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DMA-HPCNet: Dual Multi-Level Attention Hybrid
Pyramid Convolution Neural Network for

Alzheimer’s Disease Classification
Shiguan Mu , Shixiao Shan, Lanlan Li , Shuiqing Jing, Ruohan Li, Chunhou Zheng , and Xinchun Cui

Abstract— Computer-aided diagnosis (CAD) plays a
crucial role in the clinical application of Alzheimer’s
disease (AD). In particular, convolutional neural net-
work (CNN)-based methods are highly sensitive to subtle
changes caused by brain atrophy in medical images (e.g.,
magnetic resonance imaging, MRI). Due to computational
resource constraints, most CAD methods focus on quanti-
tative features in specific regions, neglecting the holistic
nature of the images, which poses a challenge for a
comprehensive understanding of pathological changes in
AD. To address this issue, we propose a lightweight dual
multi-level hybrid pyramid convolutional neural network
(DMA-HPCNet) to aid clinical diagnosis of AD. Specifically,
we introduced ResNet as the backbone network and modu-
larly extended the hybrid pyramid convolution (HPC) block
and the dual multi-level attention (DMA) module. Among
them, the HPC block is designed to enhance the acquisition
of information at different scales, and the DMA module is
proposed to sequentially extract different local and global
representations from the channel and spatial domains. Our
proposed DMA-HPCNet method was evaluated on baseline
MRI slices of 443 subjects from the ADNI dataset. Experi-
mental results show that our proposed DMA-HPCNet model
performs efficiently in AD-related classification tasks with
low computational cost.

Index Terms— Alzheimer’s disease, pyramid convolution,
computer-aided diagnosis, attention mechanism, MRI.
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I. INTRODUCTION

ALZHEIMER’S disease (AD), characterised by progres-
sive brain atrophy, is the most common neurological

disorder that ultimately triggers an irreversible decline in
cognitive function [1]. Dementia-associated brain atrophy is
a key biomarker for aiding the clinical diagnosis of AD and
is essential for early diagnosis of AD and intervention in
the progression of the disease [2], [3]. Recently, magnetic
resonance imaging (MRI) has provided a non-invasive imaging
approach that can detect subtle morphological changes in the
brain [4], [5]. On this basis, many studies [6], [7], [8], [9],
[10], [11], [12], [13] have applied machine learning or deep
learning methods to assist in the clinical detection of AD and
its prodrome, i.e., mild cognitive impairment (MCI).

Conventional MRI-based computer-aided diagnosis (CAD)
[14], [15], [16], [17], [18], [19], [20] processes for AD
typically involve three steps, i.e., 1) image processing,
2) feature extraction, and 3) diagnostic model construction.
MRI preprocessing can extract specific regional information
to enhance the accuracy and efficiency of AD diagnosis.
According to the feature extraction methods [13], these CAD
methods can be divided into three categories, i.e., 1) region-
level, 2) patch-level, and 3) slice-level. Due to the abundance
of structural information in the brain, traditional methods [9]
extract whole-brain information (e.g., brain volume density
and gray/white matter volume) as input, which often suffers
from the curse of high-dimensional features [21], resulting in
difficult network fitting. To alleviate this problem, region-level
methods [12], [14], [17], [22] have been proposed to focus on
specific brain regions that tend to be highly associated with
the development of dementia (e.g., the hippocampus [7] and
entorhinal area [8]). However, this method mostly relies on
expert knowledge or pre-segmentation of regions of interest
(ROIs) (e.g., automated anatomical labeling, AAL [18]) and
only extracts quantitative regional features, ignoring global
changes in brain atrophy. Through further refining the feature
extraction scale, the patch-level methods [10], [15], [20], [23]
can extract more subtle features, and by combining different
patch blocks, they can effectively represent global atrophy
changes. However, these methods mostly involve 3D CNN to
construct classifiers, which is resource-intensive for training
numerous patch blocks. In contrast to processing whole images
or specific regions, slice-level methods [19], [24], [25] focus
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Fig. 1. Illustration of our dual multi-level attention hybrid pyramid convolutional neural network (DMA-HPCNet), which is developed on a slice
dataset after image pre-processing. DMA-HPCNet was composed of residual network as the backbone network and extended hybrid pyramid
convolution (HPC) block with dual multi-level attention (DMA) module. The classification results of AD-related classification tasks are obtained by
extracting features (i.e., Feature Pyramid) to the pooling layer and finally mapping to the fully connected layer.

on 2D slice images, potentially offering greater computational
efficiency in processing and analysis. However, over-focusing
on local features while neglecting the global nature of images
remains a challenge in slice-level methods.

