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Surface EMG Decomposition Based on Kernel
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Abstract— This study presents a novel high density
surface electromyography (EMG) decomposition method,
named as 2CFastICA, because it incorporates two key
algorithms: kernel constrained FastICA and correlation
constrained FastICA. The former focuses on overcoming
the local convergence of FastICA without requiring the
peel-off strategy used in the progressive FastICA peel-off
(PFP) framework. The latter further refines the output of ker-
nel constrained FastICA by correcting possible erroneous
or missed spikes. The two constrained FastICA algorithms
supplement each other to warrant the decomposition per-
formance. The 2CFastICA method was validated using
simulated surface EMG signals with different motor unit
numbers and signal to noise ratios (SNRs). Two source val-
idation was also performed by simultaneous high density
surface EMG and intramuscular EMG recordings, showing a
matching rate (MR) of (97.2 ± 3.5)% for 170 common motor
units. In addition, a different form of two source valida-
tion was also conducted taking advantages of the high
density surface EMG characteristics of patients with amy-
otrophic lateral sclerosis, showing a MR of (99.4 ± 0.9)%
for 34 common motor units from interference and sparse
datasets. Both simulation and experimental results indicate
that 2CFastICA can achieve similar decomposition perfor-
mance to PFP. However, the efficiency of decomposition
can be greatly improved by 2CFastICA since the complex
signal processing procedures associated with the peel-off
strategy are not required any more. Along with this paper,
we also provide the MATLAB open source code of 2CFas-
tICA for high density surface EMG decomposition.
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I. INTRODUCTION

IN RECENT decades, high density surface electromyo-
graphy (EMG) decomposition has undergone significant

growth. Among various algorithms and methods being
reported for high density surface EMG decomposition, two
of them have attracted considerable attention. One is the
convolution kernel compensation (CKC) method proposed by
Holobar and Zazula [1], [2], which describes high density
surface EMG signal using a convolution model and realizes
its decomposition by compensating channel responses and
reconstructing the motor unit pulse trains directly. The other
is the progressive FastICA peel-off (PFP) method proposed by
Chen et al. [3], [4], which is a novel deflationary EMG decom-
position framework based on FastICA [5]. Since then, FastICA
is generally recognized as a useful approach, readily adapted
and applied for high density surface EMG decomposition. For
example, a decomposition framework combining FastICA and
CKC was proposed right after the PFP [6]. A range of other
forms of high density surface EMG decomposition methods
have also been reported, with either CKC or FastICA as key
elements [7], [8], [9], [10], [11], [12], [13], [14], [15], [16],
[17], [18], [19].

A key problem or difficulty of applying FastICA for high
density surface EMG decomposition is how to address the
local convergence of FastICA, given that FastICA tends to
converge on the firing trains of only a few motor units,
thus compromising the decomposition yield and efficiency.
Although orthogonalization has been utilized in FastICA to
estimate different source signals, it is insufficient to solve the
problem of local convergence in high density surface EMG
decomposition scenarios.

To overcome the local convergence problem, our previous
study has designed the PFP framework [3], [4], in which
the peel-off strategy is introduced. The PFP framework uses
the already emerged motor unit firing trains (from FastICA)
combined with the least squares method to estimate their wave-
forms to obtain motor unit action potential trains, and subtracts
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them from the raw EMG signal to eliminate their effect on
FastICA convergence. Then, FastICA can be iteratively applied
on residual signals to continue its searching for new motor
unit firing trains. The peel-off strategy has proved to be very
effective for overcoming the local convergence of FastICA.
This strategy has been followed by recent studies in order to
achieve higher decomposition yield [9], [11], [19].

In spite of the strength of the peel-off strategy for high den-
sity surface EMG decomposition, successful implementation
of the PFP framework largely relies on a series of proce-
dures to overcome the challenges related to peel-off. Given
that an ideal waveform estimation is impossible to achieve,
unavoidably there will be a difference between the estimated
and the real waveforms. Although the differences may be
tiny, the caused errors, if not addressed, may accumulate to
an extent of compromising the decomposition performance.
Therefore, the PFP framework incorporates various complex
signal processing strategies, such as constrained FastICA,
valley-seeking clustering [20], etc. These efforts work collec-
tively to guarantee the accuracy of waveform estimation and
the decomposition performance.

In this study, we set to elucidate the reasons why FastICA
tends to fall into local convergence when it is applied for
high density surface EMG decomposition. Based on this,
we propose a new method and also provide its MATLAB
open source code for decomposing high density surface EMG
signals. Different from the PFP framework, the novel approach
does not apply the peel-off strategy to overcome the local
convergence of FastICA but can still achieve comparable
decomposition performance. Because the complex signal pro-
cessing procedures associated with the peel-off strategy are
not required any more, the decomposition efficiency can be
greatly improved.

