediction better performs
when using MMG signals from more muscles (e.g., agonists
and antagonists) and/or from multiple measurement sites.

The aforementioned factors are likely altered after disuse or
neurologic diseases. For instance, compared to young neuro-
logically intact individuals, older adults and stroke survivors
demonstrated altered motor unit behavior (e.g., reduced mean
firing rates, altered recruitment threshold) [47], [48], [49],
[50], changes in muscle size, volume, and composition (e.g.,
reduced cross-sectional area, increased non-contractile tissues)
[51], [52], [53], changes in the contractile properties (e.g.,
reduced force-generating capacity, altered twitch response,
changes in fiber type composition, force-length curves) [49],
[53], [54], [55], [56], changes in muscle architecture (e.g.,
fascicle length, pennation angle, muscle thickness) [53], [57],
[58], [59], [60], [61], and changes in mechanical properties
of muscle-tendon unit tissue (e.g., increased muscle stiff-
ness, decreased tendon stiffness) [53], [58], [62], [63], [64].
These neuromuscular changes likely influence muscle vibra-
tory behaviors and thus MMG signals. However, it appears
that such alterations may not change the general shape of the
relationship between the MMG features (e.g., RMS MMG,
median power frequency) and strength measures [19], [23],
[65]. Future studies are guaranteed to evaluate the prediction
performance of the proposed model with data collected from
these populations.

There are several other important considerations in this
study. First, the MMG signals were collected from the distal
part of the MG muscle rather than the belly part. Given the
previous findings that the MMG signals may be different
in amplitude and frequency according to the measurement
site [17], [18], [34], [66], it will be interesting to test the
sensitivity of the proposed model using data collected from
different measurement sites. Second, the current study was
tested only with a dataset collected from MG at the ankle joint.
Future studies are required to test other muscles in terms of
location, muscle architecture, muscle fiber type composition,
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etc. Lastly, the RMS-filtered MMG signals were used as an
input to the proposed model, which may lose the frequency
information of the MMG signals to some extent. It would be
interesting to determine whether adding frequency information
can improve model prediction performance.
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A. Kasiński, “The image of motor units architecture in the mechanomyo-
graphic signal during the single motor unit contraction: In vivo
and simulation study,” J. Electromyogr. Kinesiol., vol. 19, no. 4,
pp. 553–563, Aug. 2009, doi: 10.1016/j.jelekin.2008.03.007.

http://dx.doi.org/10.1007/s00421-004-1211-5
http://dx.doi.org/10.1007/s00421-004-1211-5
http://dx.doi.org/10.1590/2446-4740.03615
http://dx.doi.org/10.1016/j.jelekin.2003.08.001
http://dx.doi.org/10.1038/s41598-019-52536-4
http://dx.doi.org/10.1002/mus.24454
http://dx.doi.org/10.1371/journal.pone.0096628
http://dx.doi.org/10.1371/journal.pone.0096628
http://dx.doi.org/10.1016/j.humov.2009.11.005
http://dx.doi.org/10.1016/j.medengphy.2020.05.009
http://dx.doi.org/10.1109/TNSRE.2022.3169225
http://dx.doi.org/10.1016/0006-8993(89)90550-7
http://dx.doi.org/10.1002/mus.20392
http://dx.doi.org/10.1111/j.1748-1716.2010.02100.x
http://dx.doi.org/10.1016/j.jelekin.2012.05.009
http://dx.doi.org/10.1016/j.jbiomech.2011.05.031
http://dx.doi.org/10.1016/j.jbiomech.2011.09.001
http://dx.doi.org/10.1152/japplphysiol.00782.2012
http://dx.doi.org/10.1152/japplphysiol.90930.2008
http://dx.doi.org/10.1016/j.exger.2015.08.016
http://dx.doi.org/10.1002/mus.24907
http://dx.doi.org/10.1016/j.apmr.2006.11.013
http://dx.doi.org/10.1152/japplphysiol.00226.2014
http://dx.doi.org/10.1016/j.clinph.2016.10.096
http://dx.doi.org/10.1016/j.clinbiomech.2020.105007
http://dx.doi.org/10.1002/jcsm.12720
http://dx.doi.org/10.1007/s004210000216
http://dx.doi.org/10.1016/j.clinbiomech.2015.01.004
http://dx.doi.org/10.1016/j.clinbiomech.2015.01.004
http://dx.doi.org/10.1016/j.clinbiomech.2017.08.009
http://dx.doi.org/10.1002/mus.10076
http://dx.doi.org/10.1016/j.jelekin.2008.03.007