In recent years, deep convolution neural networks (CNNs)
have made significant progress in MRI image processing [26],
[27]. Unlike traditional machine learning methods, CNNs
have the ability to automatically learn advanced features from
MRI data, driving the establishment of end-to-end models
in brain disease research. Although deeper networks aid
in extracting discriminative dementia features from complex
brain structures, this exacerbates the problem of computa-
tional resource strain [28], [29] especially when using 3D
CNNs [30]. Furthermore, most deep learning methods used
to aid clinical diagnosis of AD still focus on specific areas
within the same template space, neglecting the global nature of
the images. Therefore, constructing a lightweight model that
comprehensively incorporates both local features and global
features is crucial for MRI-based assisted clinical diagnosis.

To tackle aforementioned challenges, we propose a
lightweight dual multi-level attention hybrid pyramid con-
volution neural network (DMA-HPCNet) for aiding in the
clinical diagnosis of AD. Specifically, as illustrated in Fig. 1,
DMA-HPCNet introduces ResNet-50 as the backbone network
and modularly extends the hybrid pyramid convolution (HPC)
block and dual multi-level attention (DMA) module. Through
the HPC block with hierarchical feature fusion, DMA-HPCNet
can learn discriminative features at different scales from MRI
images, aiding in obtaining the global features of the images.
Then through the DMA module, the attention of channels and
spatial domains were successively applied to different scales
of dementia features, and the attention weights of different
scales were concatenated to obtain the recalibrated whole-level
dementia attention. On this basis, a global classifier is con-
structed to support clinical diagnosis of AD. We evaluated
baseline MRI scans of 443 participants from a public dataset
(i.e., the Alzheimer’s Disease Neuroimaging Initiative, ADNI)
and experimental results on multiple AD-related classification
tasks show that our proposed DMA-HPCNet method achieves

excellent performance at low computational cost in clinical
diagnosis using MRI slices. In contrast to existing approaches,
our main contributions can be summarized as follows.

1) A lightweight dual multi-level attention hybrid pyramid
convolution neural network (DMA-HPCNet) is proposed
for enhancing AD diagnosis performance, which can
automatically learn various local and global discrimina-
tive dementia features from MRI scan slices and perform
well in AD-related classification tasks.

2) The hybrid pyramid convolution (HPC) block with hier-
archical feature fusion (HFF) is designed to extract
discriminative features at different scales and char-
acterise the global features of MRI images, which
contributed to a better understanding of local brain
atrophy and global abnormal changes induced by AD.

3) The dual multi-level attention (DMA) module is pro-
posed to gradually filter key features of the channel
and spatial domains from different local spaces, and to
obtain whole-level representation by recalibrating their
attention weights, which can further improve the ability
to represent local and global brain structures.

II. RELATED WORKS
In this section, we will briefly introduce previous work

on CAD methods for AD with MRI data. Then, we will
separately review relevant studies on pyramid network and
attention mechanism in the domain of medical analysis.

A. MRI-Based Computer Aided Diagnosis for AD
According to the feature extraction method adopted by

the network, most of the existing MRI-based computer aided
diagnosis methods for AD could be categorized into region-,
patch-, and slice-level.

Generally, region-level methods extract quantitative features
from pre-segmented brain ROIs for building classification
models. For example, Turkson et al. [12] pre-segmented
whole brain MRI images into 138 unique anatomical struc-
tures and extracted AD-related features from the entorhinal
area, amygdala, hippocampus and posterior cingulate cortex.
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Khan et al. [16] used FreeSurfer [31] to process sMRI data
and extract cortical features of brain regions to improve
the classification performance of the three classifiers through
feature selection. Ayyar et al. [18] pre-aligned sMRI data
with the AAL atlas and used 3D CNN to extract ROIs
features from the hippocampus for binary classification of AD.
Although emphasizing specific changes in brain regions is crit-
ical for determining disease progression, subjective biases and
incomplete understanding of pathogenic mechanisms, region-
level approaches often require integration across levels and
approaches.