II. RATIONALE AND METHODOLOGY

A. FastICA
FastICA [5] considers a blind source separation problem

described based on the following instantaneous data generation
model:

x = As (1)

where x = [x1, x2, · · · , xm]T is the observed m dimensional
random vector. For convenience, x is assumed to be whitened.
s = [s1, s2, · · · , sn]T is an n dimensional (latent) random
vector whose components are assumed mutually independent.
Also for convenience, we further assume that s is zero mean.
A is the m × n unknown mixing matrix.

FastICA considers that “nongaussian is independent”, and
introduces negentropy to measure nongaussianity. To this end,
the negentropy maximization criterion is used to find the inde-
pendent sources from their mixtures. To find one independent
source y = wT x as an estimation of one component of s, the
decomposition coefficient vector w can be found by solving
the following optimization problem:

max J (w) =
[

E
{

G
(
wT x

)}
− E{G(ν)}

]2

s.t. h(w) = E
{

y2
}
− 1 = ∥w∥22 − 1 = 0

(2)

where J (w) is the approximated negentropy using nonpolyno-
mial function G, usually G is chosen as G(u) = log cosh(u).ν

is a standard normal random variable. h(w) restricts the
variance of output y to be 1, which means that the norm of
w is 1 if x is whitened.

The optimal problem can be well solved by the Newton’s
method. In fact, FastICA is not limited to estimating only
one source signal, it is also able to estimate multiple source
signals by constraining the orthogonality between the output
decomposition coefficient vectors. When estimating the source
signals one by one, the deflation version of FastICA is as
following [5]:

Assuming that we have got p − 1(p ⩾ 1) decomposition
coefficient vectors wi , i = 1, 2, . . . , p − 1, then w p can be
estimated by:

w p ← E
{

xG ′
(
wT

p x
)}
− w p E

{
G ′′

(
wT

p x
)}

w p ← w p −
∑p−1

i=1
wi

(
wT

pwi

)
w p ← w p/

∥∥w p
∥∥

2

(3)

There are also symmetric versions of FastICA that can
estimate p decomposition coefficient vectors simultaneously:

wi ←E
{

xG ′
(
wT

i x
)}
−wi E

{
G ′′

(
wT

i x
)}

, i=1, 2, . . . , p

W ←
(

W W T
)−1/2

W
(4)

where W =
[
w1,w2, . . . ,w p

]T .

B. Kernel Constrained FastICA
In some cases, certain restrictions need to be placed on

the output of FastICA. Now we want y to be uncorrelated
to each component in a given q dimensional random vector
φ =

[
φ1, φ2, . . . , φq

]T . Note that when any random variable
has a zero mean, “uncorrelated” also implies orthogonality, i.e.
we want E

{
φi yT }

= 0, i = 1, 2, · · · , q .
Considering this problem in the FastICA framework

requires solving the following optimization problem:

max J (w) =
[

E
{

G
(
wT x

)}
− E{G(ν)}

]2

s.t. h(w) = E
{

y2
}
− 1 = ∥w∥22 − 1 = 0

ci (w) = E
{
φi yT

}
= 0, i = 1, 2, . . . , q

(5)

It is noted that the optimization problem (5) has q more
equality constraints ci (w) than the original FastICA algorithm,
so as to limit the orthogonality between the output y and the
given random variable φi .

Although the optimization problem (5) can be solved by the
previously proposed constrained FastICA [3], the convergence
speed of constrained FastICA is slow, and it is difficult to
converge when the number of constraints is large.

Let’s consider orthogonal constraints separately. The orthog-
onal condition means that:

E
{
φyT

}
= E

{
φxTw

}
= E

{
φxT

}
w = 0 (6)
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Let Rφ,x = E
{
φxT }

q×m , equation (6) actually means that
w ∈ ker

(
Rφ,x

)
, where ker(Bq×m) =

{
v ∈ Rm

| Bv = 0
}

denotes the kernel of a matrix B. We further let 9m×b =[
ψ1,ψ2, . . . ,ψb

]
to be a matrix consisting of an orthonormal

basis
{
ψ1,ψ2, . . . ,ψb

}
of ker

(
Rφ,x

)
, where b(⩽ m) is the

rank of ker
(

Rφ,x
)
.

