
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 32, 2024 1767

Multi-Task Heterogeneous Ensemble
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Minji Lee , Member, IEEE, Hyeong-Yeong Park , Student Member, IEEE, Wanjoo Park , Member, IEEE,
Keun-Tae Kim , Yun-Hee Kim , and Ji-Hoon Jeong , Associate Member, IEEE

Abstract— Robot-assisted motor training is applied for
neurorehabilitation in stroke patients, using motor imagery
(MI) as a representative paradigm of brain-computer inter-
faces to offer real-life assistance to individuals facing
movement challenges. However, the effectiveness of train-
ing with MI may vary depending on the location of the
stroke lesion, which should be considered. This paper
introduces a multi-task electroencephalogram-based het-
erogeneous ensemble learning (MEEG-HEL) specifically
designed for cross-subject training. In the proposed frame-
work, common spatial patterns were used for feature
extraction, and the features according to stroke lesions
are shared and selected through sequential forward float-
ing selection. The heterogeneous ensembles were used
as classifiers. Nine patients with chronic ischemic stroke
participated, engaging in MI and motor execution (ME)
paradigms involving finger tapping. The classification cri-
teria for the multi-task were established in two ways,
taking into account the characteristics of stroke patients.
In the cross-subject session, the first involved a direction
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recognition task for two-handed classification, achieving a
performance of 0.7419 (±0.0811) in MI and 0.7061 (±0.1270)
in ME. The second task focused on motor assessment
for lesion location, resulting in a performance of 0.7457
(±0.1317) in MI and 0.6791 (±0.1253) in ME. Comparing
the specific-subject session, except for ME on the motor
assessment task, performance on both tasks was signifi-
cantly higher than the cross-subject session. Furthermore,
classification performance was similar to or statistically
higher in cross-subject sessions compared to baseline
models. The proposed MEEG-HEL holds promise in improv-
ing the practicality of neurorehabilitation in clinical settings
and facilitating the detection of lesions.

Index Terms— Stroke, electroencephalography, motor
imagery, cross-subject training, multi-task heterogeneous
ensemble learning.

I. INTRODUCTION

MOTOR imagery (MI) refers to a paradigm of imagining
movement without actual muscle movement [1]. This

is widely used in the brain-computer interface (BCI), which is
used to decode brain activity as a command to control external
devices [2], [3]. In particular, electroencephalography (EEG)
is widely used for BCI because it is relatively inexpensive,
easy to move, and has a high time resolution compared to
other neuroimaging tools [4]. Furthermore, this paradigm can
aid in the neurorehabilitation of stroke patients. In fact, robot-
assisted BCI training improves motor rehabilitation in stroke
patients [5], [6]. This is because the neural pathway during
MI is similar to motor execution (ME) [7]; therefore, it seems
to help motor rehabilitation after stroke as the neural pathway
related to the sensorimotor region is activated.

MI has been applied to BCI training to improve motor
function [8]. In stroke patients with motor dysfunction, direct
movement is inconvenient, so they imagine moving a spe-
cific body part. In addition, in robot-assisted MI training,
it was most common to classify between the imagination
of the right and left hands [9]. Various methods have been
devised for effective discrimination of bilateral MI, including
extracting feature vectors through a common spatial pattern
(CSP) or distinguishing brain waves by frequency band for
feature extraction [10], [11]. However, for effective motor
rehabilitation, it is very important to consider the location
of the lesion in the imagination of both hands because it is
necessary to correct the intensity of the robot-assisted BCI
training according to the location of the lesion. On the other
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hand, cross-modal brain activation was mainly neurological
evidence that was widely used in two-hand classification [12],
[13]. However, it is difficult to use these neurophysiological
features in stroke patients. This is because when the stroke
patient moves or imagines the paretic fingers, the sensorimotor
rhythm is not active due to lesions in the sensorimotor region;
instead, activity occurs in the surrounding area due to brain
reorganization [14]. Therefore, for effective motor rehabilita-
tion in stroke patients, the location of the lesion should be
considered in both-hand classification.

With the advent of multi-task learning, it has become possi-
ble to learn multiple tasks together. This aims to produce better
generalization performance of all tasks by utilizing useful
information contained in multiple related tasks as a method
of machine learning [15]. This is different from multi-class
classification, in which multiple classes are trained within one
task. Multi-tasks are clearly different tasks, but this method
can help improve the performance of each task based on task
relatedness. Multi-task learning is also used in EEG signals,
[16], [17]. It was used primarily in two ways: (i) to explore
the important shared characteristics of related tasks and (ii) to
overcome the lack of labeled EEG data [18]. In this respect,
classifying both hands and the location of the lesion in stroke
patients during MI are completely single tasks, but two tasks
can be considered together.

For EEG-based BCIs, many studies have focused on
specific-subject learning, which trains and tests classifiers
within one subject [19]. This approach mainly considers the
individual brain activity patterns of each subject and creates
different classifiers for each subject. Therefore, the classifica-
tion performance in a specific-subject approach is high [20].
On the other hand, EEG signals have the characteristic of
inter-subject and inter-session variabilities. Brain dynamics
that change over the short and long term generate variability
between sessions, which eventually affects an individual’s
brain response, resulting in variability between subjects [21].
These are also related to different sources of variability [22],
which eventually leads to inconsistent BCI performance [23].

In this respect, cross-subject approaches continue to be
attempted due to their lack of practicality. This aims to develop
classification models that can be generalized across different
individuals, regardless of their unique brain activity patterns.
This approach is often used in terms of ‘inter-subject learning’
[24] or ‘subject-independent learning’ [25]. Note that we
described it as cross-subject learning.

From the perspective of cross-subject EEG classification,
several models have been proposed to classify MI in healthy
individuals. Autthasan et al. [25] proposed MIN2Net, which
uses deep metric learning in a multi-task autoencoder to learn
feature representation and classify patterns simultaneously.
Consequently, it achieved an F1-score of 72.6% in two-handed
MI. In addition, Liu et al. [26] designed a compact multi-
branch one-dimensional convolutional neural network (CNN).
The accuracy of 63.3% in the cross-subject approach was
reported in healthy controls for both handed classifications.
In this respect, deep learning (DL) has been used to increase
the generalization performance of the model and convenience
with a cross-subject approach.

As the model is specific to each subject, it may not be
readily applicable to new stroke patients compared to healthy
controls. To achieve a better generalization of MI classifi-
cation in stroke patients, cross-subject classification methods
have also been explored for stroke patients. Raza et al. [27]
obtained classification accuracy while performing left and
right MI in stroke patients. They used EEGNet, which is
a typical methodology for classifying EEG signals, with a
CNN [28]. The performance was 67.0% which is close to the
specific-subject performance of 70.3% [27]. However, stroke
patients may have different MI patterns depending on the
location of stroke lesions [6], and it is difficult to obtain a large
number of trials [1], [29]; therefore, this DL approach could
be unreasonable, as in healthy individuals. Therefore, a more
careful approach to cross-subject classification is required
when considering the characteristics of stroke patients.