Compared with region-level methods, patch-level methods
divide the whole brain space into many smaller patches,
which enables the comprehensive capture of the correlation
and influence between different brain regions. For instance,
Ashtari-Majlan et al. [10] utilized anatomical markers in MRI
images to extract patches and train the model to classify MRI
images. Instead of a single imaging method, Suk et al. [20]
proposed a constrained Boltzmann machine (BM) to construct
patch-level deep networks by extracting pairs of 3D patches
from MRI and PET images to obtain potential feature rep-
resentations of AD. Liu et al. [32] proposed a patch-based
multimodal deep learning framework that utilizes discrimi-
native location discovery strategies and multi-modal image
feature integration to effectively capture multi-perspective
representations of brain diseases. In order to capture the
diverse changes of dementia, Lian et al. [23] proposed to
partition patches from a unified linear alignment space and
obtain deeper AD representations through combination and
pruning strategies, thereby building a hierarchical AD diag-
nostic model. These custom patch methods could capture the
diversity and global information of brain images, which can
better reflect the distribution and influence of AD in the whole
brain. However, the training of numerous patch blocks may
require more computing resources.

To alleviate the computational resource strain, slice-level
methods were proposed to construct a slice-level classifier by
selecting 2D slices from 3D MRI scans. For instance, Sarraf
and Tofighi [19] extracted the displacement and scale-invariant
features of slice images from different layers of CNN and
LeNet-5 architectures to discriminate the structural MRI data
of AD. For many slices, Kumar and Nandhini [25] proposed
entropy-based feature extraction combined with transfer learn-
ing to improve the efficiency of AD diagnosis by selecting
MRI slices with the most information in the training stage.
Kim et al. [33] applied slice-selective learning and generative
adversarial networks to build general models of AD and NC
features in different PET image acquisition environments. The
slice-level approach provides rapid and targeted information
for clinical diagnosis of AD. However, how to improve the
ability to obtain the global features of the image is still a
challenge for this method.

B. Pyramid Network
In medical imaging, pyramid networks [34], [35] extend par-

allel branches or layers to capture diverse features, accurately
capturing pathological characteristics specific to the disease
under different perceptions. As a distinct neural network

architecture, pyramid networks often connect and merge dif-
ferent layers using different methods (e.g., pyramid pooling
operation, feature pyramid fusion, and multi-scale convolu-
tion [36]). For example, Chen et al. [37] achieved feature
extraction and integration at different scales by introducing
expansion ratios in convolution kernels without increasing
network parameters. Building on this, Mohamed et al. [38]
introduced a spatial pyramid pooling module to improve the
automated screening of various eye diseases. Ge et al. [39]
employed multi-scale convolution network in parallel over
multiple tissue regions to extract dementia features of various
sizes. While these pyramid networks can acquire local infor-
mation at different scales, an efficient method is still required
for deeper structural information.

C. Attention Mechanism
Recently, attention mechanism [40], [41] has shown remark-

able performance in addressing the suboptimal ability of
models to detect pathological changes in medical images
caused by irrelevant or noisy information (e.g., motion arti-
facts and radiographic artifacts). For instance, Aetesam and
Maji [42] proposed symmetric group attention blocks to
enhance the practicality of MRI image processing within noise
level ranges. Sinha et al. [43] used attention-guided deep
networks to harmonize images from multiple MRI datasets,
addressing noise effects caused by different scanning protocols
and devices. Additionally, Yan et al. [44] proposed various
image filtering methods and a pyramid squeeze attention
mechanism for AD image classification, considering diverse
pathological variations of the disease in different regions.
Illakiya et al. [45] integrated enhanced non-local attention
(ENLA) and coordinate attention modules to extract both
global and local features from MRI images. Although attention
mechanisms have excelled in computer-aided diagnosis for
AD, research focusing on applying attention at different scales
of pathology while considering the whole nature of images
remains limited. It’s worth noting that combining pyramid
network with attention mechanism might be a promising
direction to explore.

III. MATERIALS AND METHOD
In this section, we will introduce the materials used in the

experiments, followed by a detailed analysis of the framework
of the method, and then, an explanation of the loss function
employed.

A. Materials
The dataset used in this study is sourced from the

Alzheimer’s Disease Neuroimaging Initiative (ADNI) public
database [46], which has collected a large amount of clinical,
imaging, and biomarker data through long-term follow-up
of participants. Based on clinical assessments (e.g., Mini-
Mental State Examination, MMSE [47]), as shown in Table I,
we downloaded the baseline T1-weighted MRI scans of
443 subjects from ADNI and categorized them into three
groups: 154 AD subjects, 150 MCI subjects, and 139 CN
subjects.