Then w ∈ ker
(

Rφ,x
)

implies there exists a vector θ =
[θ1, θ2, . . . , θb]T satisfying

w = 9θ (7)

Furthermore, we define a new random vector z by:

z = 9T x (8)

Substituting Equations (7) and (8) into the optimization
problem (5), it is a surprise that the optimization problem (5)
becomes the following form:

max J1(θ) =
[

E
{

G
(
θT z

)}
− E{G(ν)}

]2

s.t. h(θ) = E
{

y2
}
− 1 = ∥θ∥22 − 1 = 0

(9)

It can be seen that the optimization problem (9) is exactly
the same as the original FastICA optimization problem (2).
The constraints ci (w), i = 1, 2, . . . , q are eliminated by
already restricting w ∈ ker

(
Rφ,x

)
. This means that we

only need to transform the observed random vector x into
the new vector space using 9T , and then the solution of the
optimization problem (9) is trivial. This method restricts the
search of decomposition vectors in a given kernel space, so we
call it kernel constrained FastICA.

C. Correlation Constrained FastICA
In this study, the constrained FastICA method introduced

in [3] is also updated. We show that FastICA with cross-
correlation constraints can have a more efficient iterative
method, without the need to update the Lagrange multipliers
and correlation coefficients. To avoid confusion, we refer to
this new version as correlation constrained FastICA.

Now consider a problem opposed to kernel constrained
FastICA, where we want y, the output of FastICA, to be
as correlated as possible with a given reference random
variable r , that is, we want E

{
r yT }

as large as possible.
In [3], we used the augmented Lagrange multiplier method
to solve this problem. When setting the constraint of cross-
correlation, we preset a lower bound of correlation coefficient.
However, since the exact lower bound in the final convergence
is unknown, we need to update the lower bound gradually in
order to ensure convergence in the update process. This may
make the constrained FastICA converge slowly. In fact, the
Newton’s method in FastICA can also be used to deal with this
problem, thus greatly increasing the speed of convergence. For
whitened observed vector x, consider the following problem:

min J2(w) = E
{

G
(
wT x

)}
− µE

{
r yT

}
s.t. h(w) = ∥w∥22 − 1 = 0

(10)

where G is the same non-polynomial function in (2) (i.e.
G(u) = log cosh(u)). As derived in [5], the maxima
of J (w) =

[
E

{
G

(
wT x

)}
− E{G(ν)}

]2 are obtained at

certain optima of E
{
G

(
wT x

)}
. More specifically, maximiz-

ing
[
E

{
G

(
wT x

)}
− E{G(ν)}

]2 is equivalent to minimizing
E

{
G

(
wT x

)}
given that our source signals are sparse and

super-Gaussian motor unit firing trains. For the sake of sim-
plicity, let’s rewrite our objective function into this more
concise form. The second term −µE

{
r yT }

in objective func-
tion is a penalty term, and the penalty weight µ is a suitable
positive constant. Here, we turn the original cross-correlation
constraint into a penalty term in the objective function, and
consequently, the difficulty of unknown constraint lower bound
can be avoided.

Define the Lagrangian function of (10) as:

L(w, β) = E
{

G
(
wT x

)}
− µE

{
r yT

}
+

β

2

(
∥w∥22 − 1

)
(11)

where β is the Lagrange multiplier.
According to the Karush-Kuhn-Tucker conditions [21], the

optima of (10) are obtained at points where:

∇wL = E
{

xG ′
(
wT x

)}
− ϑµ+ wβ = 0 (12)

where ϑ = E
{

xr T }
. Further, the second derivative of the

Lagrangian function can be derived as:

∇
2
wL = E

{
xxT G ′′

(
wT x

)}
+ β I

≈ E
{

xxT
}
· E

{
G ′′

(
wT x

)}
+ β I

=

(
E

{
G ′′

(
wT x

)}
+ β

)
I

(13)

Here a reasonable approximation is made since x is
whitened. Then the following approximative Newton iteration
can be obtained:

w←w−
[
E

{
G ′

(
wT x

)}
−ϑµ+wβ

]
/
[
E

{
G ′′

(
wT x

)}
+β

]
(14)

Because of the normalization constraint of w, equation (14)
can be simplified as:

w← wE
{

G ′′
(
wT x

)}
− E

{
xG ′

(
wT x

)}
+ ϑµ (15)

Benefiting from the whitened x and the normalization
constraint of w, the Lagrange multiplier β does not need to
be concerned. To this end, the iteration of cross-correlation
constrained FastICA is obtained as:

w← wE
{

G ′′
(
wT x

)}
− E

{
xG ′

(
wT x

)}
+ ϑµ

w← w/∥w∥2

(16)

In general, the convergence rate is not particularly sensitive
to the value of the penalty weight µ, as long as it is within a
reasonable range. However, µ should not be set very large to
make the optimization problem ill-posed.