In this paper, we propose a cross-subject MI classification
framework for stroke patients using multi-task ensemble learn-
ing with two tasks: (i) direction recognition (DR) for both
hands and (ii) motor assessment (MA) for lesion sides in
stroke patients. Stroke patients used both hands to imagine or
perform tapping with the four fingers, excluding the thumb.
For stroke patients, ensemble learning is more effective than
DL because the number of trials is small [1]. Consequently,
we designed a heterogeneous ensemble learning using seven
baseline models. The proposed framework can ultimately help
establish more effective rehabilitation strategies by providing
a comprehensive understanding of MI capabilities, which,
in turn, can lead to better rehabilitation of stroke patients.

The brief contributions of this study are as follows: (i) We
proposed a multi-task heterogeneous ensemble learning frame-
work using two tasks: DR and MA for stroke patients. The
proposed heterogeneous ensemble component utilizes a variety
of classifier types within a single framework. In particular, this
approach allows for covering non-linear relationships within
the EEG data of the feature space where a small number of
samples. (ii) To improve generalizability to new individuals
or larger patient populations, we perform cross-subject EEG
classification. This approach is particularly beneficial in the
context of EEG data, where there is considerable variability
between subjects; thus, the proposed framework effectively
learns to recognize patterns that are consistent across individ-
uals, improving its ability to accurately classify EEG signals
for new subjects. (iii) To the best of our knowledge, we first
attempted to investigate whether the distinguished patterns
were horizontal for both hand classification and vertically dis-
tinct for lesion locations in stroke patients. Due to its attempt,
the proposed framework incorporates a shared layer with
a feature weighting mechanism that selectively emphasizes
features based on their relevance to both tasks. Furthermore,
the targeted feature selection and weighting strategy improves
the model’s ability to focus on the most informative aspects
of the EEG signals for both tasks, enhancing classification
accuracy.

The structure of the paper is as follows: Section I offers
an introduction that highlights the importance of the study
and related works. Section II details the datasets used, the
proposed methodology, and the statistical analysis. Section III
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examines the experimental results and addresses the complex-
ities involved in the discussion. Finally, Section IV provides
a conclusion.

II. MATERIALS AND METHODS

A. Participants
Nine chronic stroke patients (55.00 ± 5.36 years; F = 3)

participated in this study. Data were previously published by
Lee et al. [30]. Table I shows the clinical information for
stroke patients. Mini-Mental State Examination (MMSE) is an
index that can indicate cognitive function [31] and the range of
MMSE of subjects who participated in the experiment is 28 to
30. The cognitive functions of the subjects who participated
in this experiment are normal in that MMSE is considered
normal if the maximum value is 30 and 25 or higher [31].
We measured an MMSE to explore whether stroke patients
who participated in this experiment had no cognitive problems
enough to participate in the finger tapping experiment. The
Fugl-Meyer Assessment of Upper Limb (FMA_UL) is an
indicator of motor function [7], [32], and the FMA_UL range
of subjects included in this paper is from 17 to 56. Since
our application field is focused on helping motor rehabilita-
tion through BCI training, subjects with varying degrees of
motor impairment were included to enable scenarios for BCI
training. In addition, the inclusion criteria for stroke patients
were (i) unilateral lesions after the first ischemic stroke and
(ii) chronic stroke stage more than three months after the onset
of the stroke. The exclusion criteria for stroke patients were
(i) intracranial mental insertion, (ii) claustrophobia, and
(iii) use of pacemakers. The study was approved by the
Institutional Review Board (IRB) of Samsung Medical Center
(SMC 2013-02-091) and was carried out with the written
consent of all patients prior to participating in the study.

B. Experimental Protocols
The subjects performed a sequential finger-tapping task with

both hands. The task was divided into ME and MI paradigms.
The MI paradigm was performed after correctly understanding
the task while performing the ME paradigm first. This task
followed a block design with 20 blocks per task. In each block,
when a dot (cue) appeared on the screen, the patients tapped
their fingers sequentially from their ring to their little finger.
The cue was presented on the screen for 0.8 s, followed by a
break time of 0.5 s. At the end of each block, an evaluation
step indicated whether the subject understood and performed
the task correctly. For example, in a particular block, if the
subject started with the ring finger and the dot appeared on
the screen three times, the little finger was tapped during
the evaluation step to obtain the correct answer. In other
words, it was difficult to confirm whether the movement was
imagined correctly. Therefore, we focused on what the subject
could imagine as accurately as possible. Furthermore, it is
important to ensure that the subject imagined it accurately
because the MI classification performance is higher with only
properly imagined trials [1]. This task was performed with the
unaffected hand, which had better motor function, followed by
the affected hand. A more detailed description of this task is
provided in [30].

C. Data Acquisition & Preprocessing
EEG data was measured using the Neuro-Prax®EEG sys-

tem (NeuroConn GmbH, Germany) with a sampling rate of
4,000 Hz. The signals were collected using surface Ag/AgCl
electrodes (Easy Cap, Woerthsee-Etterschla, Germany) accord-
ing to the international 10-20 system and referenced to an
electrode of the right earlobe.

The EEG signals were preprocessed using the EEGLAB
toolbox [33] in MATLAB R2022a (MathWorks, USA). Con-
tinuous data were down-sampled at 1,000 Hz and filtered
between 1 and 60 Hz using a basic finite impulse response
filter. In addition, the EEG data were re-referenced using the
common average reference and interpolated to remove noise.
Finally, we selected the 27 channels (Fp1, Fp2, F7, F3, Fz, F4,
F8, Fc5, Fc1, Fc2, Fc6, T3, C3, Cz, C4, T4, Cp5, Cp1, Cp2,
Cp6, T5, P3, Pz, P4, T6, O1, O2), and segmented the EEG
data into 0∼0.8 s (800 samples). Therefore, the pre-processed
data are configured as times (800) × channels (27) × trials.

There were 80 trials per paradigm, consisting of 20 trials per
finger, excluding the thumb. However, due to the performance
of this paradigm, some data in the block that did not receive the
correct answer were excluded. In particular, in stroke patients,
whether movement was imagined properly has a significant
influence on the performance of movement imagination [1].
In this sense, depending on the performance results, each sub-
ject had a different number of trials. As a result, 58.86 ± 22.76
tasks were used in this experiment. Furthermore, for Sub01
and Sub03, there was no tapping in the ME paradigm due
to the difficulty in moving the little finger. Therefore, nine
patients in the MI paradigm and seven patients in the ME
paradigm were analyzed, the latter excluding two patients.

D. Multi-Task EEG-Based Heterogeneous Ensemble
Learning (MEEG-HEL)

We proposed a multi-task ensemble learning framework for
cross-subject MI classification using DR and MA tasks in
stroke patients. Fig. 1 describes the overview of the proposed
framework for the cross-subject approach, which trains a
model using existing patient data and only tests on a new
stroke patient. For classification, a CSP was used for feature
extraction. The features using shared layers were selected by
feature ranking. Finally, heterogeneous ensemble learning was
performed by giving different weights for each feature.

