
1828 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 32, 2024

Effectiveness of Intelligent Control Strategies in
Robot-Assisted Rehabilitation—

A Systematic Review
Dexter Felix Brown and Sheng Quan Xie , Fellow, IEEE

Abstract— This review aims to provide a systematic
analysis of the literature focused on the use of intelligent
control systems in robotics for physical rehabilitation,
identifying trends in recent research and comparing the
effectiveness of intelligence used in control, with the
aim of determining important factors in robot-assisted
rehabilitation and how intelligent controller design can
improve them. Seven electronic research databases were
searched for articles published in the years 2015 – 2022 with
articles selected based on relevance to the subject area
of intelligent control systems in rehabilitation robotics.
It was found that the most common use of intelligent
algorithms for control is improving traditional control
strategies with optimization and learning techniques.
Intelligent algorithms are also commonly used in sensor
output mapping, model construction, and for various data
learning purposes. Experimental results show that intel-
ligent controllers consistently outperform non-intelligent
controllers in terms of transparency, tracking accuracy,
and adaptability. Active participation of the patients and
lowered interaction forces are consistently mentioned as
important factors in improving the rehabilitation outcome
as well as the patient experience. However, there are limited
examples of studies presenting experimental results with
impaired participants suffering limited range of motion,
so the effectiveness of therapy provided by these systems
is often difficult to quantify. A lack of universal evaluation
criteria also makes it difficult to compare control systems
outside of articles which use their own comparison
criteria.

Index Terms— Control systems, human joints, machine
intelligence, physical human-robot interaction, rehabilita-
tion robots.

I. INTRODUCTION

STROKE, other neurological diseases, and debilitating
injuries can cause major, often lifelong, problems for

their sufferers in the form of decreased mobility. Between
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the years 1990 and 2019 there were more than 12.2 million
new stroke cases each year, and by 2019 over 101 million
people live post-stroke according to the 2022 global stroke
factsheet [1]. Studies have shown that physical impairment
is a frequent effect of acute stroke, reporting that up to
80% of acute stroke victims experience some form of limb
impairment [2]. The most prevalent and effective method
to treat stroke-related motor disability is physical therapy
led by a physiotherapist, but the ever-increasing number of
stroke patients puts more and more pressure on healthcare
services. According to the NIH, standard inpatient treatment
involves 3 hours of intensive treatment 5-6 days a week for
up to 3 weeks, while outpatient treatment requires frequent
hospital presence for several hours up to 3 days a week [3].
While stroke victims comprise the majority of patients
requiring this kind of treatment, there are many other diseases
and injuries which require similarly intensive rehabilitation,
including but not limited to drop foot, osteoarthritis, muscular
dystrophy, various sporting injuries like sprains or fractures,
and recovery from other medical procedures like joint
replacements.

With the ever-increasing burden on therapists caused by
the labor-intensive nature of treatment for physically impaired
patients, robotic rehabilitation is an open research field focused
on developing systems to aid in the physical therapy of joints.
This can be achieved by reducing the workload on therapists,
providing more accurate therapeutic exercises guided by the
robot, and increasing safety for both the therapist and their
patient [4]. Many different systems have been developed in
this field to be used for various joint exercises such as gait,
ankle, and wrist rehabilitation [5], [6], [7], as well as specific
research into the actuation and control of these systems [8].
The effectiveness of these systems is reliant on their ability
to perform rehabilitation exercises accurately and repetitively.
The safety of using these robots is also paramount as direct
human-robot interaction is implicit in their design.

A number of reviews exist concerning rehabilitation robotics
generally [9], [10] as well as specific applications of
rehabilitation robotics [11], [13], and control techniques used
in the field [12], [14]. This paper aims to systematically search
and review articles focusing on machine intelligence used
in control systems for physical rehabilitation robotics. The
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relative effectiveness of these systems in terms of rehabilitation
outcomes will be discussed and compared, important factors in
improving rehabilitation outcome will be determined, and any
notable research trends found will be established. In particular,
the benefits and shortcomings of commonly used intelligent
controllers will be discussed in the context of rehabilitation
robotics.

A comprehensive search and discussion of literature focused
on intelligent control of rehabilitation robotics, published in
the years 2015 to 2022 to ensure up to date research, will be
presented. Experimental and clinical data published as part of
these articles will be examined and analyzed.

II. METHOD

A. Search Strategy
This review was limited to articles, including journal

articles, conference proceedings and book chapters, published
online in English. This includes articles not originally
published in English which have since been translated into
English. The search only includes articles published between
the years 2015 – 2022. As the field of machine intelligence
is rapidly increasing in popularity, the scope of this review is
limited to the most recent publications and advances in the
field.