D. 2CFastICA for High Density Surface
EMG Decomposition

Now consider the generative high density surface EMG
model. Without causing confusion, x = [x1, x2, · · · , xm]T and
s = [s1, s2, · · · , sn]T are still used to denote the observed
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random vector and source vector, respectively. However,
the multichannel surface EMG generative model should be
described as a convolutional model, specifically for one com-
ponent of x, we have:

xi (t) =
∑n

j=1

∑l−1

τ=0
ai j (τ )s j (t − τ); i = 1, 2, . . . , m (17)

where xi is the i th channel of surface EMG signal. ai j stands
for the motor unit action potential waveform of j th motor
unit in the i th channel, and l is the length of the waveform.
The source s j (t) =

∑
k δ

(
t − T j,k

)
stands for the j th motor

unit firing train, which is a sparse binary random variable
(i.e. either 0 or 1) that indicates whether the j th motor unit
fires at a specific time t . T j,k is the k th firing time of the
j th motor unit, δ represents the discrete-time unit impulse
function. Due to the firing properties of motor units, we further
assume that T j,k+1 − T j,k > l.

Note that the convolutional model of equation (17) can
actually be rewritten into the form of equation (1), for which
FastICA can be used to find the source signal. However,
it should be noted that in this case, the source signal includes
not only s itself, but also its delays s(t−τ), τ = 1, 2, . . . , l−1.
Clearly, due to the definition, s and its delays are orthogonal
to each other.

In order to facilitate using the FastICA algorithm to separate
the convolutional model EMG signal, the signal is usually
pre-extended by adding its d-delayed versions. We define the
following extended random vector:

x̃(t) =
[

xT (t), xT (t − 1), . . . , xT (t − d)
]T

(18)

s̃(t) =
[

sT (t), sT (t − 1), . . . , sT (t − l − d + 1)
]T

(19)

Then the extended convolutional model can be expressed
by the following matrix multiplication form:

x̃ = Ã̃s (20)

where Ã is a matrix containing all the waveform coefficients
ai j in a proper order (for details, please refer to [1]). Note
that the equation (20) is equivalent to equation (17) when the
delay factor d is zero. This extension is not necessary, but
it is usually recommended because combining the observed
random vector x and its delays can achieve an effect analog
to FIR filtering. However, appropriate setting of the delay
factor d needs to be considered since the extension also
increases the computation load and may cause the signal to
be ill-conditioned.

In summary, after confirming that the EMG generative
model can be expressed in the form of equation (20), FastICA
can be applied on model (20) to estimate motor unit firing
trains. One should note that in (20), s̃ contains the source s
as well as its various delayed versions. Therefore, the output
of FastICA will be certain si or its delays, and both of
them actually correspond to the same motor unit firing train.
The original orthogonalization steps in equation (3) or (4)
already constrain the different outputs to be orthogonal to each
other. However, this strategy does not prevent FastICA from
converging to the same motor unit firing train since si and
its delays are also orthogonal to each other. In other words,

to prevent FastICA from converging to the same motor unit
firing train, the new estimated firing train should be orthogonal
not only to the previously estimated firing trains, but also to
their delays.

In fact, it is immediately apparent that this can be eas-
ily done using our proposed kernel constrained FastICA
algorithm. When estimating a new source signal, we only need
to constrain the desired decomposition coefficient vector in
the kernel space of the cross-correlation matrix between the
identified sources (including their delays) and the observation
vector. In addition, to improve the accuracy of the decom-
position, it is necessary to refine each estimated motor unit
firing train with correlation constrained FastICA. The specific
procedures are the same as in [3], that is, for each extracted
motor unit firing train, we use it as the reference signal r
to drive cross-correlation constrained FastICA to converge to
the source component with the maximum cross-correlation
with r , and repeat this process until the output of correlation
constrained FastICA no longer changes. Due to the cross-
correlation constraint, the output of correlation constrained
FastICA tends to have a higher signal-to-noise ratio (SNR)
than the direct output of FastICA, and therefore any erroneous
or missed spikes can be better fixed.

Now we can summarize the new proposed decomposition
framework. This framework mainly relies on two improved
FastICAs with cross-correlation constraints, i.e. the kernel con-
strained FastICA and correlation constrained FastICA. Among
them, kernel constrained FastICA expects the correlations
between the FastICA output and the given random variables
to be 0, while correlation constrained FastICA expects the
FastICA output to be as correlated as possible with the given
reference. Because two constrained FastICA algorithms are
key components for the new method, we name it as 2CFastICA
for simplicity.