All original T1-weighted MRI scan data were uniformly
pre-processed using Medical Image Processing Analysis and
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TABLE I
DEMOGRAPHIC INFORMATION FOR SUBJECTS INCLUDED IN DIFFERENT

GROUP TYPES (I.E. AD, MCI, AND CN). THE GENDER IS EXPRESSED

AS MALE AND FEMALE. THE AGE, YEARS OF EDUCATION, AND

MINI-MENTAL STATE EXAMINATION (MMSE) SCORES ARE

PRESENTED AS MEAN ± STANDARD DEVIATION (STD)

Visualization (MIPAV) software1 [48] for subsequent analysis
and research purposes. As shown in Fig. 1, image pre-
processing workflow in MIPAV follows standard steps, which
can be summarized as follows. 1) The anterior commissure
(AC) and posterior commissure (PC) corrections were applied
to all 3D MRI anatomical structures, aligning them to a
standardized coordinate system. 2) Implementation of the N4
algorithm to eliminate intensity variations caused by magnetic
field inhomogeneity [49]. 3) Application of skull stripping to
eliminate non-diagnostic structures [50]. 4) Linear alignment
with the Colin27 template [51] to eliminate global linear differ-
ences, including translation, scaling, and rotational disparities.
5) Data resampling to ensure uniform spatial resolution (i.e.,
1 × 1×1mm3) across all datasets.

Based on the pre-processed 3D MRI data, we first used
the Nifti tool to select images by volumetric center position-
ing [25], then selected the clearest brain structural segments
as samples (i.e., the parts of the MRI images that do not
contain motion artifacts or distortions), and finally performed
data augmentation operations, including random rotation, con-
trast adjustment, and left and right movement, to generate
2D slice dataset. Our slice dataset consists of 4390 slices,
including 1510 AD slices, 1500 MCI slices, and 1380 CN
slices. It is worth noting that our data segmentation (i.e.,
into the training set, test set, and validation set according to
7:2:1) is performed before the slice selection step to prevent
images of the same subject from appearing in both the training
and test sets. The implementation of these steps provides a
reliable basis for subsequent analysis and research, and the
experimental results confirm the feasibility of the method.

B. Network Architecture
Our proposed dual multi-level attention hybrid pyramid

convolution neural network (DMA-HPCNet) is developed
in a slice dataset after linear registration. As shown in
Fig. 1, we employ the ResNet-50 as the backbone network,
comprising five main convolution blocks. Firstly, the initial
convolution block (kernel size: 7 × 7, padding: 3, and stride:
2) increases the input channels from 3 to 64. Subsequently, the
remaining convolution blocks consist of hybrid pyramid con-
volutions with dual multi-level attention, designed to extract
features from MRI images instead of the bottleneck block of
ResNet-50. Finally, these convolution blocks are stacked in a
modular manner with a configuration of 3, 4, 6, and 3, each
module has corresponding channel numbers of 64, 128, 256,
and 512.

1http://mipav.cit.nih.gov/index.php

1) Deep Residual Learning Network: ResNet introduces the
concept of residual learning (i.e., residual connections or
skip connections) [30], which allows the network to auto-
matically learn the difference between the original input and
the desired output, solving the problem of network degra-
dation caused by traditional networks as they continue to
deepen. Briefly, this cross-layer connection operation improves
the efficiency of information propagation, contributes to the
continuous deepening of the network, and avoids the perfor-
mance degradation caused by the disappearance of gradient
or network degradation. Compared to the traditional network,
ResNet has demonstrated excellent performance in large-scale
image classification tasks such as ImageNet [52]. However,
in medical image diagnostics, when dealing with varying
sizes of pathological features, networks need the capability to
capture more nuanced and comprehensive features to support
accurate diagnosis. ResNet shows low sensitivity to various
pathological features, necessitating improvement in learning
crucial feature information. Therefore, to address these issues,
we have improved the network structure.

2) Hybrid Pyramid Convolution Block: Multi-scale convolu-
tion (MSC) block adopts the form of pyramid convolution
layer, enhancing the model’s perception and detection abilities,
especially in medical image diagnostics. Due to the complex
brain structure information present in MRI brain images, MSC
is sensitive to the local and global changes in brain regions
caused by AD, but this is accompanied by the increase of
computational complexity and parameter amount. Therefore,
it is necessary to balance the fusion methods and structures of
different scale information.