Seven electronic databases were chosen for this review
based on relevance to the subject area of medical engineering
and volume of articles available: PubMed, ScienceDirect,
Web of Science, DOAJ (Directory of Open Access Journals),
Cochrane Library, Wiley Online Library, and IEEE Xplore.
A free search of Google Scholar was also conducted to ensure
the search was as thorough as possible and included relevant
publications missed in the database search.

The search terms and search strings used for each database
were tailored to the specifics of the database’s search
function to ensure each search was as comprehensive and
relevant to the research question as possible. The general
search terms used were “Robot∗” AND “joint∗” AND
(“rehabilitat∗” OR “treat∗”) AND “control∗” AND (“system∗”
OR “algorithm∗”).

B. Inclusion/Exclusion Criteria
Robotics has been defined as “The application of electronic,

computerized control systems to mechanical devices designed
to perform human functions [15]”, while a control system or
control strategy is “a system of devices or set of devices, that
manages, commands, directs or regulates the behavior of other
device(s) or system(s) to achieve desire results [16]”. This
review will consider software control systems to be defined
as “devices” in this nature, and thus any article utilizing
a software control system will be included. Any robot not
using a control system that is in some way automatic will
be excluded. Articles that focus on bioelectric feedback such
as surface electromyography will be included only if they
also include comparison or reference to other control systems,
as this constitutes a sensing system rather than a control
system.

A Rehabilitation robot will be defined as any robot designed
to aid in the physical therapeutic recovery of a person suffering
from neurological or physical injury. As the aim of this review
is to determine important factors in improving rehabilitation
outcome, articles on purely assistive robots such as assistive
exoskeletons or prosthetics will be excluded as their purpose
is not rehabilitation of the targeted limb, rather assisting their
motion for day-to-day tasks. As the review focusses on the
rehabilitation outcome and control schemes used, there will
be no intentional bias or exclusion criteria concerning which
limb or joint is targeted for rehabilitation.

Articles including clinical trials of rehabilitation robots as
well as simulation results will be included, so long as there is
sufficient mention of the control system used.

This review focuses on intelligent control strategies used
in rehabilitation robotics. Machine intelligence is notoriously
difficult to define [87] with multiple conflicting definitions
in literature [88], so here intelligent control systems will be
defined as any which use machine learning or data-driven
adaptation to adjust any control parameters, either during use
or for optimisation of the control system parameters. Any
article concerning the type of intelligent control system used
in a rehabilitation robot will be included, with a particular
focus on those which quantify the effectiveness of any control
strategies mentioned. Articles not mentioning a control system,
or those with no particular focus on the control system used,
will be excluded, as well as articles which present traditional
control strategies lacking intelligence.

C. Stages of Review
After searching each database, the articles were collated in

a document for screening. Identical articles found in multiple
databases were removed. The article titles were then screened
for relevance to the research question, and some were removed
based on the inclusion/exclusion criteria.

The abstracts of the remaining papers were then read, and
the papers further screened for relevance with more thorough
exclusion criteria. The full text of the final articles in review
were then read and organized based on relevant research
for discussion and data extraction. Articles found during the
Google Scholar free search were included at the abstract
screening stage as they were initially selected based on title
relevance during the search.

D. Search Results
A total of 635 articles were found using the search method

detailed in the previous section. 123 of these were found
to be duplicates from different databases and were removed,
resulting in 512 unique articles. 196 of these articles were
removed based on their titles due to the exclusion criteria,
mostly due to irrelevance in the subject area of control systems
and rehabilitation robotics. 68 articles were excluded based on
reading their abstracts due to lack of focus on control systems
in favor of the mechanical design of the robot instead. Several
literature review articles were also excluded at this stage.
248 articles met the inclusion criteria based on their abstracts,
while 17 further articles were found during the Google Scholar
free search which met the inclusion criteria.
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After reading the full text, 48 of the remaining articles
were excluded from review due to having little or no
relevant discussion concerning control systems, a further
91 were excluded later due to lack of unique or relevant
data and discussion points, and 56 were excluded due to
exclusively using traditional controllers with no intelligence.
70 articles met the inclusion criteria for this review, discussing
intelligent control systems used in various types and models
of rehabilitation robots and their relevant successes/failings.

III. RESULTS

Intelligent control systems have become a major focus of
research for rehabilitation robotics in recent years given their
ability to adapt to patient specific needs, enhancing safety
and effectiveness of treatment. Most articles making use of
an intelligent controller focus on it as a specific subject of
research, some alongside the development of a rehabilitation
robot, but others apply the controller to an existing robot.