1) Multiple Task: We divided the multiple tasks according
to two criteria applicable to stroke patients. The first task
was the DR to classify left-handed (Lt) and right-handed (Rt)
neural commands in BCI. As mentioned earlier, BCI can be
used directly for rehabilitation training and applied to various
devices that help stroke patients in real life. The second task
was MA to classify the affected hand (AH) and the unaffected
hand (UAH) according to the direction of the stroke lesion.
This task is a useful criterion to help stroke patients easily and
quickly distinguish the direction of the lesions before using
expensive and limited neuroimaging devices. Hence, there are
two classes for each task according to each criterion.

2) Feature Extraction: CSP is a spatial filtering technique
specifically designed for BCI applications [34]. It aims to
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TABLE I
CLINICAL CHARACTERISTICS OF STROKE PATIENTS [30]

Fig. 1. Overview of the EEG-based MI system using the cross-subject approach. In the proposed framework, spatial features are extracted through
CSP, and features according to stroke lesions are considered to share features for DR and MA. These features are selected through SFFS and
predicted through heterogeneous ensembles. As a result, new subjects can efficiently provide BCI training for rehabilitation and lesion location for
rapid diagnosis. EEG = electroencephalography; CSP = common spatial pattern; SFFS = sequential forward floating selection; Lt = left hand; Rt =

right hand; AH = affected hand; UAH = unaffected hand; BCI = brain-computer interface.

identify spatial filters that improve discriminative information
between different classes (e.g., Lt vs. Rt movement) in EEG
signals. EEG signals are formalized as

{En}
N
n=1 ∈ Rch×time (1)

where N is th number of trials, ch is the number of channels,
and time is the range of time domain. For each class, the
covariance matrix is computed by averaging the covariance
matrices of all epochs belonging to that class. The average
covariance matrices transform into a whitening transformation
matrix P using the eigenvector matrix U .

En ∈ Rch×time
7→ xn ∈ Rd , (2)

X ∈ Rd×N (3)

The projection matrix is represented as W , and the input EEG
can be transformed into uncorrelated components Z with the

projection matrix, the input EEG data X are then reconstructed
using the inverse matrix W −1.

W = U T P, (4)
Z = W X, (5)

X = W −1 Z (6)

The generalized eigenvalue problem is solved using covariance
matrices to determine spatial filters that maximize the variance
between the two classes while minimizing the variance within
each class. Spatial filters are applied to the raw EEG data
to obtain CSP features ( f ). We calculated a transformation
matrix using spatial patterns consisting of the logarithmic
variances of the first and last three columns of the inverse
weight matrix [35], [36].

fDR =
{

f1,DR, f2,DR, f3,DR, . . . , fN ,DR
}

(7)

fM A =
{

f1,M A, f2,M A, f3,M A, . . . , fN ,M A
}

(8)
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3) Shared Layer With Feature Weighting: In the context of
multi-task learning that incorporates CSP features in the shared
layer, we construct a learning architecture that unifies the
spatial patterns of distinction derived from CSP according
to each task (i.e., DR and MA tasks). Furthermore, the
combined features of the shared layer operate by enhancing
the connectivity between the CSP features relevant to both
DR and MA tasks, thus facilitating a cohesive learning envi-
ronment that significantly improves the overall performance
of the model. This is achieved by employing a sophisticated
weighting mechanism for each CSP feature, ensuring that
the most relevant features are prioritized during the learning
process. Therefore, the CSP features identified for each task
are spread through a technique that uses variables to multiply
weights, focusing on mutual features. These shared features
were formulated as depicted in the subsequent equation.

fMulti =
{

f1,Multi , f2,Multi , f3,Multi , . . . , fN ,Multi
}

(9)

For example, the value of f1,Multi was calculated for f1,DR ×

f1,M A to determine the combined feature weight, and f1,Multi
performed several iterations to configure to fN ,Multi . By this
shared layer, the learning framework can train on combined
features, ultimately leading to improved overall performance
through the effective utilization of shared information relevant
to all tasks.

4) Ensemble Feature Selection: Sequential feature selection
algorithms are a set of greedy search techniques utilized
to reduce an initial feature space of dimensionality d to a
subspace of dimensions k, where k is less than d. These algo-
rithms automatically identify a subset of features that are most
relevant to the given problem, employing a sophisticated strat-
egy that integrates various feature selection techniques [37],
[38]. The primary objectives of this approach are to improve
the reliability and adaptability of the selected features. One
of the methods within this category is sequential forward
floating selection (SFFS), in systematically constructing and
refining a specific feature subset [39], [40]. Compared to
simpler sequential forward selection (SFS) algorithms, floating
variants like SFFS include additional steps to exclude or
include features after their initial selection, allowing for the
exploration of a larger number of feature subset combinations.
It is essential to highlight that these exclusion or inclusion
steps are conditional and only executed if the criterion function
deems the resulting feature subset as ‘improved’ after the
removal or addition of a specific feature. Therefore, the SFFS
algorithm takes the entire set of features (with a feature space
of N dimensions) as input, commencing with an empty set
referred to as the ‘null set,’ indicating an initial k value of 0,
where k denotes the subset’s size. The representation of a
feature subset is as follows:

Xk =
{

x j | j = 1, 2, . . . , k; x j ∈ fMulti
}
, (10)

where k = (0, 1, 2, . . . , N) (11)

The process of inclusion comprises adding the feature from
the feature space that leads to the most significant enhance-
ment in performance for the feature subset, as evaluated by
the criterion function. The criterion function J (x) serves as

a quantitative measure to evaluate the significance of each
feature (or set of features) to enhance the model performance.
J (x) is essential to identify the most informative and relevant
CSP features, facilitating the construction of an optimal feature
subset for the model. In the inclusion phase, a feature x is
added to the current feature subset Xk if it maximizes the
function J (Xk + x), indicating a substantial improvement in
the model performance with the inclusion of x . Y represents
the entire feature space, and Xk denotes the current set of
selected features.

x+
= argmax J (Xk + x), where x ∈ Y − Xk, (12)

Xk+1 = Xk + x+, (13)
k = k + 1 (14)

On the contrary, the conditional exclusion phase involves
removing a feature x from Xk if its exclusion improves the
value of the function of the criterion J (Xk − x), suggesting
that the model’s performance is better without x . This iterative
process continues until a stopping criterion is met, such as
reaching a predetermined number of features in the subset.
Therefore, if no performance enhancement is discernible, the
process returns to the inclusion step.

x−
= argmax J (Xk − x), where x ∈ Xk, (15)

i f J (Xk − x) > J (Xk), (16)

Xk−1 = Xk − x−, (17)
k = k − 1 (18)

These processes of inclusion and conditional exclusion persist
until the termination criterion is satisfied, ceasing when the
subset size k equals the desired number of features.

The approach involves various iterations to adjust and test
the CSP feature [34], with each iteration adapting different
configurations and settings for the parameters. Following each
iteration of CSP feature extraction, the SFFS method is
employed to carefully select the CSP features that are most
informative, adjusting for the nuances of each specific con-
figuration. The selected features from each CSP configuration
are then thoughtfully combined into what is described as an
ensemble feature set. This set incorporates the most relevant
spatial patterns from the EEG data, adept at handling the
variations caused by different CSP parameters. The utility of
this set of ensemble features is particularly notable in tasks
that involve classification, where it markedly improves the
performance of the model.