Now we provide the pseudocodes for 2CFastICA
(Algorithm 1).

Considering the properties of the non-polynomial function
G as well as the cross-correlation function, the penalty weight
µ = 0.3 is considered to be a reasonable empirical value
in surface EMG decomposition. Note that when constructing
the orthogonal constraint vector φ in the pseudocodes, the
delay of the identified source only ranges from −d to d .
While theoretically this may not be enough to cover the real
delay range in the model (20), practically the duration of
the motor unit action potential is not long and the energy is
mainly concentrated in the middle part, so this delay range
is usually enough to avoid convergence to the same motor
units. Note that the desired motor unit firing trains can be
extracted from the output source signal s, and subsequently,
the waveform information of motor unit action potentials is
also available by the least squares method (as detailed in the
PFP framework [3]).

III. PERFORMANCE VALIDATION

A. Performance Evaluation Using Simulated EMG
1) Surface EMG Simulation: Surface EMG signals from

5 different motor unit pools were simulated [22]. Each sim-
ulated motor unit pool contained 100 motor units whose
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Algorithm 1 2CFastICA
Extend (by delay factor d) and whiten the EMG signal x to be x̃. Set count p ← 1.
repeat

// Kernel Constrained FastICA

Construct φ =
[
sT (t + d) , sT (t + d − 1) , ..., sT (t − d)

]T , where s =
[
s1, s2, ..., sp−1

]T .
Estimate Rφ,x̃ = E

{
φ x̃T

}
.

Find an orthonormal basis 9 of ker
(

Rφ,x̃
)
.

Estimate sp from 9T x̃ using FastICA.
// Correlation Constrained FastICA
Refine sp by correlation constrained FastICA. Set count p← p + 1.

until no new reliable source can be found.

recruitment characteristics followed the model described
in [23]. Motor units were activated in order of the number
of muscle fibers they innervated, and motor units with fewer
muscle fibers were activated first. The discharge rate range
of the motor units was set to 8 − 35 Hz. The last motor
unit was recruited at 40% maximal excitation. The simulated
surface EMG was recorded by a 64-channel surface electrode
array (arranged in 8 by 8 channels, with an interelectrode
distance of 4 mm for both horizontal and vertical directions).
The electrode array was placed with its columns aligned
parallel to the muscle fiber direction and its center electrodes
located approximately over the innervation zones. The simu-
lated signals were recorded at a sampling rate of 2 kHz per
channel. Three excitation levels (3%, 10%, and 45% maximum
excitation) were simulated, which corresponded to 29, 62, and
100 active motor units. Each contraction lasted for 10 s. For a
64-channel recording system, the setting of the three excitation
levels aimed to examine the performance of 2CFastICA when
the number of sources was much less than, close to, and much
more than the number of available observations, respectively.
For each excitation level, different SNRs ranging from 0, 10,
and 20 dB were also simulated with additive zero-mean Gaus-
sian noise (spatially independent). Thus, a total of 45 surface
EMG signals were simulated for decomposition performance
evaluation (3 excitation levels × 3 SNR levels × 5 motor unit
pools).

2) Evaluation Results: In order to assess decomposition
performance, the decomposition Recall and Precision of a
specific identified spike train are defined as follows [3]:

Recall =
T P

T P + F N

Precision =
T P

T P + F P

(21)

where TP (true positives) denotes the number of correctly iden-
tified spikes, FN (false negatives) is the number of unidentified
spikes, and FP (false positives) is the number of misplaced
spikes. Before calculating these parameters, the two spike
trains for comparison were first aligned using the correlation
function method proposed in [3]. After the alignment, two
spikes from different spike trains were accepted to be corre-
sponding spikes when they were located within ±1 ms.

Fig. 1. Average number of identified motor units at different input motor
unit numbers and SNR levels.

Then F1-score, the harmonic mean of Recall and Precision,
was used as the final measure of decomposition performance:

F1 =
2

1
Precision +

1
Recall

(22)

The 2CFastICA decomposition method was tested with
all the simulated surface EMG signals. Fig. 1 and Fig. 2
summarize the average number of motor units and the average
F1-score across different input motor unit numbers and SNR
levels, respectively.

