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Abstract— Sleep is vital to our daily activity. Lack of
proper sleep can impair functionality and overall health.
While stress is known for its detrimental impact on sleep
quality, the precise effect of pre-sleep stress on subsequent
sleep structure remains unknown. This study introduced
a novel approach to study the pre-sleep stress effect
on sleep structure, specifically slow-wave sleep (SWS)
deficiency. To achieve this, we selected forehead resting
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EEG immediately before and upon sleep onset to extract
stress-related neurological markers through power spectra
and entropy analysis. These markers include beta/delta
correlation, alpha asymmetry, fuzzy entropy (FuzzEn) and
spectral entropy (SpEn). Fifteen subjects were included
in this study. Our results showed that subjects lacking
SWS often exhibited signs of stress in EEG, such as an
increased beta/delta correlation, higher alpha asymmetry,
and increased FuzzEn in frontal EEG. Conversely, individ-
uals with ample SWS displayed a weak beta/delta corre-
lation and reduced FuzzEn. Finally, we employed several
supervised learning models and found that the selected
neurological markers can predict subsequent SWS defi-
ciency. Our investigation demonstrated that the classifiers
could effectively predict varying levels of slow-wave sleep
(SWS) from pre-sleep EEG segments, achieving a mean
balanced accuracy surpassing 0.75. The SMOTE-Tomek
resampling method could improve the performance to 0.77.
This study suggests that stress-related neurological mark-
ers derived from pre-sleep EEG can effectively predict SWS
deficiency. Such information can be integrated with existing
sleep-improving techniques to provide a personalized sleep
forecasting and improvement solution.

Index Terms— Electroencephalography, sleep, stress,
slow-wave sleep, entropy, supervised learning.

I. INTRODUCTION

SLEEP is a crucial aspect of our lives. A healthy adult needs
6-8 hours of sleep per day, accounting for one-third of

their life. In addition to cognitive impairment [1], lack of sleep
and poor sleep quality are known to contribute to a wide range
of issues, including compromised immunity [2], [3], obe-
sity [4], [5], and cardiovascular disorders [6]. During sleep, the
human brain undergoes several stages of activity, which can be
distinguished through electroencephalography (EEG). These
stages can be roughly classified into two major stages: non-
rapid-eye movement (NREM) sleep and rapid-eye-movement
(REM) sleep. NREM sleep can be further divided into three
stages: NREM1 (N1), NREM2 (N2), and NREM3 (N3). N1
is the lightest stage, while N3 is the deepest. As human sleep
progresses from N1 to N3, the amplitude of EEG gradually
increases while the frequency decreases. N3 sleep is also
known as slow-wave sleep (sleep), because its EEG pattern in
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mostly in delta frequency Healthy adult sleep cycles through
different stages, starting with N1, then progressing to N2 and
N3, before transitioning to REM and back to N1. Each sleep
stage has its own cognitive and physiological importance. For
example, N2 sleep is associated with synapse formation and
learning, while SWS is associated with brain metabolism.
Therefore, healthy sleep should include sufficient time spent in
all stages. While the nature of sleep and its structure have been
studied extensively in recent decades, predicting sleep quality
or patterns remains challenging. Previous studies on sleep
quality or pattern prediction have used either wrist-mounted
accelerometers [7] or gait sensors embedded in carpets [8].
The latter method correlated 0.71 with the Pittsburgh Sleep
Quality Index (PSQI) questionnaire reported by subjects.