Figure 1 shows a generalised control system diagram for a
rehabilitation robot, including both feedforward and feedback
loop, as well as the potential usage of various sensors and
sources of noise and disturbances to the system. Not all
features shown in the diagram will be present in all developed
systems depending on the type of controller and its intended
specific use case. The labeled control system section of the
diagram will differ greatly from study to study. As such
figures 2 and 3 present more specific controller cases, which
are discussed in detail in later sections.

Two main control paradigms are present in terms of
rehabilitation robotics control, being passive and active
control. Passive control focuses on position, with the robot
guiding a patient’s joint through a series of predetermined
motions with little or no sensing or human input to guide
the training. This sort of control is suitable for patients with
little motor function in the targeted joint but is inherently non-
compliant and therefore the motion must be carefully regulated
to ensure proper training is achieved and safety is ensured.
Active control regulates the applied torques of the robotic joint
to assist or resist the motion of the patient, in order to either
guide motion to build muscle plasticity or provide resistance
to improve strength. Certain control schemes are more suitable
for either passive or active training, depending on their ability
to react to disturbance or sensor input and whether they are
specifically designed to follow trajectories or to provide torque
outputs. Many articles present both passive and active training
methods, often with different control schemes used for each.

A. Control Optimisation
Proportional Integral Derivative (PID) and Proportional

Derivative (PD) controls are often used as the baseline
controller for many robotic systems. These traditional control
schemes use gain parameters for the input, its integral
function, and derivative depending on the implementation
to calculate control signals. Some research has gone
into optimizing traditional control algorithms by applying
intelligent algorithms to adjust the control gain parameters,
allowing the linear controllers to perform more dynamically
and more effectively reject disturbances to the system by

dynamically responding to error. Particle swarm algorithms
are used to optimize PID parameters in [60], [77], [78],
and [80], with [78] developing a novel artificial bee
colony algorithm for parameter optimisation. Particle swarm
algorithms use a number of agents referred to as ‘particles’
in a search space of dimensions equal to the number of
parameters and use an iterative process to move these
particles towards an optimal solution for some objective
function. Sharing of information between particles allows
the ‘swarm’ to behave as a group, which speeds up the
process. Adaptive simulated annealing method is used for
parameter optimisation in [59]. Zeigler-Nichols is used in
some articles for optimisation but is only mentioned briefly
and is rarely a topic of focused research, however [78]
does compare two intelligent optimisation techniques with
Zeigler-Nichols as a baseline. This optimisation method is
specific to PID control and relies on raising the proportional
gain value until the system is unstable, then calculating the
integral and derivative gains based on the resulting oscillations.
Results from these articles show that optimised versions
of the controller consistently have better motion tracking
accuracy and robustness to external disturbances and noise.
The comparison results from [78] found that the developed
artificial bee colony optimisation method performed better
than swarm optimisation and Ziegler Nichols in terms of error
correction and settling time but had a slower response time.

Genetic Algorithms (GA) are used in several cases for
optimisation of different control schemes. This optimisation
method generates a population of solutions and iteratively
‘evolves’ them based on the objective function by sharing
traits and randomly assigning new ones. GAs are used to
optimize the respective control strategies in [40], [53], [54],
[55], and [56], while [52] uses GA to estimate friction for
the robot dynamic model. GA is used to optimize joint angle
and velocity parameters in a control system with a multi-layer
perceptron neural network in [40]. A GA presented in [53] is
used to determine and optimize impedance parameters. This
controller was validated in an experiment with a patient to
provide good compliance and low patient-machine interaction
torques. GA is used to optimize PD control in [54], and for
Sliding Mode Control (SMC) in [55] and [56].

B. Fuzzy Logic Control
Despite existing for decades, fuzzy logic has become a

popular logic structure for controllers in recent years with
many articles utilizing it for controller development since
2015. Fuzzy logic is considered a subset of AI given its
ability to make decisions by grouping continuous data into
discrete subsets. This allows for many inputs/outputs to
be accommodated and can assist with modelling nonlinear
systems. Fuzzy logic is often applied to non-intelligent
controllers such as PID as a method to improve their
functionality. Fuzzy PID controllers are used in [17] and [25],
with [18] using fuzzy PD control. Fuzzy SMC is used
for motion control in [19], [20], [21], [22], [27], [28],
and [29]. Fuzzy logic is used for impedance control in [20],
[26], and [30] and for admittance control in [21] and [29].
Impedance control uses the ratio of position and force to
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Fig. 1. A generalised diagram for control of a rehabilitation robot. An ankle rehabilitation robot is used as an example.