B. Two Source Validation Using Intramuscular EMG
1) Dataset Description: In this validation study, the same

datasets were used as in the previous two source validation
of the PFP framework [24]. The datasets contain 114 trials,
and each trial includes a 64-channel high density surface EMG
signal and a single channel intramuscular EMG signal, which
were simultaneously collected from an isometric contraction
at a low-force level of the first dorsal interosseous (FDI)
muscle of five neurologically intact subjects and a chronic
stroke subject. All subjects gave written informed consent
before any experiment procedures. The experimental proto-
cols were approved by the Committee for the Protection of
Human Subjects (CPHS) of the University of Texas Health
Science Center at Houston and the TIRR Memorial Hermann
Hospital (Houston, USA). For details on subject information,
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Fig. 2. Average F1-score per reconstructed motor unit at different input
motor unit numbers and SNR levels.

the experimental setup, protocols, equipment, and details of
intramuscular EMG decomposition, please refer to [24].

2) Evaluation Results: The matching rate (MR) was cal-
culated to measure the matching degree of two spike trains
identified from experimental EMG signals. MR is defined as:

M R =
2 · NC O M

NS + NI
· 100% (23)

where NS and NI are the total number of the spikes from the
surface EMG spike train and the intramuscular EMG spike
train, respectively. NC O M stands for the number of the com-
mon spikes. Consistent with the simulated study, two spikes
from different spike trains were accepted as corresponding
spikes when they were located within ±1 ms. Note that if we
consider the intramuscular EMG spike train as the “ground-
truth spike train”, then the MR is indeed a F1-score measure.
A common firing train was considered to be identified if the
MR > 80%.

An example of two source validation with simultaneous
surface and intramuscular EMG recordings is shown in Fig. 3,
The top panel shows a 10 s segment of surface EMG sig-
nal from one channel of the electrode array. The original
signal, the reconstructed signal and the residual signal are
shown, respectively, from top to bottom. The bottom panel
shows the simultaneously recorded intramuscular EMG signal
in the same way. The middle panel shows the firing trains
of the identified motor units from the surface EMG and their
waveforms in this channel, with the motor units arranged from
top to bottom in the order in which they were identified. The
third motor unit can be matched to the motor unit identified
from the intramuscular EMG with a MR of 99.6%, and the
only inconsistent discharge is indicated in red.

Fig. 4 shows the objective function values (J (x) =

[E{G(x)} − E{G(ν)}]2) of the decomposition output corre-
sponding to different motor units in this example (arranged
in their order of identification). The green shaded part in
the bottom is the range of function values corresponding
to each channel of the EMG signal. As mentioned in the
method section, the value of the objective function J (x)

actually represents the nongaussianity of the random variable
x . Therefore, in general, motor unit spike trains with larger
nongaussianity are preferentially decomposed.

Among all 114 trials data, the length of segments used for
decomposition analysis varied from 10 s to 70 s (34.1± 8.9 s).
Overall, a total of 956 (on average 6.4 ± 2.9 per trial)
motor units were identified from the high density surface
EMG signals using the 2CFastICA method. A total of 217
(on average 1.9 ± 1.0 per trial) motor units were identified
from the intramuscular EMG. A total of 170 motor units were
accepted as common ones. An average MR for the common
motor units was (97.2 ± 3.5)%. Fig. 5 shows the histogram
of MRs of all the random pairs within each of the 114 trials.
Similar to the results in [24], the distribution of MRs presents
a bimodal pattern.

C. Two Source Validation Using ALS Data
1) Dataset Description: We also conducted a different form

of two-source validation taking advantages of the high density
surface EMG characteristics of patients with amyotrophic
lateral sclerosis (ALS) as described previously [25]. A total
of 22 trials of 64-channel high density surface EMG data
were used. They were collected from the FDI muscle of
9 subjects with the diagnosis of definite ALS or probable ALS
with Laboratory Support (El Escorial criteria [26]). The study
was approved by the Institutional Review Board of Medical
College of Wisconsin (Milwaukee, USA) and Northwestern
University (Chicago, USA), and all the subjects gave their
written consent. The different channels of each trial were
grouped into two datasets, i.e. the interference dataset and
the sparse dataset. The interference dataset only contained
those channels with high levels of motor unit action potential
superposition while the sparse dataset only contained those
channels capturing distinguishable motor units (most likely
due to motor unit loss and muscle fiber reinnervation), readily
discriminated through visual inspection or routine clustering
algorithms. For details on subject information, the experimen-
tal setup, protocols, equipment, and details of sparse dataset
decomposition, please refer to [25].

2) Evaluation Results: Similar to two-source validation
using intramuscular EMG, the MR defined in Equation (23)
was used to measure the matching degree of the motor
unit spike trains independently identified from the sparse
dataset and the interference dataset, note that in this con-
text NS and NI represent the number of spikes (of the
spike train) identified from the sparse dataset and interference
dataset, respectively, NC O M stands for the number of common
spikes.