Stress is the body’s response to potential threats and
challenges. While stress can help us to adapt to changing
environments and situations, it can also lead to various health
problems, including sleep difficulties [9], [10], [11]. Previous
studies have provided conflicting results regarding how stress
affects sleep structure. On the one hand, stress from social con-
flict has consistently been reported to induce NREM sleep and
SWS in rodent models [12], [13], [14], [15], [16]. On the other
hand, the anticipation of future stress, sometimes referred to as
repetitive negative thinking [17] or cognitive arousal, has been
reported to negatively impact sleep quality and reduce NREM
sleep [18], [19], [20]. Several large population studies of sleep
patterns during the COVID-19 pandemic have reported that
the stress caused by involuntary lifestyle changes and fear of
infection have led to increased sleep onset latency (SOL) and
decreased subjective sleep quality [21], [22], [23]. Regarding
sleep patterns, research has shown that anticipating early
awakening or a challenging workday can lead to decreased
NREM sleep [24] or SWS [25]. Other studies that artificially
induce cognitive arousal before sleep have found that antici-
pated stress before sleep can cause an increase in sleep onset
latency and reduced slow-wave activity during SWS [26],
[27]. A recent study by Beck et al. [28] also reported that
anticipatory stress resulted in reduced SWS and sleep spindle
in naps, even when the subjects did not report decreased
subjective sleep quality. Similarly, rodent studies have also
found that both daily electric shock and physical restraint can
lead to decreased SWS in rats [29], [30]. On the other hand,
studies on various relaxation methods, such as hypnosis [31],
[32] and progressive muscle relaxation [33], have found that
pre-sleep relaxation increases SWS in human adults. These
findings suggest a negative relationship between psychological
stress before sleep and SWS, as well as overall sleep quality.

Using EEG to assess stress levels and related emotional
responses has been studied extensively over the past two
decades. EEG has several advantages over more traditional
approaches, such as questionnaires. Firstly, EEG signals are
more objective and suffer less from bias caused by cultural
differences. Secondly, EEG can be passively recorded with
high time resolution, making it possible to track the subject’s
mental state while performing various tasks. A popular method
for estimating stress using EEG is based on early findings by
Davidson regarding approach-versus-avoidance behavior [34],
[35]. These studies compared participants’ left frontal activity

with their right frontal activity. Participants with stronger right
frontal activity prefer avoidance behavior, whereas those with
stronger left frontal activity lean towards approach behavior.
As alpha (8-13 Hz) power is inversely related to task-related
activity in the frontal lobe, we can measure the asymmetry
of left/right frontal activity by observing the absence of alpha
power [36], [37], [38]. Another commonly used method is
based on the theory of the fear network model theory [39],
[40]. According to this theory, anxiety and fear are medi-
ated by cross-linking between the cortical (middle prefrontal
cortex) and the subcortical (amygdala and hippocampus)
regions. Fast beta-band EEG activity originating from the
middle prefrontal cortex correlates with slow delta-band EEG
activity originating from the amygdala. Harrewijn et al. [41]
showed that subjects who reported higher social anxiety after a
stressful social performance task showed a strong negative cor-
relation between these regions. Using these methods, one can
estimate subject’s stress level with minimal EEG electrodes in
the frontal region.

In addition to power spectra, entropy has become an
increasingly popular analytical tool for human emotion and
mental state. In biomedical signal analysis, entropy is used to
assess the complexity and non-stationarity of a given signal.
In EEG, this allows for the identification of sudden, short-
lived signal signatures that are much harder to detect through
power spectrum decomposition. Several variants of entropy
have been adapted for emotion detection in the last decade. For
instance, Martínez-Rodrigo et al. [42] used several variations
of permutation entropy (PE) to discriminate between calm
and distress. In another study, García-Martínez et al. [43]
employed a variant of Shannon entropy to analyze brain
dynamics with and without negative stress. They discovered
that psychological stress increases signal entropy in the brain,
particularly in the left frontal lobe (F3) and right parietal lobe
(P4). This indicates that EEG entropy in the frontal region
could be a potential biomarker for stress detection.

The present study examines the relationship between
pre-sleep psychological stress and SWS deficiency based on
established work on stress and sleep. We took a novel approach
by using EEG analysis techniques based on both power spectra
and complexity analysis to extract stress-related neurological
markers immediately before sleep onset. We then investigated
the relationship between these markers and SWS deficiency
in subsequent sleep. Finally, we proposed a proof-of-concept
SWS deficiency prediction system based on said neurological
markers using different supervised learning models (Fig. 1).
In doing so, we aimed to test the feasibility of using frontal
EEG-based biomarkers to predict sleep structure for personal-
ized sleep monitoring and improvement.