Fig. 2. A generalised adaptive controller diagram. The Adaption Algorithm block includes the adaptive law for the system and represents the use
of intelligence in adaptive controllers. The adaptive law is typically unique to the controller/study it is presented with. Some examples of adaptive
laws presented in this review include interaction torque-based adaption, adaptive simulated annealing, particle swarm optimisation-based adaption,
adaption based on error back-propagation, and haptic feedback-based adaption.

control the force output by the system, while admittance
control uses this ratio to control the position output.
Collectively these methods are sometimes referred to as
compliance control. Control algorithms simply referred to
as fuzzy control are used in [23] and [24]. Experimental
data is presented in [17] comparing a proposed fuzzy PID
controller to standard PID with an unimpaired participant.
The results show both controllers have overall acceptable
tracking performance, but the fuzzy controller performed
better. Fuzzy SMC with adaptive gain is used in [19] and
is experimentally verified in both passive and active control
modes. A proposed Integral sliding mode impedance control
with fuzzy adjustment (IFSMIC-TDE) is experimentally
compared with model-based sliding mode control in [20] with
three participants. All three experiments show the superiority
of the fuzzy-based controller, with smaller time delays, less
chattering, and smaller impedance errors than the model-
based method. Fuzzy SMC using PID-based sliding surfaces

is developed in [27] and is compared with a standard PID
controller in an experiment with an unimpaired participant,
and the results show the proposed controller has improved
tracking performance and reduced chattering. An experiment
with 10 stroke patients is presented in [24] in which 5 patients
use the proposed lower limb rehabilitation robot and controller
for training in 20 15-minute sessions over the course of
four weeks, and 5 patients designated the control group were
treated with conventional post-stroke rehabilitation. Of the
patients who used the robot, 3 exhibited improvements in
their lower limb recovery, while none in the control group did.
Experiments are presented in [22], [26], and [29] to validate
their respective fuzzy controllers, each finding them to have
accurate motion control with minimal tracking error.

C. Adaptive Controllers
A focus of intelligent control in rehabilitation robotics

is to make the robot more adaptive, allowing it to reject
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Fig. 3. A generalised Iterative Learning Controller diagram. y(t) is the input values to the system, u(t) is the control function, uold(t) is the control
function from the previous iteration, e(t) is the error between the desired and actual output, eold(t) is the error form the previous iteration, and P is
the learning rate.

disturbances and adjust training or control parameters to
better suit different patients or sensor inputs dynamically.
Adaptability can also help provide safer and more comfortable
rehabilitation by reducing the interaction torque between user
and machine, also referred to as improving the transparency of
the system. Figure 2 shows a general diagram of an adaptive
control system, as an example of a specific application of the
Control System section shown in figure 1. The torque/position
control block will differ depending on the specific use
case from study to study. While adaptability is the aim of
most intelligent controllers mentioned here, several articles
specifically mention the use of adaptive controllers [18],
[19], [20], [21], [22], [23], [25], [30], [33], [42], [43], [50],
[57], [58], [59], [60], [61], [62], [63], [64], [65], [66], [67],
[68], [69], [70], [71], [72], [73], [74], [75], [76], [89], [90].
Most of these apply adaptive algorithms to other control
schemes such as PID or SMC. Fuzzy logic is also often
used in adaptive controllers to help approximate system
models and plants which are impossible to define with
purely mathematical models. Among the articles presenting
an adaptive controller, the most numerous is adaptive SMC.
Adaptive PID and PD are also present, with a few using
adaptive impedance and admittance control. Many of these
controllers use fuzzy logic in their adaptive algorithms, while
some use neural networks which will be discussed in more
detail in a later section. Adaptive Iterative Learning Control
is presented in [33], while [64] presents adaptive state-space
control, and [71] develops a wholly novel adaptive controller
based on motor primitives. The hybrid shared controller
developed in [89] uses both a Mode Insertion Gradient
algorithm and Optimal Controller Inner Product to adaptively
adjust impedance parameters in response to user input.
Another novel adaptive controller is presented in [90], with
a Minimal Assist As Needed (mAAN) control scheme. This
algorithm uses sensorless torque estimation to dynamically
react to user inputs and adjust torque parameters accordingly.
The paper also presents a bound modification algorithm

for adjusting allowable error, and a decayed disturbance
rejection algorithm for encouraging voluntary movement
during training. Generally, the purpose of adaptive algorithms
in control is to dynamically adjust the control parameters
during exercises based on sensor feedback or learned behaviors
to provide better rehabilitation care, improve patient comfort,
and optimize the output of the system. Experimental results
from these articles consistently prove that adaptive control is
fit for purpose. In comparative studies, it outperforms non-
adaptive controllers in terms of tracking performance and
stiffness control, exhibiting lower error values.