Fig. 6 shows an example of the validation process, where
the top panel is the selected channels from the interference
dataset, the middle panel is the firing instants of the identified
motor units by applying 2CFastICA to the interference dataset,
and the bottom panel shows two channels from the sparse
dataset. In this example, the interference dataset contains
14 channels and for clarity only three channels are shown
in the figure. It was straightforward to extract two different
motor units from the two channels of the sparse dataset
by visual inspection of the action potential amplitude and
waveform information. These two motor units (indicated by
red and blue bars, respectively) were also obtained by applying
2CFastICA to the 14 channels of the interference dataset. The
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Fig. 3. An example of discharge timing comparison for motor units identified from simultaneously collected surface and intramuscular EMG signals.

firing instants of these two common motor units from the
interference dataset and the sparse dataset matched very well,
as shown in the figure, where the same color (red or blue) was
used to represent the common motor units.

As suggested by the objective function values of this
example in Fig. 7, the nongaussianity of the sparse dataset
is generally higher than that of the interference dataset. The
objective function values of some channels in the sparse set are
even higher than the decomposition result of the interference
dataset (so these channels can be easily decomposed and used
for the performance evaluation purpose).

Overall, the number of channels in the interference dataset
was 42.6% of the total number of channels. A total of 140
(on average 6.4 ± 2.9 per trial) motor units were identified
from the interference dataset using 2CFastICA and a total
of 34 (on average 1.5 ± 0.5 per trial) motor units were
identified from the sparse dataset. Notably, all the 34 motor

units from the sparse dataset were also identified as common
ones, with an average MR of (99.4± 0.9)%.

IV. DISCUSSION

This study presents a novel deflationary high density surface
EMG decomposition framework. The framework focuses on
solving the local convergence problem of FastICA and improv-
ing the efficiency and accuracy of high density surface EMG
decomposition. Given that FastICA always falls into local
optima, our previously developed PFP framework introduced
a peel-off strategy to overcome the local convergence of
FastICA [3], [4]. Specifically, the motor unit action potential
trains of identified motor units from FastICA are estimated
by the least squares method, and progressively subtracted
from the original surface EMG signals (through an iterative
processing) to reduce their influence on the convergence
of FastICA. Although this strategy has proven to be very
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Fig. 4. The objective function values of different identified motor unit
spike trains in the example of Fig. 3.

Fig. 5. Distribution of MRs between random pairs of surface and
intramuscular motor unit firing trains in individual trials.

effective, unfortunately it also potentially creates several prob-
lems. For example, the discrepancies of the motor unit action
potential waveform estimation may affect the accuracy of
the decomposition results. In addition, the iterative peel-off
processing slows down the efficiency, particularly when the
signal duration is long. In this study, we found that in fact,
the local convergence problem of FastICA can be solved by
only using the kernel space constraint without peel-off. This is
a much more efficient solution than the peel-off strategy and
meanwhile greatly improves the SNR (and thus accuracy) of
the FastICA output.

The novel method proposed in this study is named as
2CFastICA because it involves kernel constrained FastICA
and correlation constrained FastICA, which complement each
other in high density surface EMG decomposition. Firstly, ker-
nel constrained FastICA solves the local convergence problem
of FastICA in a very efficient way, so that the motor units
can be estimated one by one, without requiring the previous
peel-off strategy. Secondly, correlation constrained FastICA
is used to further refine the output of kernel constrained
FastICA and correct possible erroneous or missed spikes, thus
warranting the reliability of decomposition results. Meanwhile,

the efficiency of kernel constrained FastICA can also be
revealed by the fact that the SNR of the output of kernel
constrained FastICA is usually higher than that from the
peel-off strategy, so that correlation constrained FastICA can
converge with fewer iterations. Based on Newton’s method,
both of the constrained FastICAs inherit the advantages of fast
convergence of FastICA, thus greatly improve the decompo-
sition efficiency. With the kernel space gradually compressed,
the algorithm can dig out almost all possibly decomposable
motor units under the convolutional mixture model.

Assessment of decomposition performance is essential for
any newly developed EMG decomposition method. Com-
mon assessment approaches include surface EMG simulation
and testing with experimental surface EMG signals. Both
approaches were implemented in this study to evaluate the
performance of 2CFastICA. For the experimental approach,
although 2CFastICA was tested with considerable experi-
mental high density surface EMG signals from weak to
strong contractions, we chose to only report the results from
two-source validation experimental signals, given that the
composition is not known a priori in a real or experimental
EMG signal, and two-source signals provide a useful and
widely recognized approach to quantifying the decomposi-
tion performance by cross-checking the timing information
(i.e. agreement on the timing) of the common motor unit
discharges [24], [27], [28]. In addition to the conventional
two-source validation typically involving simultaneous sur-
face EMG and intramuscular EMG recordings, a different
two-source validation method was also performed, taking
advantage of the surface EMG characteristics of ALS patients
and the spatial recording capacity of an electrode array [25].