5) Ensemble Classifier Learning: Heterogeneous ensemble
methods utilize a variety of base learning algorithms to inten-
tionally introduce diversity within the ensemble [41]. In this
study, the heterogeneous ensemble is composed of seven
base estimators: a shallow neural network (SNN), kernel sup-
port vector machine (KSVM), subspace discriminant classifier
(SDC), logistic kernel regression (LKR), bagging decision tree
(DT), k-nearest neighbors (k-NN), and kernel naïve Bayes
(KNB). It is crucial to emphasize that these base estimators
undergo independent training without interdependence.

• Shallow neural network: The architecture of the SNN
typically consists of an input layer, two hidden layers, and an
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output layer [42]. In this study, SNN has one hidden layer with
five units and uses a rectified linear unit activation function
with an output layer as follows.

f (x) = max(0, x) (19)

The network takes 10 input features and outputs the probability
of the input belonging to multiple classes in the classification
task.

• Kernel support vector machine: It is an extension of the
standard linear SVM [43] that allows for non-linear decision
boundaries between classes. The Gaussian kernel is given by
the following formula.

K (xi , x j ) = exp(−

∥∥xi , x j
∥∥2

2σ 2 ) (20)

where xi and x j are two data points in the original feature
space.

∥∥xi , x j
∥∥ represents the Euclidean distance between xi

and x j in the original feature space. σ is a hyperparameter
known as kernel width.

• Subspace discriminant classifier: SDC operates in a
subspace, making it particularly useful for dealing with
high-dimensional data from linear discriminant analysis. The
SDC aims to find a low-dimensional subspace in which
the classes are well separated, leading to improved perfor-
mance in classification tasks for dealing with high-dimensional
datasets [44].

• Logistic kernel regression: It builds on the principles
of both logistic regression and kernel methods to handle
non-linear relationships in data through kernel transforma-
tions [45]. The feature vector x is replaced by the transformed
feature vector 8(x) using the kernel function:

P(y = 1|x) =
1

1 + exp(−wT 8(x))
(21)

where 8(x) denotes the feature vector transformed using the
kernel function.

• Bagging decision tree: It is an ensemble learning tech-
nique that combines the power of decision trees with the
principles of bagging to improve predictive performance and
reduce overfitting [46].

• k-nearest neighbors: Given a new data point x , the k-NN
algorithm finds the k closest data points in the training set
(neighbors) based on a chosen distance metric and assigns the
majority class to predict the new data point x̄ . The prediction
of x̄ is as follows.

argmaxci

∑
u∈Nk (x)

δ(yi , ci ) (22)

where Nk(x) is the set of k nearest neighbors of x from the
training dataset. ci represents the i th class label in the dataset.
δ(yi , ci ) is the Kronecker delta function, which is equal to 1 if
yi = ci and 0 otherwise [47].

• Kernel naïve Bayes: It is an extension of the naïve Bayes
algorithm to make the assumption of feature independence
given the class label [43]. C is the class label, and vector of
n features x is defined as x = (x1, x2, . . . , xn) as follows.

P(C |x) =
P(C) × P(x |C)

P(x)
(23)

where P(C |x) is the posterior probability of class label C
given feature vector x . P(C) is the prior probability of the
class C . P(x |C) is the likelihood of the feature vector x given
class C . P(x) is the probability of observing the feature vector
x throughout the data set.

In addition, the heterogeneous ensemble strategy was mod-
ified to integrate an entropy weighting approach for each
estimator [48]. This involves utilizing entropy as the evaluation
metric to gauge the value of each base estimator. Entropy,
which serves as a measure of uncertainty or impurity in a
set, reflects higher disorder in a more chaotic set. Information
entropy is influenced by two factors: (i) the number of distinct
values that the variable can take and (ii) the uncertainty
associated with each value [40]. Consequently, lower entropies
are favored and to achieve this, it is crucial to ensure that the
weights assigned to base classifiers are inversely proportional
to their respective entropies. To compute the entropy over the
validation set, the base estimators contribute, and an ensemble
of seven base estimators generates a vector of predicted
labels.

ypred = {y1, y2, y3, y4, y5, y6, y7} (24)

This set has m predictions of y = Class1 and n predictions of
Class2. These label counts can be equivalently expressed as
label probabilities: the probability of predicting y = Class1 is
P(y = Class1), and the probability of predicting y = Class2
is P(y = Class2). With these label probabilities, we can
compute the entropy over this set of base estimator predictions
as follows.

Entropy f = −P(y = Class1)log2 P(y = Class1)

−P(y = Class2)log2 P(y = Class2) (25)

Entropy f,k is the validation entropy of the kth estimator. The
weight of each base estimator is set to term as follows.

WEnpk =

1
Entropy f,k∑7

k=1

(
1

Entropy f,k

) (26)

The entropy of a base estimator is determined exclusively by
its predicted labels. This entropy metric gauges the uncertainty
linked to an estimator’s predictions, where a lower entropy
signifies greater confidence. As a result, the weights allo-
cated to individual base estimators are reciprocally related to
their respective entropies. This adjustment ensures that the
accuracy-based weight term (a f,k) is adapted for the final
weight calculation.

WAcck =
a f,k∑7

k=1 a f,k
(27)

This computation ensures that a classifier’s weight is propor-
tionate to its accuracy, and the weights collectively sum to 1.
The final prediction is then calculated as a weighted sum of
the individual predictions:

y f inal = wEnpk,1 · wAcck,1 · y1 + wEnpk,2 · wAcck,2 · y2+

· · · wEnpk,6 · wAcck,6 · y6 + wEnpk,7 · wAcck,7 · y7

(28)
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Indeed, higher weights are allocated to models demonstrating
superior accuracy or specialized knowledge, underscoring their
increased impact on the final decision of the ensemble. The
procedure encompasses multiplying the model predictions by
their corresponding weights and summing them, resulting in
a consolidated decision.

Hence, each classifier within the heterogeneous ensem-
ble is indeed trained independently using the same inputs,
which consist of features extracted and selected through the
CSP analysis and the SFFS algorithm. Following indepen-
dent training of each classifier, weight calculations for these
classifiers are performed on the same validation set. There-
fore, MEEG-HEL was adapted with an entropy weighting
approach combined with accuracy-based weighting to integrate
the predictions of the base classifiers into the final ensemble
decision. In particular, the entropy of each classifier’s predic-
tions on the validation set is used to assess the uncertainty
associated with each classifier’s predictions. Lower entropy
values indicate more confident and consistent predictions
by a classifier, leading to higher weights being assigned to
such classifiers. In addition, the accuracy of each classifier
on the validation set further influences the final weighting,
with higher-accuracy classifiers receiving more weight in the
ensemble’s final decision. This weighting strategy ensures that
both the confidence (as measured by entropy) and the accuracy
of each classifier’s predictions are taken into account when
aggregating the ensemble’s final output.