D. Learning Control
Iterative learning control (ILC) is used in a number of

articles in this review. It is a tracking algorithm that relies
on the system repeating a pre-set series of movements
or impedances, depending on the operating mode, and
iteratively adjusting parameters to better fit the required motion
given the resulting sensor outputs. This allows for very
accurate and repeatable motion but requires several repetitions
to converge properly, meaning initially the movement is
typically inaccurate. Figure 3 shows a general diagram for
implementation of ILC in a rehabilitation robot as an example
of a learning control loop. This diagram is an example of
a specific application of the Control System section shown
in figure 1. ILC is used for motion control in [31], [32],
[33], [34], [35], [36], [37], and [38]. Experimental results are
presented in [32], [35], and [37] validating their respective
implementation of ILC. The results in [32] show the iterative
learning impedance controller is capable of consistently
converging error to 0 in response to interaction torques.
Experiments with 8 unimpaired subjects are presented in [35],
the results of which show stable and safe interaction forces
between subject and robot, as well as adaptable parameters
allowing for training exercises of different difficulties. The
results presented in [37] from experiments with 3 unimpaired
subjects show that the tracking error of the joint movements
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become smaller with increasing numbers of repetitions.
Results comparing ILC with other controllers are presented
in [34], [36], and [38]. Active Disturbance Rejection Control
(ADRC) and PID are each compared with ILC combined with
ADRC in an experiment with one participant in [34]. ILC-
ADRC showed faster response time and better disturbance
rejection than PID, and better tracking performance than
standard ILC, consistently proving it the most suitable of the
tested controllers. ILC based on PID is compared with ILC
based on nonlinear control in [36]. Both controllers decrease
in error over more iterations, but the overall error of the PID-
based controller was larger. The nonlinear method has better
performance with negligible increase in required torque. Two
algorithms are proposed in [38], norm-optimal ILC (NOILC)
and Optimization-based proportional-type ILC (OPILC). Both
controllers converged to the reference trajectory with OPILC
having a more damped response.

Intelligent controllers in the literature often make use of
neural networks in various applications, some applied directly
to the controller to learn parameter settings, some used for
sensor feedback, as well as for disturbance compensation and
value estimation. Many types of neural network exist but all
operate on similar principles, with a network of ‘neurons’
which activate on a certain input threshold determined by gain
parameters learned through training and pass the data on to
the next layer of neurons. The different possible activation
functions and limitless configurations make neural networks
applicable to nearly any computational problem. Neural
networks are used in software design in articles [18], [34],
[39], [40], [41], [42], [43], [44], [45], [46], [47], [48], [49],
[50], [51], [86]. The types of networks used in the literature
discussed here are backpropagation and convolutional neural
networks, Radial Basis Function networks (RBF), as well as
long-short term memory networks (LSTM). RBF networks are
used mostly for compensation for disturbances and unknown
values, and there are no examples in this review of RBF
networks being used for motion prediction or classification.
A reinforcement learning neural network is used in [42], and
a central pattern generator neural network is used in [41],
both used as the basis of the motion controller proposed
in their respective articles. Some of these articles compare
their proposed controller’s network with other types, and [47]
develops and tests both LSTM and convolutional neural
networks for joint position prediction but does not compare
the two. Results from articles with experiments or simulations
consistently prove that the network used is fit for purpose, and
those which compare neural networks with other algorithms
and methods prove that the network performs better. Two
different neural networks are compared in the same application
in [44], [45], and [48]. A LSTM neural network is used to
create a motion perception model for control of an upper limb
exoskeleton in [44], and through experiments compared to
backpropagation neural network, finding that the LSTM had
better performance with lower prediction error. An experiment
comparing the effectiveness of several algorithms for a motion
classification system is presented in [45], including perceptron
and convolutional neural networks. The convolutional neural
network performed the worst of the tested algorithms in

terms of classification accuracy. A backpropagation neural
network is used for mapping relationships between surface
electromyography (EMG) sensors and knee joint angle in [48],
finding through experiments that it is superior to LSTM neural
network as well as Support Vector Regression methods. The
results from [44] and [48] seem to suggest that LSTM neural
networks are better suited for motion intention prediction,
while backpropagation is better suited for mapping sensor
outputs. Several articles [45], [48], [49], [50] compare different
methods or algorithms incorporating the same type of neural
network.

E. Other Controllers
A nonlinear Model Predictive Controller (MPC) is presented

in [83] for more compliant human-robot interaction. MPC
uses a model of the dynamic system as well as knowledge
of future input values to predict future states, allowing for
optimal control with future system states taken into account.
The system is simulated with input torques mimicking an
unimpaired and an impaired subject. In both cases the
controller performs as expected, properly guiding trajectories
in response to interaction torques.