In this paper, a simple but effective MSC block (i.e.,
HPC) is proposed to extract different scale features from MRI
images, as shown in Fig. 2, where common MSC blocks either
combine convolution kernels of different sizes (e.g., 3 × 3,
5 × 5, 7 × 7, and 9 × 9) or introduce dilation rates of different
sizes (i.e., dilated convolution). Different from them, we have
adopted a cascading method to combine dilated convolution
and grouped convolution [53]. Then the hierarchical feature
fusion (HFF) [54] is introduced to progressively superimpose
different perceptual spatial information, alleviating the grid-
ding artifacts of dilated convolution at low computational cost.

Firstly, assuming the input feature map is X , where X ∈

RC×H×W , C , H , and W denote the number of channels,
height, and width of the feature map, respectively. Then X
is split into S parts of parallel along the C (i.e., channel
direction), denoted by [x0, x1, . . . , xs−1], the channel number
of each segmented part is C ′

= C
/

S.
For each part of X , we employ dilated convolutions with

dilation rates of d to extract features at different scales, where
d ∈ {1, 2, . . . , n}. Inspired by the EPSANet [55], we combine
different kernels with varying numbers of groups applied in
dilated convolutions to reduce the network’s parameter count.
This dilated grouped convolutions can be defined as follows:

Di = Dconv3×3(di , Gi )(X i ) (1)

where i ∈ {1, 2, . . . , n}, Gi = 2di +1 is the number of groups
based on dilation rate variation and Dconv3×3 is the dilated
convolution with 3 × 3 kernel size.
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Fig. 2. The specific structure of MSC Block. (a) is split multi-scale convolution (SPC) block, including different size convolution kernels. (b) is atrous
split multi-scale convolution (ASPC) block with different atrous rates (or dilated rates). (c) is our proposed HPC block. We denote each module as
(# kernel size, # number of kernels, # number of groups, # dilated rate). Here, # Sum represents the addition operation of corresponding spatial
positions, HFF represents hierarchical feature fusion, and Yi represents the corresponding output results of different convolutions.

Fig. 3. Illustration of our dual multi-level attention (DMA) module, which consists of a channel attention module and a spatial attention module,
is used in different input parts. Then the attention weights of different scales in the channel and spatial domain are recalibrated by the Softmax
function to obtain the whole-level representation.

Then the original feature is mapped into a grouped convo-
lutions Gconv3×3 (kernel size: 3 × 3, stride: 1, and padding:
1), whose output is denoted as F0. Besides, after each dilated
grouped convolution, a grouped convolution is cascaded to
ensure equal receptive fields with other MSC blocks in Fig. 2.
This can be expressed as:

Fi = Gconv3×3(Di , Gi ) (2)

Finally, prior to connecting features at each scale, HFF is
introduced to hierarchically add output features and integrate
supplementary information Fmax, where Fmax generated by
max pooling and point-wise convolution. The specific process
of HFF is as follows:

Y = [F0; F ′

1; F ′

2; F ′

3; Fmax ] (3)

where F ′

i =
∑i

k=1 Fk , [ ; ] is concatenation, and Y is the
obtained feature map after multi-scale feature fusion.

This HPC block improves the representational capability
of the model by cascading different convolution layers and
integrating different spatial information. Subsequent ablation
studies verified the effectiveness of this block.

3) Dual Multi-Level Attention Mechanism: Inspired by the
CBAM [41], we have adopted the integrated feature atten-
tion method of channel and spatial domain, and analyze the
function of attention from the part to the whole, and then
design dual multi-level attention (DMA) mechanism to further
improve the diagnostic performance. As shown in Fig. 3,
the DMA mainly consists of multi-level channel attention
(MCA) and multi-level spatial attention (MSA) modules by
successively use channel attention and spatial attention for
different parts of different domain spaces of the HPC block.

Firstly, during the HFF stage, the MCA module adopts
global average pooling (GAP) to obtain importance scores for
each channel of Yi . The specific calculation is as follows:

Z = G AP(Yi ) =
1

H × W

∑H

i=1

∑W

j=1
Yic(i, j) (4)

where Z is the result of averaging each channel over the entire
space. The attention weight of cth channel in the feature map
of different scales can be written as:

ωi = σ(τ(δ(τ (Zi )))) (5)

where ωi ∈ RC ′
×1×1 is the attention weight of feature

at different scales, δ is the Rectified Linear Unit (ReLU)
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operation, σ is the sigmoid activation, and τ is a point-wise
convolution (kernel size: 1 × 1, stride: 1, and padding: 0).
By employing two point-wise convolutions to combine lin-
ear information between channels, yielding fewer parameters
compared to fully connected layers.