E. Performance Metrices
Accuracy serves as a fundamental performance metric to

assess the effectiveness of a machine learning model in clas-
sification tasks. Classification accuracy represents the ratio
of the number of accurate predictions to the total number
of input samples [49]. We measured the accuracy of 2-class
classification at each task.

F. Model Training
1) Cross-Subject Session: Training models across

cross-subjects could consider individual variations and
improve generalization across diverse datasets. This method
entails consolidating data from multiple subjects to create
a comprehensive dataset, allowing the model to use a more
diverse and representative sample of the study population.
During the training phase, the model learns from the combined
dataset by incorporating data points from various subjects.

In the specific context of leave-one-subject-out cross-
validation (LOSO-CV), accuracy gauges how well the model
generalizes to unseen subjects. LOSO-CV systematically
excludes one subject from the training set at a time, eval-
uating the model predictions on that subject’s data [50].
This cross-validation variant is tailored for situations where
data exhibit specific-subject characteristics or dependencies.
In LOSO-CV, the dataset is partitioned into subsets based on
subjects, and each fold involves using one subject’s data as the
validation set while the remaining data serves as the training
set. This process is iterated for each subject, generating as
many folds as there are subjects in the dataset. To calculate
the accuracy of a specific fold in LOSO-CV, model predictions

are compared with the ground truth labels, known for the left-
out subject. Therefore, in our experiment, we trained with
8 subjects’ data except for one subject and tested with the
other subject. In addition, since there are a total of 9 subjects,
this process was repeated 9 times.

2) Specific-Subject Session: In the specific-subject training
scenario, the data for each subject is partitioned into distinct
training and test sets. For example, within the dataset of a
single subject, 80% of the data is designated to train the
proposed model, leaving the remaining 20% to evaluate the
performance of the model. Furthermore, we employ a 5-fold
cross-validation strategy for a fair performance evaluation. The
training process adheres to conventional machine learning pro-
cedures, involving tasks such as data pre-processing, feature
extraction, and the application of classification algorithms.

G. Statistical Analysis
Prior to commencing the statistical analysis, we performed

normal and homoskedastic tests, considering the small sample
size. The Shapiro-Wilk test, a common tool for normality
validation, confirmed the satisfaction of the null hypothesis
(H0), indicating normality. Levene’s test validated that the
assumption of homoskedasticity was met. A two-way analysis
of variance (ANOVA) was executed to compare classification
performances, using the paradigm (ME vs. MI) and the session
(cross-subject vs. specific-subject) as factors. Post hoc analysis
consisted of paired or two-sample t-tests for binary com-
parisons. Subsequently, to assess classification performance
between sessions and tasks (DR vs. MA), a two-way ANOVA
was conducted, supplemented by paired t-tests. Furthermore,
one-way ANOVA was employed to compare the classification
performance between the proposed method and other models.
Furthermore, we performed Pearson’s correlations to investi-
gate the relationship between EEG decoding performance and
FMA_UL across subjects. Significance levels were set at p =

0.05, with the Bonferroni correction applied.

III. EXPERIMENTAL RESULTS

A. Classification Performance in Cross-Subject Session
1) DR Task: Table II presents the classification performance

for the DR task in both the cross-subject and specific-subject
sessions. It is difficult to distinguish between both hands in sit-
uations where the location of each lesion is different for each
stroke patient without a flip-flop for the data. However, it is
very important to recognize both movements without flip-flops
of EEG data in order to utilize BCI without the training stage.
The cross-subject session and the grand average classification
performance for the classification of Lt vs. Rt in the ME and
MI paradigms were 0.7061 and 0.7419, respectively. Sub08
demonstrated the highest performance with an accuracy of
0.8670 in the MI paradigm. In addition, the MI paradigm could
not observe statistically significant differences in performance
compared to the ME paradigm.

We evaluated the performance of the decoding model using
a confusion matrix, which provided valuable information on
the reliability of the results through true positive (TP), true
negative (TN), false positive (FP), and false negative (FN)
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TABLE II
CLASSIFICATION PERFORMANCES OF DR TASK USING

PROPOSED MEEG-HEL

values. Fig. 2(a) illustrates the results for both Lt and Rt
classes. In the ME paradigm, the average TP and FN values
were 0.8109 and 0.8682, respectively. These values indicate
the accuracy of correctly predicting the Lt class and the
rate of correctly predicting the Rt class as Rt, respectively.
Surprisingly, the TN value, which represents the rate of
correctly predicting the Rt class, was 0.1891, indicating poor
performance in distinguishing Rt from Lt.

In contrast, in the MI paradigm, the TP and FN values were
0.8730 and 0.9532, respectively. These numbers reveal the
effectiveness of correctly identifying the Rt class and the rate
of misclassifying the Rt class as Lt. Interestingly, the average
probability of predicting the Rt class was significantly high,
suggesting that the MI paradigm showed promising results
in distinguishing Rt from Lt. The contrasting performances
between the ME and MI paradigms highlight the importance of
employing the appropriate approach in this classification task.
Further investigation and optimization techniques are required
to improve the accuracy and robustness of the classification
model, particularly in the context of the prediction of Rt and
Lt. Furthermore, exploring the factors that contribute to the
notable difference in predicting Rt between the two paradigms
could offer valuable information on brain signals and improve
our overall understanding of the underlying neural processes.

2) MA Task: We successfully demonstrated the classification
performance of the cross-subject session for AH vs. UAH clas-
sification. As shown in Table III, the grand average decoding
performances in the cross-subject session were 0.6791 and
0.7457 for the ME and MI paradigms, respectively. In par-
ticular, the MI paradigm showed a significant improvement
of approximately 7% over the ME paradigm. Sub08 was the
best performer in this experiment, achieving a high decoding
performance of 0.9720 in the MI paradigm.

As shown in Fig. 2(b), the TP and FN values for the UAH
and AH classes in the ME paradigms were 0.7730 and 0.8012,
respectively. Furthermore, the TN value, representing the
probability of correctly predicting UAH when the actual class
was AH, was 0.2270, which is significantly higher than that
of the other misclassifications. This suggests that the model
performed relatively better in distinguishing UAH instances in
the ME paradigm. In contrast, in the MI paradigm, the TP and
FN values were even higher at 0.8420 and 0.9212, respectively.

TABLE III
CLASSIFICATION PERFORMANCES OF MA TASK USING

PROPOSED MEEG-HEL

The significantly high probability of predicting UAH indicates
the promising capability of the model to accurately identify
UAH instances in this paradigm.

B. Classification Performance in Specific-Subject
Session

1) DA Task: Both the ME and MI paradigms achieved high
classification performances, with accuracies of 0.8621 and
0.8626, respectively. However, there was no significant dif-
ferences were observed between the accuracies of the two
paradigms. Furthermore, the subjects who showed the best
performance in the two paradigms differed in specific-subject
sessions.

2) MA Task: The grand average decoding performances for
AH vs. UAH were 0.8813 and 0.8649 for the ME and MI
paradigms, respectively. Interestingly, there was no statistically
significant difference between the ME and MI paradigms,
indicating only a marginal distinction. These findings highlight
the potential of using the MI paradigm for AH vs. UAH classi-
fication, as they demonstrated superior performance compared
with the ME paradigm in the cross-subject session. However,
in the specific-subject session, both the ME and MI paradigms
showed comparable performances, suggesting that individual
differences might be involved in classification performance.
Additionally, the remarkable performance of Sub08 warrants
further investigation to explore the unique neural patterns that
contributed to these exceptional results.