K-nearest neighbors, another learning algorithm which uses
proximity to make classifications and predictions, is used for
motion control in [81] based on sEMG sensors by identifying
motion intention. This method is experimentally validated
to have a good identification accuracy rate but becomes
less accurate the greater the applied load to the system.
A probabilistic trajectory tracking algorithm for passive mode
control and a system identification model to adapt and adjust
an impedance controller in response to the user’s anatomical
stiffness in the active mode are both presented in [82]. Data
gathered from a passive mode experiment was used to estimate
anatomical stiffness for the active mode. In active mode the
forces applied by the robot were considerably higher towards
the extremities, and concerns for system instability in highly
unstable environments were raised. It is noted that these
two experiments constitute some of the only results in this
review which critically evaluate their respective controllers,
raising valid concerns for their functionality, rather than just
concluding that they are fit for purpose.

F. Controller Comparisons
While most articles in this review use a single controller for

their respective rehabilitation strategy, several experiments and
simulations have been done comparing different controllers
using the same platform to determine which performs best
under certain conditions. Most of these comparisons are done
to validate the controller developed in the article by presenting
its superior qualities over more traditional controllers, most
often PID, but some develop multiple controllers and compare
them against each other to determine which is the most
suitable for the application. All articles which compare
multiple controllers using the same robotic platform either
experimentally or in simulation are presented in table II. In all
cases where a new controller is designed and compared with
a more common classical controller such as PID, the new
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TABLE I
ALGORITHM ADVANTAGES AND DISADVANTAGES

TABLE II
EXPERIMENTAL RESULTS WITH PARTICIPANTS WITH LIMB IMPAIRMENT

controller is found to be superior in performance, with the
most common measure being trajectory tracking. In cases
where an intelligent controller is compared to a non-intelligent

controller, the intelligent controller invariably performs better.
Due to the abundance of novel controllers in literature there
are many comparisons missing. This makes it practically
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TABLE III
ARTICLES COMPARING CONTROL SYSTEMS

impossible to determine which controller is objectively the
best for different aspects of rehabilitation such as transparency,
personalization, or different control modes.

IV. DISCUSSION

A. Summary of Results
A summary of the algorithms used in the literature reviewed

here is presented in table I, alongside observed advantages,
disadvantages, and general application scope for each. Some
of the most used controllers such as PID and SMC have
recently been used as the basis for intelligent controllers
through adaptive algorithms to dynamically adjust control
parameters, optimisation techniques, and sensor feedback
systems. Passive and active control schemes are used in
equal number and most rehabilitation systems are designed
to accommodate both, as they are necessary for different
stages of the rehabilitation process, and this often requires
multiple different control systems. Intelligent controllers have
become more prevalent, making use of adaptive algorithms,
neural networks, fuzzy logic, and other decision-making
processes to allow rehabilitation robots to react to different
patient needs and data training. This allows for improved
tracking accuracy, robustness to disturbance and noise, as well
as more personalized training exercises over non-intelligent
systems. These improvements are presented in comparative
experiments and simulations, as summarized in table III.
Many articles present results comparing controllers on the

same platform, with PID being the most used controller
for comparison and generally considered the baseline to
improve upon. In recent years compliance control and assist-
as-needed control have become popular in the field of
rehabilitation robots. Given the specific need for accurate force
output and safe human-machine interaction, impedance and
admittance control schemes prove highly effective at providing
active control. Assist-as-needed control has similar usage in
rehabilitation but specifically provides the minimal amount of
assistance for the required task to be completed. These control
methods have been shown to improve active participation in
exercises, which is connected in many cases with improved
rehabilitation outcomes.

B. Safety and Ethical Considerations
While the focus of many articles in this field is on the

accuracy of motion and torque control, most also discuss
transparency and human-robot interaction. This is essential to
any robot which directly interacts with a human, and especially
in rehabilitation robots as the interaction is prolonged and
typically with an injured or impaired limb. The interaction
force between robot and human must be kept low enough as
to not injure the user but must also still be able to guide
movement or provide sufficient resistance. Many experiments
presented in these articles measure interaction torques to
determine transparency of the system.

The compliance of the robot is another important
consideration in terms of safety in rehabilitation. Solid driven
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actuators are inherently noncompliant, meaning motion of the
user’s joints are forced along the motion path of the robot.
While this may assist in the efficiency of training and help
promote more motion in the joint, it is unsafe in the case
of rapid or unplanned movement on the user’s part. This
could cause injury or damage to the patient and the robot.
Some systems instead opt to use compliant actuators, some
of the more popular being artificial pneumatic muscles and
series elastic actuators. These actuators allow for some patient-
driven movement in multiple axis making them safer, but
present problems in control as this inherent compliance can
impact the tracking accuracy of the system. More complicated
dynamic models are required to control systems based on these
actuators.