Secondly, to facilitate information interaction among various
scales channel attentions and capture overall channel correla-
tions, we concatenate individual channel attention vectors and
denote as:

ω = [ω0 ; ω1; . . . ; ωs−1
]

(6)

where ω is the whole channel attention vector. And we
represent Softmax function as ρ to recalibrate the whole
attention vector. Then the recalibrated attentions are connected
to achieve the interaction of part and whole attention.

Catt = [Catt0 ; Catt2; . . . ; Catts−1
]

(7)

where Catti = ρ(ωi ) is the attention weight of different parts
and Catt is the attention weight of whole. Then the recali-
brated attention weight is multiplied with the corresponding
scale feature map and expressed as:

Y ′
= Yi ⊙ Catti (8)

where ⊙ is the channel-wise multiplication and Y ′ is the
channel attention weighted feature map of the MCA module.

In addition, MSA module is introduced to extract spa-
tial attention weights of channel attention-weighted feature
maps at different scales. Among them, each part of the
attention-weighted feature map performs two different pooling
operations (i.e., channel average pooling and channel max
pooling) along the channel axis, respectively, whose output are
denoted as avgi and maxi . And then these outputs are mapped
to a convolution layer Conv7×7 (kernel size: 7 × 7, stride:
1, and padding: 3), and the activation function is adopted to
generate spatial attention weight.

Aatti = σ(Conv7×7([avgi ; maxi ])) (9)

where Aatti is the spatial attention weights of different scales.
Spatial attention vectors of different scales are concatenated

and then synthesized using a point-wise convolution and the
activation function to represent the attention weights of the
whole space. The specific calculation is as follows:

Aatt ′ = σ(τ([Aatt0 ; Aatt1; . . . ; Aatts−1
]
)) (10)

Finally, the recalibrated spatial attention vector is multiplied
with the channel attention-weighted feature map to obtain the
channel and spatial information enhanced feature map.

Outi = Y ′

i ⊗ Aatt ′i (11)

where ⊗ is element-wise multiplication. Then the refined
output obtained after dual multi-level attention is expressed
as:

Out ′i = [Out0 ; Out1; . . . ; Outs−1
]

(12)

This DMA module improves network performance by
adopting channel and spatial attention on each local and global
feature map. We demonstrate this module and its components
(i.e., MCA and MSA) in the ablation study in Section IV.

C. Loss Function
To precisely diagnose whether an individual has dementia

and its extent, the cross-entropy loss function is utilized
to optimize our HPC method. During the training process,
measuring the difference between model predictions and true
labels, along with minimizing the cross-entropy loss function,
enables to obtain model for each MRI image classification
results. The cross-entropy loss function can be denoted as:

L(y, p) = −
1
N

N∑
n=1

[
yi log (pi ) + (1 − yi ) log (1 − pi )

]
(13)

where N represents the number of images, yi is the true label
of image i , and pi is the prediction probability of image i .

IV. EXPERIMENTS AND DISCUSSION
In this section, we initially provide a brief overview of the

experimental setting and assessment criteria, then gradually
validate the effects of each component of the proposed method
on the performance of the model through, and finally the pro-
posed model is compared with popular models and advanced
studies to assess its performance.

A. Experimental Setting
In this study, the experiments were run on a computer

equipped with an NVIDIA GeForce RTX 2080 Ti 11GB
GPU. We have used MIPAV for the same preprocessing of
all medical data, and all experiments were implemented based
on PyTorch 1.7.1 and Python 3.92. The model parameters are
set as follows: the batch size is 32, the optimizer for the
training network is Adam, the number of epochs is 80, and
the learning rate is 1e-5. The experimental dataset consisted
of 4390 images, which were segmented at a ratio of 7:2:1.

B. Assessment Criteria
We have adopted several common assessment metrics to

comprehensively evaluate the effectiveness of the proposed
model. These metrics encompass specificity (SPE), sensitivity
(SEN), accuracy (ACC), and area under the ROC curve (AUC).
They are defined as follows, S P E =

T N
T N+F P , SE N =

T P
T P+F N , and ACC =

T P+T N
T P+T N+F P+F N , where TP is true

positives, FN is false negatives, TN is true negatives, FP is
false positives. The AUC is calculated based on false positive
rate (F P R = 1 − S P E) and true positive rate (T P R =

SE N ), which are obtained from the threshold (default is 0.5)
performed on the classification score generated by the network.