C. Comparison of Two Multi-Tasks
We classified the same data using two tasks suitable for

stroke patients. As a result, the proposed framework learned
well according to each criterion and, in this respect, we com-
pared the differences according to the criteria.

1) Performance: We compared the classification perfor-
mance in each task throughout the session (cross-subject
vs. specific-subject) and task (DR vs. MA). There was a
performance difference when considering the session and the
task for both ME (Chi − square = 10.59, p = 0.001)
and MI (Chi − square = 10.79, p = 0.001). In ME, the
specific-subject session performance was significantly higher
than the cross-subject session performance according to the
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Fig. 2. Confusion matrix according to each ME and MI paradigm in
cross-subject session. (a) DR task (Lt vs. Rt classification). (b) MA task
(AH vs. UAH classification).

DR (t = −2.92, p = 0.035). However, there were no differ-
ences in performance were observed between the two sessions
in the MA. In MI, the performance of the specific-subject
session was higher than that of the cross-subject session for
both DR (t = −3.11, p = 0.015) and MA (t = −4.07, p =

0.003). In summary, in ME, there was no difference in perfor-
mance between the specific-subject and cross-subject sessions
when comparing performance from the MA perspective. This
is believed to be due to differences in the task for stroke
patients. If the DR is concentrated only in the left or right
directions where it actually moves, the lesion side is divided
into ipsilesional and contralesional sides, where it is not in
the left or right directions. In other words, even with the same
data, the classification characteristics vary according to the
task. This difference was more pronounced in ME, where the
muscles actually move.

We additionally investigated the relationship between DR
and MA and their relevance to MI and ME classifications.
In each MI and ME, there was no significant difference in
classification performance between DR and MA in the cross-
subject approach. This is probably because the criteria are
clear in DR and MA, and the model itself has learned accord-
ing to each criterion, so there seems to be no relationship
between performance in DR and MA.

2) Spatial Feature: We compared the CSP for the classifi-
cation of DR and lesion location as shown in Fig. 3. In the
classification of DR, the Lt class has a deactivated pattern
in the left parietal region, while in the Rt class, an activation
pattern appears in both sensorimotor cortexes. However, it can
be seen that the active patterns are clearly classified into Lt
and Rt classes. In ME, the left sensorimotor cortex is activated
in the Rt class and the right parietal region is activated in the

Fig. 3. Representation of CSP pattern according to each ME and MI
paradigm in cross-subject session. (a) DR task (Lt vs. Rt classification).
(b) MA task (AH vs. UAH classification).

Lt class. Similarly, the two classes are clearly distinguished.
Because stroke patients have motor function deficits, motor-
related neural pathways may be damaged, resulting in a
somewhat different pattern from CSP in both hands of healthy
controls [1]. However, it is important to have a contrasting
CSP in both hemispheres for DR. In other words, the pattern
is divided horizontally for DR in stroke patients.

On the contrary, the classification of lesion sides did not
show CSP distinguished by both hemispheres. In the AH class,
both MI and ME showed activation in the parietal region.
However, in the UAH class, MI showed activity and ME
showed inactivity in both frontal regions. In other words,
unlike DR, CSP is divided into front and rear axes. In other
words, no cross-modal activation pattern was found, which
seems plausible for MA classification because some subjects
moved their right hand and some moved their left hand in
the AH class. In fact, this phenomenon is believed to occur
in the frontal and parietal regions during motor preparation
or planning following a stroke [52], [53]. Thus, the pattern is
vertically divided for the MA.

3) Relationship With FMA_UL: We analyzed the correlation
between EEG decoding performance and FMA_UL across
subjects. Classification performance included all the accuracy
from two sessions and two tasks. The FMA_UL had no
significant relationship with any decoding performance in both
tasks. This measure is a representative indicator of motor
function and is used as a representative factor to predict motor
impairment. However, the ME and MI paradigms used in this
experiment are used for BCI training, which is possible even
if the motor disability is severe, so there is no difference
in performance according to motor function. In the end,
this aspect may be the reason why this paradigm is widely
employed in motor rehabilitation.

D. Comparison of Classification Performances
We compared the classification performance of the pro-

posed MEEG-HEL with that of existing comparative models,
as shown in Table IV and Table V. The comparative models
were selected as widely used approaches for analyzing EEG in
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TABLE IV
COMPARISON OF CLASSIFICATION PERFORMANCE USING THE BASELINE MODELS AND PROPOSED MEEG-HEL IN DA TASK (LT VS. RT)

TABLE V
COMPARISON OF CLASSIFICATION PERFORMANCE USING THE BASELINE MODELS AND PROPOSED MEEG-HEL IN MA TASK (AH VS. UAH)

stroke patients. SVM [43] and SNN [51], the models with top
accuracy in the estimators, were retrained, and the ensemble
voting model [1] was added for comparison.

In the comparison between Lt and Rt classification, the
cross-subject session demonstrated statistically significant dif-
ferences and outperformed the other models in a statistically
significant manner (Table IV). The classification performance
was exhibited in the proposed model with accuracy rates of
0.7061 in the ME paradigm. The Ensemble, SVM, and SNN
exhibited significant disparities in classification performance
compared to the proposed model (Ensemble: t = −2.54, p =

0.038; SVM: t = −4.72, p = 0.002; SNN: t = −2.84, p =

0.025). Similarly, in the MI paradigm, MEEG-HEL achieved
an accuracy of 0.7419. On the contrary, the classification per-
formances showed 0.4978, 0.5951, and 0.5366, respectively.
In addition, Ensemble (t = −5.10, p < 0.001), SVM (t =

−5.42, p < 0.001), and SNN (t = −3.69, p = 0.005) showed
statistically significant differences.

Regarding MA classification, similar but slightly different
results were observed (Table V). In the ME paradigm, the clas-
sification performances were 0.5727, 0.5620, and 0.5754 for
Ensemble, SVM, and SNN, respectively. Furthermore, the
performance of the comparative models was significantly
lower than that of the proposed model on average (t =

−2.69, p = 0.031). During the cross-subject session in the
MI paradigm, the MEEG-HEL model achieved an accuracy of
0.7457, while Ensemble, SVM, and SNN achieved accuracies
of 0.5203, 0.5002, and 0.5146, respectively. This significant

difference in performance demonstrates that the proposed
model outperforms the existing models in this particular
scenario (Ensemble: t = −5.05, p < 0.001; SVM: t = −5.91,
p < 0.001; SNN: t = −4.58, p = 0.001).

The comparable or superior performance of the proposed
MEEG-HEL can be attributed to the unique characteristics of
stroke patients. Acquiring a substantial number of trials from
stroke patients presents challenges due to mobility problems
and shorter attention spans, as emphasized in [1].