It is noted that the results of the two-source validation were
very similar for 2CFastICA and PFP. For example, in the two-
source validation using intramuscular EMG, PFP achieved a
performance of an average of 7.6± 2.7 motor units per trial,
a total of 168 common motor units, and an average MR of
96.8%, from the same datasets [24]. Compared with the results
of the current study, there was no remarkable difference in
performance evaluation between the two algorithms. However,
it is interesting to observe that PFP found common motor units
in all 114 trials, while 2CFastICA failed to identify common
motor units in four trials although it found more common
motor units than PFP. Although such a difference did not have
a notable influence on the overall decomposition performance,
it implies that there might be somewhat different mechanisms
acting on FastICA convergence between the peel-off strategy
and the kernel constraint. Understanding this mechanism dif-
ference may help further increase the decomposition yield.
It is also worth to note the bimodal distribution of MRs for
both PFP and 2CFastICA. This indicates that two randomly
matched motor unit firing trains either matched very well or
did not match at all. As previously discussed in [29], caution
is required for the presence of intermediate MRs of two spike
trains, which may suggest less reliable decomposition.

In the two-source validation using intramuscular EMG,
the final decomposition MR of 2CFastICA only improved
by about 0.4% on average compared with PFP. This is not
surprising since the average MR of PFP is already as high as
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Fig. 6. A demonstration of the two-source validation using ALS data (please see text for details).

Fig. 7. The objective function values of different identified motor unit
spike trains in the example of Fig. 6.

96.8%. However, if viewed from another perspective, these
results also indicate that in the previous PFP framework,
the peel-off processing does not cause a noticeable drop in
decomposition accuracy. This is because the constrained Fas-
tICA serves as a powerful error correction mechanism, a key
design in the PFP decomposition framework. In other words,
even the peel-off step may introduce some errors to the
FastICA output, most of these errors can be corrected by
the followed constrained FastICA. We note that Negro et al.
commented that the peel-off strategy may decrease the

accuracy of FastICA [6]. In our opinion, this phenomenon,
if observed in their practice, may have been attributed to
two reasons. Firstly, the error correction mechanism similar to
constrained FastICA was lacking, thus the errors caused by the
peel-off step could not be fixed. Secondly, the spike triggered
averaging was used to estimate the action potential waveforms
of the identified motor units, so that the waveform estimation
of different motor units was carried out independently, without
using all the available information. This limitation was likely
to result in relatively large errors, particularly in the case of
heavy superposition.

To this end, it can be seen that while the peel-off step is
designed to solve the local convergence problem of FastICA
in the PFP framework, indeed the constrained FastICA is the
core processing that ensures the reliability of the final result.
For this reason, the constrained FastICA (actually, a more
efficient iteration of constrained FastICA) is still retained as a
key component in this study. It is worth noting that compared
with the peel-off strategy, the new design of 2CFastICA also
provides a more favorable approach towards implementing
online high density surface EMG decomposition for real time
applications.

Although the peel-off strategy is not needed in the newly
developed 2CFastICA method, some components in the pre-
vious PFP framework can still be useful. For example,
when it is difficult to distinguish between different motor unit
spikes with only a simple threshold, valley-seeking cluster-
ing [20] can be applied to overcome the difficulty. The useful
components of PFP, if needed, can be naturally embedded
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into the new framework to facilitate the decomposition
performance.

V. CONCLUSION

This study presents a novel high density surface EMG
decomposition method called 2CFastICA, incorporating kernel
constrained FastICA and correlation constrained FastICA.
The former focuses on overcoming the local convergence
of FastICA without requiring the previous peel-off strategy.
The latter further refines the output of kernel constrained
FastICA to warrant the decomposition accuracy. The per-
formance of applying 2CFastICA for high density surface
EMG decomposition was validated by both model-based
simulation and experimental two source validation studies.
The MATLAB open source code of 2CFastICA is provided
(see Appendix).

APPENDIX: OPEN SOURCE CODE

The MATLAB open source code of 2CFastICA for
high density surface EMG decomposition can be found
at (https://github.com/maoqichen/High-density-surface-EMG-
decomposition-by-2CFastICA). The code is free to download
and use for research and non-commercial purposes only.
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