II. HYPOTHESIS & LIMITATION

This study hypothesizes that subjects with stronger
stress-related neural patterns in pre-sleep resting EEG will
experience SWS deficiency in the upcoming sleep. Based on
this hypothesis, one can build a classification system to predict
SWS deficiency with pre-sleep EEG. This study serves as a
proof-of-concept, which should be validated with large, diverse
samples before broad real-world deployment.
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Fig. 1. The proposed approach to predict SWS deficiency. Pre-sleep
EEG was collected until sleep onset. We derived stress-related neuro-
markers through spectral and complexity analysis to predict potential
SWS deficiency.

III. MATERIAL & METHODS

A. Subject and Data Acquisition
We collected PSG records from eighteen healthy human

participants working in a high-stress environment (professional
nurses) who had no sleep disorder. The recordings were
done with one of the following systems: NicoletOne v44
(Natus Medical, Middleton, Wisconsin, United States) (sam-
pling rate: 125Hz; n=5), Alice 6 LDx (Philips, Amsterdam,
Netherlands) (sampling rate: 200Hz; n=6), or Grael PSG
(Compumedics, Abbotsford, Victoria, Australia) (sampling
rate: 1024Hz; n=7). Sleep technicians reviewed all records
and labelled sleep stages. Among the eighteen records, two
(No. 8, No. 9) were excluded due to severe muscle noise
contamination in pre-sleep EEG and one (No.14) was excluded
because it did not capture pre-sleep EEG. The records included
three males (age: 31±7) and twelve females (age: 37±9).
Table S1 lists the detailed data collection conditions.

To explore the relation between SWS deficiency and
pre-sleep resting EEG, we divided these records into three
groups based on [44], which indicates that a young adult’s

normal SWS percentage is around 13-23% per sleep. There-
fore, we defined records with less than 13% of SWS as Low
SWS subjects, records with 13%-23% of SWS as Mid SWS
subjects, and records with over 23% of SWS as High SWS
subjects. We calculated the SWS percentage of each PSG
record by dividing the total time spent in N3 sleep by the
total sleep time (TST). The average TST of the subjects was
5.38±1.75 hours. Among the included records, six were in the
Low SWS group, six were in the Mid SWS group, and four
were in the High SWS group. No significant differences in
TST were found between groups.

We collected the data at Kaohsiung Medical University
Hospital after receiving approval from the local ethics board
(Institutional Review Board of Kaohsiung Medical University
Hospital, Kaohsiung City, Taiwan; approval code: KMUHIRB-
E(II)-20190371; approval granted on Jul. 14th, 2021). All
records were collected with fully informed consent.

B. EEG Selection and Processing
Figure 2 shows the data selection flowchart. EEG signals

from the forehead region (F3 and F4 channels) were used
to extract stress-related neurological markers. For each PSG
record, 5 minutes (ten 30-second epochs) of EEG data before
sleep onset was selected first. If a subject’s SOL was shorter
than 5 minutes, the first 5 minute of EEG data was selected
instead. The selected EEG epochs were down-sampled
to 125Hz and filtered with a Butterworth bandpass filter
(1.0-35 Hz). Epochs labelled as either NREM or REM sleep
were rejected so that only Wake epochs remained. Each Wake
epoch was then divided into six non-overlapping 5-second
segments. Finally, segments with strong muscle noises in either
channel were further rejected by eye. The remaining segments
would represent resting EEG before and upon sleep onset.
After the data selection process, the Low SWS group had
190 segments, the Mid SWS group had 237 segments, and
the High SWS group had 119 segments.