E. Discussion & Future Work

This study had several limitations. First, the number of data
from stroke patients was few samples. Given the limited data
available on stroke patients, dividing the dataset to allocate
a portion for validation results in a further reduction in the
training set samples for each classifier within the multi-task
EEG-based heterogeneous ensemble learning (MEEG-HEL)
framework. This reduction of training samples can pose a risk
of underfitting, where the models may not learn the underlying
patterns in the data sufficiently to generalize well to unseen
data. Underfitting occurs when a model is too simple to capture
the complexity of the data set, often because it has too few
samples to learn from, leading to poor performance in both
the training and validation sets. However, the MEEG-HEL
framework employs several strategies to mitigate the risk of
underfitting and enhance the model’s ability to learn effectively
from a small dataset.
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We adopted various strategies to avoid this problem; hetero-
geneous ensemble learning, feature selection, entropy-based
weighting, and cross-subject training approach. Although these
strategies do not eliminate the risk of underfitting completely,
the framework is designed to mitigate its impact and enhance
the model’s ability to learn from a limited amount of data.
However, it remains important to improve model performance
and consider additional strategies, such as data augmentation
or transfer learning, to further address challenges associated
with small datasets in stroke patient studies. Eventually, even
within the task, the number of trials per class is not large;
therefore, it may not be suitable for deep learning, which
requires large amounts of data. Despite the difficulty in obtain-
ing long-term data for stroke patients, it is worth trying to
collect a large amount of data in the future.

Another approach to solving the problem of data scarcity is
data augmentation, which is suitable for the MI dataset [54].
This method effectively augments hard-to-obtain datasets,
enabling deep learning methods to achieve better performance.
In addition, the nine stroke patients who participated in this
experiment can be divided into 6 supratentorial and 3 infraten-
torial depending on the location of the lesion. The number
of subjects itself is not large, so it is difficult to directly
conclude remarks on the diversity of stroke lesions and BCI
performance. Nevertheless, the lesion location as one of the
lesion-related information was included in our study. Depend-
ing on the lesion location, the classification of both hands
shows a vertically divided pattern and appears differently.
Therefore, this information could be an important factor in
promoting generalizability by complementing cross-subject
BCI.

Second, our study was limited to binary classification, which
necessitates extension into multi-class classifications. In terms
of application to BCI, classification of both hands is also less
practical, and in terms of the patient’s lesion direction, it will
be more important to go one step further and determine not
only the direction but also the lesion location. Consequently,
future research should focus on developing a multi-class
cross-subject framework for stroke patients, enhancing the
practicality and specificity of BCI applications in clinical
settings. In addition, for specific-subject sessions, we plan
to conduct additional experiments to explore the impact of
varying the number of EEG channels and the length of EEG
signals on classification performance in future work. This
will involve adjusting these parameters within our dataset
and evaluating the resultant changes in the model’s ability to
accurately classify motor imagery tasks. Hence, we aim to
identify optimal settings that balance the trade-offs between
computational efficiency, model complexity, and performance
metrics.

Finally, the process of verifying generalization using pub-
licly available datasets was not thoroughly explored. This was
due in part to the absence of publicly accessible datasets spe-
cific to stroke patients, which highlights the innovative aspect
of our study, namely, the implementation of cross-subject
learning using the LOSO-CV. Additional validation efforts are
required, utilizing public datasets from other stroke patient
studies to further substantiate our findings.

IV. CONCLUSION

In this paper, we proposed the MEEG-HEL framework
during MI in stroke patients using a cross-subject approach.
The results showed that there is no statistically significant
difference in classification performance between ME and MI.
However, it exhibited a much higher performance than the
other estimated models. The classification performance was
divided into two tasks: (i) DR and (ii) MA, and it was found
that both-handed classification showed a horizontally divided
pattern, while the classification of the injury side showed a
vertically divided pattern. In this respect, it is important to
classify the lesion location by changing the perspective of
stroke patients. In addition, since patients have different levels
of motor rehabilitation in AH and UAH depending on the
degree of motor damage, it is significant to classify them
by stroke lesion directions in the current state of BCI. This
makes it possible to provide effective rehabilitation training
depending on the lesion location. These frameworks could
help with neurorehabilitation through BCI in stroke patients
and the detection of the lesion location using EEG signals.
Furthermore, these findings could provide insights into the
mechanisms underlying neural plasticity and neurorehabilita-
tion after a stroke.

REFERENCES

[1] M. Lee, J.-H. Jeong, Y.-H. Kim, and S.-W. Lee, “Decoding finger
tapping with the affected hand in chronic stroke patients during motor
imagery and execution,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 29,
pp. 1099–1109, 2021.

[2] J.-H. Jeong, J.-H. Cho, B.-H. Lee, and S.-W. Lee, “Real-time deep
neurolinguistic learning enhances noninvasive neural language decoding
for brain–machine interaction,” IEEE Trans. Cybern., vol. 53, no. 12,
pp. 7469–7482, Dec. 2023.

[3] L. Chen et al., “Adaptive asynchronous control system of robotic arm
based on augmented reality-assisted brain–computer interface,” J. Neural
Eng., vol. 18, no. 6, Dec. 2021, Art. no. 066005.

[4] A. M. Ladda, F. Lebon, and M. Lotze, “Using motor imagery practice for
improving motor performance—A review,” Brain Cognition, vol. 150,
Jun. 2021, Art. no. 105705.

[5] R. Mane, T. Chouhan, and C. Guan, “BCI for stroke rehabilitation:
Motor and beyond,” J. Neural Eng., vol. 17, no. 4, Aug. 2020,
Art. no. 041001.

[6] W. Park, G. H. Kwon, Y.-H. Kim, J.-H. Lee, and L. Kim, “EEG response
varies with lesion location in patients with chronic stroke,” J. NeuroEng.
Rehabil., vol. 13, no. 1, pp. 1–10, Dec. 2016.

[7] M. Lee, Y.-H. Kim, and S.-W. Lee, “Motor impairment in stroke patients
is associated with network properties during consecutive motor imagery,”
IEEE Trans. Biomed. Eng., vol. 69, no. 8, pp. 2604–2615, Aug. 2022.

[8] R. Mane et al., “Prognostic and monitory EEG-biomarkers for BCI
upper-limb stroke rehabilitation,” IEEE Trans. Neural Syst. Rehabil.
Eng., vol. 27, no. 8, pp. 1654–1664, Aug. 2019.

[9] V. K. Benzy, A. P. Vinod, R. Subasree, S. Alladi, and K. Raghavendra,
“Motor imagery hand movement direction decoding using brain com-
puter interface to aid stroke recovery and rehabilitation,” IEEE Trans.
Neural Syst. Rehabil. Eng., vol. 28, no. 12, pp. 3051–3062, Dec. 2020.

[10] J. Jiang, C. Wang, J. Wu, W. Qin, M. Xu, and E. Yin, “Temporal
combination pattern optimization based on feature selection method
for motor imagery BCIs,” Frontiers Hum. Neurosci., vol. 14, p. 231,
Jun. 2020.

[11] Y. Pei et al., “A tensor-based frequency features combination method
for brain–computer interfaces,” IEEE Trans. Neural Syst. Rehabil. Eng.,
vol. 30, pp. 465–475, 2022.