C. Ablation Study
This section conducted ablation experiments to verify the

effectiveness of the HPC block and attention mechanism in
our proposed method. All methods were fairly compared using
the same test subjects and assessment criteria.

1) Effectiveness of Hybrid Pyramid Convolution Block: The
effectiveness of HPC block is verified by its presence or
absence in multiple classification tasks, as shown in Table II.

2https://github.com/SG-Python3/PyTorch
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TABLE II
ACC, SEN, SPE, AND AUC OF VARIOUS MSC MODELS FOR AD, MCI, AND NC IN SLICE DATASET

TABLE III
THE PARAMETERS, FLOPS, MEMORY, AND RUNNING TIME OF

VARIOUS MSC BLOCKS IN THE MCI/CN OF SLICE DATASET

TABLE IV
THE ACC AND STANDARD DEVIATION OF VARIOUS MSC MODELS IN

THE MCI/CN OF SLICE DATASET

Introducing different MSC blocks to the baseline ResNet-50
effectively improved the classification performance of the
model. Among them, introducing HPC blocks to construct
HPCNet model in several classification tasks, such as AD/CN,
AD/MCI, and MCI/CN, ACC improved by 2.9%, 3%, and
2.7%, respectively. In comparison to the SPC and ASPC
blocks, our proposed HPC blocks exhibited superior ACC
and AUC values in AD-related tasks. This improvement is
attributed to the HPC block’s fusion of various perceptual
information, compensating for the limited capability of a single
convolution layer to extract global features.

To further validate the effectiveness of the HPC block,
we conducted a comprehensive comparison between the HPC
block and two types of MSC blocks in the MCI/CN group,
as depicted in Table III and Table IV. Compared to the tra-
ditional SPC structure, which consumes excessive parameters,
the HPC block tends to enhance the ASPC structure, achieving
more efficient classification performance with fewer parame-
ters and FLOPs with only a small increase in running time.
Meanwhile, the ACC of the HPC block improved by 0.4% and
1.4% compared to SPC block and ASPC block, respectively,
and the standard deviation was lower. As shown in Fig. 4, the
area under ROC curve corresponding to the HPCNet built with
HPC block is competitive with ResNet-50+SPC. These results
demonstrate that our HPC block is not only more efficient, but
also lighter.

Fig. 4. Introduction of different multi-scale structures (i.e., SPC, ASPC,
and HPC) in ResNet-50 for the classification of ROC curves in MCI/CN.

2) Effectiveness of Dual Multi-Level Attention: The effec-
tiveness of the DMA block depends on its presence within
the HPCNet model. Firstly, Table II and Table V show that
the introduction of the DMA block results in significant
improvements in several classification tasks. In the AD/CN
and AD/MCI classification experiments, HPCNet exhibited
increases of 2.8% and 2.9% in ACC, 2.1% and 3.6% in
SEN, 4.0% and 2.0% in SPE, and 1.0% and 1.1% in AUC,
respectively. In the MCI/CN identification experiments, HPC-
Net’s ACC improved by 2.2%, achieving SEN, SPE, and
AUC of 0.859, 0.836, and 0.921, respectively. From the
results, DMA module realized the screening and weighting
of features, and improved the classification performance of
the model. Secondly, in the AD/CN, AD/MCI, and MCI/CN
classification tasks, compared with single channel attention
(SE) and multi-level channel attention (MCA), introduced
the DMA ACC increased by 2.0% and 1.5%, 2.0% and
1.7%, and 1.5% and 1.1%, respectively. Compared with
CBAM, the ACC improved by 1.0%, 1.1%, and 0.7%,
correspondingly. Finally, compared to the two components
of the DMA (i.e., MCA and MSA), as shown in Fig. 5,
DMA respectively improved ACC by 1.1% and 1.3%, achiev-
ing ACC, SEN, SPE, and AUC values of 0.847, 0.859,
0.836, and 0.921. These results demonstrate that integrating
MCA and MSA aids in further improving the classification
performance.
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TABLE V
ACC, SEN, SPE, AND AUC OF VARIOUS ATTENTION MECHANISM METHODS FOR AD, MCI, AND NC IN SLICE DATASET

TABLE VI
COMPARISON WITH POPULAR MODELS IN THE MCI/CN

Fig. 5. Comparison of the effects of DMA and its different parts (i.e.,
MSA and MCA) in the MCI/CN.