C. Stress-Related EEG Pattern Extraction
This study used spectral power trends such as left-to-right

alpha asymmetry and beta-delta correlation in the frontal lobe
as neuromarkers related to stress. To do this, we extracted
alpha, beta, delta, and theta band power from each 5-second
segment through Fast Fourier transform (FFT) using Welch’s
method [45] with a 1-second window. For delta and beta band,
relative power values were derived by dividing the raw power
by the sum of total spectral power. Using Pearson’s R value,
we estimated the correlation between beta and delta power.
As for the alpha asymmetry, we subtracted the F4 alpha power
from the F3 alpha power:

Alpha Asym (t) = PF4 (t) − PF3 (t) (1)

The PF4 and PF3 are raw alpha power from the F4 and
F3 channel respectively. Stronger F4 alpha activity over F3
indicates a lack of stress and vice versa. In a previous study,
we formulated the AlphaAsym value into a scale of stress levels
from 0 to 10 with the following equation [36]:

Stress (t) = 5 − Alpha Asym(t)/2 (2)
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Fig. 2. EEG data selection and processing flowchart. First, the first
5 minutes of EEG data from the F3 and F4 channel were selected and
filtered before being divided into 30-second epochs. Epochs labeled
as REM or NREM sleep were rejected so that only Wake EEG
remained. Then, each epoch was divided into 5-second segments.
Finally, segments with heavy muscle noises were rejected. The remain-
ing segments were used to derive power spectra, signal entropy and
spectral entropy.

Aside from power spectra, we also calculated the entropy
of each segment to see the differences in signal and spectral
complexity between groups. For signal entropy, we used Fuzzy
Entropy (FuzzEn) [46] to estimate the complexity of each
segment. We chose FuzzEn because it is less sensitive to
noise by introducing a fuzzy membership function. FuzzEn
depends on two variables: embedding dimension (m) and
time delay (Tau). We set m at 2 and Tau at 12 (equivalent
to a shifting window of 0.096 seconds, in the alpha-band
range). A previous study [43] observed the asymmetry of
signal entropy at the forehead increased in stressful scenarios.
Therefore, we also calculated the FuzzEn asymmetry using the
following equation:

FuzzEn Asym (t) = FuzzEnF4 (t) − FuzzEnF3 (t) (3)

For spectral entropy, we selected alpha, beta, and delta
band spectra for analysis [47], [48]. A power distribution
was derived through Welch’s FFT for each EEG segment and
then normalized. The normalized distribution is treated as a
probability distribution. Then, Shannon entropy was estimated

from the distribution of alpha, beta, theta, and gamma band.
In spectral entropy, higher entropy values indicate relatively
random, white-noise-like signal, while lower values indicate a
more complex signal containing more information.

Signal pre-processing and spectral decomposition were
achieved with Scipy (1.9.0, The Scipy project) [49]. Fuzzy
entropy and spectral entropy estimation were conducted
through EntropyHub (v0.2, Matthew W. Flood) [50].

D. Statistics Analysis
For frontal beta/delta power correlation, we used Pearson’s

R value to measure the mean correlation of each group. For
comparisons of other power spectra, entropy values, and sleep
structure, since most of these results were not uniformly dis-
tributed amongst different groups, we employed nonparametric
Krustal-Wallis test (for 3-group comparison) or Mann-Whitney
U test (for 2-group comparison) to calculate the significance
of inter-group differences. We implemented all statistical anal-
yses using Scipy (v1.9.0, The Scipy project) [49].

E. Supervised Learning Models
We used various supervised models to determine whether

the band power and complexity features we selected were
capable of predicting the amount of SWS in subsequent sleep.
The applied models were k-nearest neighbours (KNN) [51],
random forest (RF), linear support vector machine (SVM),
and Gaussian SVM. For each 5-second EEG segment, spec-
tral power and entropy patterns were extracted as features.
The prediction target was the degree of SWS deficiency in
the PSG record that an EEG segment came from. Three-
fourths of included EEG segments were randomly selected
as training data, while the rest were used as testing data. All
supervised learning models were implemented using Scikit-
learn (v. 1.11.2, scikit-learn developers) [52].

Because there are participant imbalances between differ-
ent groups, we conducted a parallel training routine using
over-sampling and under-sampling techniques to balance the
training data [53]. First, additional data points of minor-
ity classes were generated through the synthetic minority
over-sampling technique (SMOTE) [54] so that their number
matched the largest class. Then, noisy and borderline data
points were removed using Tomek’s links [55]. We then trained
supervised classification models using the re-sampled training
data and evaluated them using unprocessed testing data. The
SMOTE-Tomek technique was implemented with Imbalanced-
learn (0.10.1, The imbalanced-learn developers) [56].