[12] Y. Yang, C. Ye, X. Guo, T. Wu, Y. Xiang, and T. Ma, “Mapping multi-
modal brain connectome for brain disorder diagnosis via cross-modal
mutual learning,” IEEE Trans. Med. Imag., vol. 43, no. 1, pp. 108–121,
Jan. 2024.



1778 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 32, 2024

[13] K. X. Khor et al., “Portable and reconfigurable wrist robot improves
hand function for post-stroke subjects,” IEEE Trans. Neural Syst. Reha-
bil. Eng., vol. 25, no. 10, pp. 1864–1873, Oct. 2017.

[14] M. A. Dimyan and L. G. Cohen, “Neuroplasticity in the context of motor
rehabilitation after stroke,” Nat. Rev. Neurol., vol. 7, no. 2, pp. 76–85,
2011.

[15] Y. Zhang and Q. Yang, “A survey on multi-task learning,” IEEE Trans.
Knowl. Data Eng., vol. 34, no. 12, pp. 5586–5609, Mar. 2021.

[16] Y. Zhang et al., “Improving EEG decoding via clustering-based multitask
feature learning,” IEEE Trans. Neural Netw. Learn. Syst., vol. 33, no. 8,
pp. 3587–3597, Aug. 2022.

[17] X. Liu, L. Lv, Y. Shen, P. Xiong, J. Yang, and J. Liu, “Multiscale
space-time-frequency feature-guided multitask learning CNN for motor
imagery EEG classification,” J. Neural Eng., vol. 18, no. 2, Apr. 2021,
Art. no. 026003.

[18] Q. Zheng, Y. Wang, and P. A. Heng, “Multitask feature learning
meets robust tensor decomposition for EEG classification,” IEEE Trans.
Cybern., vol. 51, no. 4, pp. 2242–2252, Apr. 2021.

[19] J.-H. Jeong, N.-S. Kwak, C. Guan, and S.-W. Lee, “Decoding movement-
related cortical potentials based on subject-dependent and section-wise
spectral filtering,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 28, no. 3,
pp. 687–698, Mar. 2020.

[20] S.-B. Lee, H.-J. Kim, H. Kim, J.-H. Jeong, S.-W. Lee, and D.-J. Kim,
“Comparative analysis of features extracted from EEG spatial, spectral
and temporal domains for binary and multiclass motor imagery classi-
fication,” Inf. Sci., vol. 502, pp. 190–200, Oct. 2019.

[21] S. Saha, K. I. U. Ahmed, R. Mostafa, L. Hadjileontiadis, and
A. Khandoker, “Evidence of variabilities in EEG dynamics during
motor imagery-based multiclass brain–computer interface,” IEEE Trans.
Neural Syst. Rehabil. Eng., vol. 26, no. 2, pp. 371–382, Feb. 2018.

[22] K. Mahjoory, V. V. Nikulin, L. Botrel, K. Linkenkaer-Hansen,
M. M. Fato, and S. Haufe, “Consistency of EEG source localization and
connectivity estimates,” NeuroImage, vol. 152, pp. 590–601, May 2017.

[23] M. Lee, J.-G. Yoon, and S.-W. Lee, “Predicting motor imagery per-
formance from resting-state EEG using dynamic causal modeling,”
Frontiers Hum. Neurosci., vol. 14, p. 321, Aug. 2020.

[24] S. Pérez-Velasco, E. Santamaría-Vázquez, V. Martínez-Cagigal,
D. Marcos-Martínez, and R. Hornero, “EEGSym: Overcoming
inter-subject variability in motor imagery based BCIs with deep
learning,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 30,
pp. 1766–1775, 2022.

[25] P. Autthasan et al., “MIN2Net: End-to-end multi-task learning for
subject-independent motor imagery EEG classification,” IEEE Trans.
Biomed. Eng., vol. 69, no. 6, pp. 2105–2118, Jun. 2022.

[26] X. Liu, S. Xiong, X. Wang, T. Liang, H. Wang, and X. Liu, “A com-
pact multi-branch 1D convolutional neural network for EEG-based
motor imagery classification,” Biomed. Signal Process. Control, vol. 81,
Mar. 2023, Art. no. 104456.

[27] H. Raza, A. Chowdhury, and S. Bhattacharyya, “Deep learning based
prediction of EEG motor imagery of stroke patients’ for neuro-
rehabilitation application,” in Proc. Int. Joint Conf. Neural Netw.
(IJCNN), Jul. 2020, pp. 1–8.

[28] V. Lawhern, A. Solon, N. Waytowich, S. M. Gordon, C. Hung, and
B. J. Lance, “EEGNet: A compact convolutional neural network for
EEG-based brain–computer interfaces,” J. Neural Eng., vol. 15, no. 5,
2018, Art. no. 056013.

[29] J.-H. Jeong et al., “Multimodal signal dataset for 11 intuitive movement
tasks from single upper extremity during multiple recording sessions,”
GigaScience, vol. 9, no. 10, Oct. 2020, Art. no. giaa098.

[30] M. Lee et al., “Motor imagery learning across a sequence of tri-
als in stroke patients,” Restorative Neurol. Neurosci., vol. 34, no. 4,
pp. 635–645, Aug. 2016.

[31] D. W. Molloy and T. I. M. Standish, “A guide to the standardized
mini-mental state examination,” Int. Psychogeriatrics, vol. 9, no. S1,
pp. 87–94, Dec. 1997.

[32] L. Formstone, W. Huo, S. Wilson, A. McGregor, P. Bentley, and
R. Vaidyanathan, “Quantification of motor function post-stroke using
novel combination of wearable inertial and mechanomyographic sen-
sors,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 29, pp. 1158–1167,
2021.

[33] A. Delorme and S. Makeig, “EEGLAB: An open source toolbox for
analysis of single-trial EEG dynamics including independent component
analysis,” J. Neurosci. Methods, vol. 134, no. 1, pp. 9–21, Mar. 2004.

[34] K. Keng Ang, Z. Yang Chin, H. Zhang, and C. Guan, “Filter bank
common spatial pattern (FBCSP) in brain-computer interface,” in Proc.
IEEE Int. Joint Conf. Neural Netw., Jun. 2008, pp. 2390–2397.

[35] K. K. Ang, Z. Y. Chin, C. Wang, C. Guan, and H. Zhang, “Filter bank
common spatial pattern algorithm on BCI competition IV datasets 2a
and 2b,” Frontiers Neurosci., vol. 6, p. 39, Mar. 2012.

[36] B. Blankertz, R. Tomioka, S. Lemm, M. Kawanabe, and K.-R. Müller,
“Optimizing spatial filters for robust EEG single-trial analysis,” IEEE
Signal Process. Mag., vol. 25, no. 1, pp. 41–56, Dec. 2007.

[37] F. J. Ferri, P. Pudil, M. Hatef, and J. Kittler, “Comparative study of
techniques for large-scale feature selection,” in Machine Intelligence and
Pattern Recognition, vol. 16. Amsterdam, The Netherlands: Elsevier,
1994, pp. 403–413.
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