Patient safety is the most discussed ethical concern in
relation to robot-assisted rehabilitation, yet as an automated
healthcare system more considerations are present which are
less mentioned in the literature. Loss of human interaction
could impact the effectiveness of rehabilitation as the
improvement of these systems allows for more at-home
treatment without the need for a therapist. Accountability
is another ethical consideration which is related to safety,
as in the case of an injury with an automated system the
person or groups responsible is often nebulous. One aspect
which is addressed by intelligent control is the potential
loss of personalized care. In treatment with a specialist
rehabilitation therapist, the condition suffered by the patient
can be treated with specialized exercises, and this is lost
in the case of predefined trajectories or impedance tasks.
Intelligent systems can be applied to learn the needs of
the patient and allow for more personalized care, and
this is the topic of research in many articles focusing
on machine learning control strategies. However, machine
intelligence introduces another ethical dilemma. A machine
learning system requires a large quantity of data to properly
learn required joint torques and movements for rehabilitation
exercises, and the collection of such large datasets could result
in privacy issues as the incentive for data collection campaigns
increases.

Risks are introduced by giving an automated system the free
reign to alter larger aspects of the training, and these high-level
decisions should always be made by a therapist, as errors in
the machine’s judgment could have serious ramifications on
both the patient and the medical body responsible [85].

C. Meta-Analysis and Evaluation

After extracting data from all articles presenting experi-
ments with human participants, it was found that the vast
majority of these experiments did not include impaired
subjects in their participants, with only 9 articles presenting
results from experiments with impaired subjects. The results
of these experiments are summarized in table II. Some of
these results focus on the performance of the controller,
but those which focus on the rehabilitation outcome all
find that impaired subjects improve in motion range or
accuracy. Unfortunately, there were no studies in this
review in which different control strategies are used for

rehabilitation of impaired subjects and their effectiveness
compared.

While there are other examples of experiments with
participants, these are unimpaired and therefore present less
useful data for this review. The effectiveness of rehabilitation
is only properly measurable with a subject able to benefit
from it, however the purpose of these experiments can
help realise important factors in validating these systems.
The most prominent of these factors is the tracking and/or
torque accuracy of the control scheme used as this is the
most common measure in experiments. Specifically, the most
common measure in experiments is joint angle and Root-
Mean-Squared Error (RMSE) in terms of deviation from the
reference trajectory provided by software. Some experiments
also measure the output directly from the controller or
sensors to check their functionality and directly compare
with the system outputs. In articles which utilize EMG the
force estimation from those sensors are typically presented
as well.

As each article typically focuses on a different rehabilitation
robot platform for different joints and applied with different
training motion exercises, comparison between them given
the data presented in experiments is made difficult. Every
article presents data suggesting the controller proposed is
suitable for the application, and every article comparing a
developed controller experimentally to others shows that it
is superior to all others used. The only consensus between
articles is that those which use intelligence in the controller
consistently outperform those which do not, typically in terms
of motion tracking error or torque output error, and rejection
of disturbances to the system. The importance of these
measures in clinical practice is that lower motion tracking or
torque output error allow for more repeatable and accurate
therapeutic exercises, and better disturbance rejection helps
keep the patient’s motion in line with the expected exercise
motion.

Participant comfort is only explicitly mentioned in [58].
It mentions comfort in terms of robot compliance and that the
interaction forces of the robot must be set to ensure patients
feel comfortable using it. Comfort is an important factor in
rehabilitation as it can help patients actively engage in training
and not distract or impair it further, which is an issue that can
be solved with improved compliance and better transparency,
but also physically more comfortable surfaces between the
robot and the patient. There is an inherent loss in patient
feedback, especially patient comfort, when using robotic
assisted therapy with no attending physiotherapist, and no
articles reviewed here attempt to rectify this by incorporating
user-input feedback systems or intelligence designed to detect
patient comfort.

The most important factors in a rehabilitation system
as determined by the literature are tracking performance
of motion or force application; safety of human-robot
interaction achieved by transparency, low interaction force,
and compliance of the machine; and active and engaged
participation of the subject. Patient engagement is a subject
discussed in greater depth in [84]. A robust controller
is essential for good tracking performance, but this can
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be achieved by most conventional controllers with good
optimisation and parameter tuning. Compliance of the machine
is a uniquely physical property that is best implemented with
inherently compliant actuators. Intelligent control can allow
for improved transparency, as well as more engaging and
personalized training motions, and safer interaction forces.