IV. RESULTS

A. Sleep Structure
Table I shows the general sleep structures of each group.

There was no significant difference in TST (318.40±88.74 vs.
316.67±112.13 vs. 337.50±119.89 minutes; p>0.05), indi-
cating that the sleep opportunity was the same among the
groups. There was no significant difference in WASO either
(29.10±17.49 vs. 28.90±17.78 vs. 31.63±18.72 minutes,
p>0.05). Curiously, we observed that the degree of SWS
deficiency was negatively related to sleep onset latency
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TABLE I
GENERAL SLEEP STRUCTURE OF INCLUDED PSG RECORDS

GROUPED BY SWS PERCENTAGE

(10.40±7.16 vs. 7.33±4.30 vs. 2.40±1.24 minutes, p=0.048).
Specifically, the Low SWS group showed a significantly longer
SOL than the High SWS group (p=0.036). This suggests
that the High SWS group had an easier time falling asleep
than the Low SWS group. On the other hand, the correlation
between SOL and SWS percentage was not significant among
the subjects (p=0.180). This suggests that the reduced SOL is
not directly related to increased SWS. Overall, while the High
SWS group showed shorter SOL, no significant between-group
differences in sleep duration exist.

B. Power Analysis
Figure 3 shows the results of the power spectrum analysis.

When evaluating the frontal beta/delta correlation, we found
that segments from the Low SWS group exhibited the strongest
negative correlation in the F3 channel (r=−0.66). In con-
trast, segments from the Mid SWS and High SWS groups
showed much weaker correlations (r=−0.29 and r=−0.33,
respectively) (Fig. 3a). A similar phenomenon was observed
in the F4 channel (Fig. 3b). The low SWS group showed
the strongest negative correlation (r=−0.46). The Mid and
High SWS groups showed progressively weaker correlations
(−r=−0.34 vs. −0.24). These differences suggest strong
cortical-subcortical crosslinks in subjects lacking SWS but not
those with sufficient SWS. Our findings indicate that the fear
network was most active in the Low SWS group, while it was
least active in the High SWS group.

Regarding the stress level derived from frontal alpha asym-
metry, we found that the Low SWS group showed the highest
stress level. In contrast, the Mid and High SWS groups showed
progressively lower levels (4.74±0.76 vs. 4.55±0.91 vs.
4.53±0.73, respectively, p<0.05) (Fig. 3c). Upon analyzing
individual subjects, we observed a trend where the Low SWS
subjects tended to have higher stress levels In contrast, the Mid
& High SWS subjects tended to show lower values (Fig. 3d).
These results are consistent with the beta/delta correlation
findings. The group with less SWS showed higher stress levels,
while the group with more SWS showed the opposite.

In addition to examining the well-defined alpha asymmetry
and beta/delta correlations, we also investigated the power
of other EEG bands to identify potential biomarkers. Aside
from differences in the alpha, beta, and delta bands, we found
that activities in the theta band also differed among groups.
The Low SWS group exhibited significantly stronger theta

Fig. 3. Pre-sleep EEG power characteristics analysis between SWS
groups. (a) Correlation between relative delta and beta power in the F3
channel. The Low SWS group showed a stronger correlation than the
other groups (b) Correlation between relative delta and beta power in
the F4 channel. The Low SWS group showed the strongest correlation,
while the High SWS group showed the weakest. (c) Estimated stress
level. The Low SWS group showed the highest stress level among the
three groups (p<0.05). (d) Estimated stress levels of each subject.
(e) Theta power of the F3 channel. The Low SWS group showed
stronger theta activity than the other groups (p<0.01) (f) Theta power
of the F4 channel. The Low SWS group showed stronger theta activity
than the other groups (p<0.05).