D. Result Analysis
To evaluate the performance of the proposed DMA-HPCNet

model, several popular models [28], [29], [30], [53], [55]
were introduced into our slice dataset for fair comparison.
As depicted in Table VI and Fig. 6, in the MCI/CN identifi-
cation experiment, the following conclusions can be drawn as
follows. Firstly, compared with several popular models, our
DMA-HPCNet model has achieved significant improvement
in various assessment metrics such as ACC, SPE, and AUC,
achieving 0.847, 0.836, and 0.921, respectively. Secondly, our
DMA-HPCNet model demonstrates competitive performance
compared to the advanced models like EfficientNet [29]
(0.845, 0.882, 0.812, and 0.915 for ACC, SEN, SPE, and
AUC, respectively). Finally, the ROC curve corresponding to
our DMA-HPCNet model in this paper approached closest to
the upper boundary (1,0) and left boundary (0,1), indicating
superior classification performance.

To further evaluate the performance of our DMA-HPCNet
model, we conducted a comprehensive comparison with vari-
ous advanced studies, as shown in Table VII, which includes

Fig. 6. The ROC curves of the proposed model and several popular
models for the classification in the MCI/NC.

network feature extraction forms, dataset sizes, and experi-
mental results. Based on the network feature extraction forms,
we summarised recent research on AD classification tasks,
including two region-level methods [12], [14], two patch-
level methods [10], [20], and two slice-level methods [19],
[24]. From Table VII, several conclusions were drawn as
follows. Firstly, compared to various advanced methods, our
dataset showed relative balance and performed well in various
classification tasks. For example, in the MCI/CN discrimina-
tion experiment, although the accuracy is generally not high,
our DMA-HPCNet model achieved an accuracy of 0.847 in
extracting slice-level features, which is an improvement of
0.8% and 0.5% compared to the region-based and patch-level
approaches adopted by Turkson et al. [12] and Suk et al. [20],
respectively. Additionally, our DMA-HPCNet model achieved
an accuracy of 0.946 in the AD/MCI classification task,
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TABLE VII
THE RESULTS OF EACH METHOD IN THE AD/NC, AD/MCI, AND MCI/NC

outperforming other methods listed in the table. Secondly, as a
crucial basis for the clinical diagnosis of AD, in the AD/CN
group, our DMA-HPCNet model achieved a classification
accuracy of 0.980, which is competitive with the patch-based
method adopted by Ashtari-Majlan et al. [10]. Most of these
methods involve extracting 3D information to model, which is
difficult to achieve in a lightweight manner. It is worth noting
that our DMA-HPCNet model selects cross sections from 3D
MRI images after registration to construct a lightweight CNN
model, which is superior to other slice-level methods [19], [24]
in AD/MCI and MCI/CN classification tasks. Finally, based on
these results, we conclude that our proposed DMA-HPCNet
model, which uses hybrid pyramid convolution block and dual
multi-level attention mechanism, proves its validity in AD
diagnosis with excellent performance.

V. CONCLUSION AND FUTURE WORK

In this study, we propose a lightweight dual multi-level
hybrid pyramid convolutional neural network (DMA-HPCNet)
to assist clinical diagnosis of AD. Our model extends hybrid
pyramid convolution (HPC) block and double multi-level
attention (DMA) module on the basis of ResNet. Among
them, the HPC block is designed to improve the multi-scale
information capture capability of the model. Based on this, the
DMA module is proposed to sequentially extract different local
and global representations from the channel domain and spatial
domain. Our proposed DMA-HPCNet model was evaluated on
baseline MRI slice dataset of 443 subjects. The experimental
results show that our model performs well in AD-related
classification tasks than popular models and advanced research
methods. While our proposed DMA-HPCNet method has
shown good performance in AD-related diagnosis, there are
still limitations worth exploring and solving in future work.
To that end, we have summarized the following limitations
and potential solutions. Firstly, the convolution kernel size and
number in the feature-extracting HPC block are fixed. How-
ever, there are individual differences in brain structures among
different participants. While HPC block is highly sensitive
to pathological changes, employing adaptive multi-scale ker-
nels for processing inputs seems more reasonable. Moreover,
in complex classification tasks (e.g., MCI recognition task),
imaging features show no significant differences, and using
only single MRI imaging data is insufficient for obtaining
precise diagnostic performance. In future work, integrating
other modal information (e.g., PET imaging) to identify con-
sistent pathological regions and potential pathogenic features

for assisting clinical diagnosis is a worthwhile direction to
explore.
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