D. Gaps and Opportunities
There exists some gaps in the literature regarding intelligent

controllers used in rehabilitation robotics. The effectiveness
of the training on patients who would require it in a
clinical setting is not well represented, with very few articles
presenting experiments with impaired participants and even
fewer showing long-term effects of the training. Critical
evaluation of newly developed control schemes is also lacking.
Most articles presenting a novel controller conclude from
their results that it is fit for purpose and meets evaluation
criteria, but they rarely discuss shortcomings or potential
improvements to be made. Articles [81], [82] are exceptions
to this, and it is noted they do not use conventional
control schemes in their development, rather developing novel
algorithms. To determine which algorithms or control schemes
are most appropriate for certain situations, or which is the
best comparatively, articles should include any failings of the
system or limitations of the results presented to allow for
critical analysis of the research.

More recent studies published in the past year give a
good insight into the future directions of the field. The
system presented in [91] uses brain-computer interface (BCI)
for improved control of a lower limb rehabilitation robot,
with a CNN trained to classify sensor inputs and motion
intention. This system is tested online with two subjects
to verify its functionality. The article includes significant
insight into future work, mentioning improved feedback,
greater training data diversity to improve generalization,
and optimisation of algorithms to improve response times.
A bio-inspired control design based on the function of the
cerebellum in mammals is presented in [92]. This novel
neural network design is used to control an upper limb
rehabilitation robot actuated by an antagonistic pair of
pneumatic muscles. In simulation this control method was
compared with traditional controllers and shown to effectively
compensate uncertainties and disturbances. An adaptive sliding
mode controller designed to improve safety in upper limb
rehabilitation exercises is presented in [93]. The system uses
interaction force estimation to adjust training dynamically. The
article recommends that the system cannot quickly evaluate
additional information such as stiffness and damping, and
suggests future work be done to improve the system in this
regard as well as using the system in robots without force
sensors in order to reduce cost.

Recent work, as well as the research trends in the other
literature reviewed here, suggests that intelligent control
design is quickly becoming the focus in the area. Novel
controllers frequently make use of computational decision-
making processes like neural networks and fuzzy logic
in various aspects, including intention detection, motion
prediction, and sensor input mapping. There is also a focus on

making rehabilitation systems more intuitive, comfortable, and
safe to use, alongside the typical focus of tracking accuracy
and robustness in these studies.

V. CONCLUSION

The consensus among the literature is that the adaptability
and personalization offered by intelligent controllers make
them superior to non-intelligent control in all control
modes. They also outperform non-intelligent controllers in
all comparative experiments in terms of error, rejection of
disturbances to the system, and interaction torques with the
user. However, it is important to note that while this seems
the case in published literature, there exists a publication bias
especially in emergent fields such as machine intelligence in
physical applications. Any intelligent controllers which did
not perform properly or were generally worse than traditional
controllers would likely not be published, so this conclusion
must not be taken as true globally without specific evidence.

Actual comparison between the controllers is generally
limited to only what is presented in individual articles,
as the results are specific to each robotic platform,
movement exercises, and experiment duration. There is no
universal metric for effectiveness, nor a standardized set of
experiments, to quantifiably determine the effectiveness of
each controller. The same can be said of other aspects of
the rehabilitation robot such as actuators, sensor systems
and hybrid rehabilitation systems, as while these have
been extensively researched in the literature there are few
experimental results demonstrating their effectiveness over
more traditional methods.

While the comparative effectiveness of controllers is
difficult to determine, the overall important factors in terms
of rehabilitation remain similar throughout the literature.
Active participation in exercise is consistently mentioned as
having a great impact on the effectiveness of treatment.
Transparency is often measured in experiments to ensure the
robots have safe and comfortable interaction with the human
participant. Transparency can, and has been, improved by
intelligent control. Active participation of the subject can
be encouraged with personalized exercises and the system’s
ability to adapt to their specific needs. However, the most
common measure of success is tracking accuracy. While
accuracy of motion is important for any controller, the ability
to follow reference paths with minimal error is not as
important to rehabilitation outcome as the patient’s experience
and engagement in the training. The ability of the system
to reject or compensate for disturbances is another common
measurement, as it impacts the safety of the patient and
generally improves training effectiveness. Other aspects such
as compliance or weight of the robot itself are important as
well but are more difficult to directly improve with better
controllers.

To further the research and fill gaps presented in the
literature, comparative experiments between commonly used
controllers should be done, as well as tests over longer
periods and with impaired patients, to determine their effect
on the rehabilitation outcome and give conclusive results on
which performs best under certain conditions. Comparing
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novel intelligent controllers to state-of-the-art algorithms in the
field should also become more of a priority, as comparisons
to traditional controllers like PID and SMC are becoming
increasingly obsolete with the rapid development of more
accurate and robust controllers. Feedback from participants
in the experiments should also be gathered frequently, as the
patient’s experience is a crucial factor when undergoing
physical therapy.
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