power than the Mid and High SWS groups in the F3 channel
(32.85±25.79 vs. 24.45±46.85 vs. 26.75±20.32, p<0.005)
(Fig. 3e). A similar phenomenon also existed in the F4 channel
(36.07±25.27 vs. 29.95±28.02 vs. 30.28±24.70, p<0.05)
(Fig. 3f). Theta activity in the frontal lobe is known to be
related to motor inhibition and conflict [57]. The higher theta
activity in Low SWS subjects may be linked to restlessness and
the need to consciously inhibit body movement before falling
asleep, which is consistent with their longer SOL. Overall,
the power analysis shows that subjects who experienced SWS
deficiency tended to show stronger signs of pre-sleep stress,
while those with sufficient SWS showed the opposite.

C. Entropy Analysis
Figure 4 shows the results of the signal entropy analysis.

The Low SWS group showed significantly higher signal
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Fig. 4. Signal entropy of pre-sleep EEG between SWS groups. (a) The
signal entropy in the F3 channel. The Low SWS group showed much
higher signal entropy than the other two groups (p<0.001) (b) The
signal entropy in the F4 channel. The Low SWS group showed much
higher signal entropy than the other two groups (p<0.001) (c) The signal
entropy right-over-left asymmetry. The Low and Mid SWS group showed
higher entropy in the right frontal region than in the left (p<0.05).

entropy in the F3 channel, while the Mid and High SWS
group showed lower values (1.71±0.25 vs. 1.61±0.34 vs.
1.64±0.30, p<0.005) (Fig. 4a). The F4 channel also exhibited
the same trend, with the Low SWS group showing significantly
higher signal entropy compared to the Mid and High SWS
groups (1.76±0.22 vs. 1.70±0.30 vs. 1.67±0.31) (p<0.005)
(Fig. 4b). In addition, we observed that in the Low and
Mid SWS groups, the right frontal region showed a higher
signal entropy than the left frontal region. In contrast, the
left-right signal entropy difference in the High SWS group
is much smaller. (0.06±0.16 vs. 0.10±0.21 vs. 0.04±0.13,
respectively; p<0.05) (Fig. 4c). The increased FuzzEn values
in the Low SWS group might be related to the stronger cortical
and subcortical cross-linking we found in the power analysis.
In contrast, the High SWS group had weaker cross-linking,
which resulted in a lower entropy value and decreased FuzzEn
asymmetry.

Figure 5 shows the results of the spectral entropy analysis.
We found significant differences in the alpha and theta bands
between the groups. Specifically in the alpha band, while there
was no significant difference in the F3 channel (0.83±0.06 vs.
0.83±0.07 vs. 0.83±0.08, p>0.05) (Fig. 5a), we observed
that the Low SWS group showed higher SpEn than the
other groups in the F4 channel (0.85±0.06 vs. 0.82±0.08 vs.
0.82±0.08, p<0.005) (Figure 5b). This indicates that the Low
SWS group showed less frequent alpha activity in the right
frontal cortex. In the theta band, we found that the Low SWS
group showed significantly lower SpEn values both in the F3
channel (0.87±0.04 vs. 0.89±0.03 vs. 0.88±0.03, p<0.005)
(Fig. 5c) and the F4 channel (0.86±0.05 vs. 0.89±0.03 vs.
0.88±0.04, p<0.005) (Fig. 5d).

D. Supervised Learning
To investigate the potential for predicting SWS deficiency

using pre-sleep frontal EEG, we selected several neural

Fig. 5. Spectral entropy of pre-sleep EEG between SWS groups.
(a) The spectral entropy of alpha band in the F3 channel. No significant
difference existed between groups (b) The spectral entropy of alpha
band in the F4 channel. The Low SWS group showed higher spectral
entropy than the other two groups (p<0.001) (c) The spectral entropy
of theta band in the F3 channel. The Low SWS group showed lower
entropy than the other two groups (p<0.001) (d) The spectral entropy
of theta band in the F4 channel. The Low SWS group showed lower
entropy than the other two groups (p<0.001).

Fig. 6. Group size percentages during training with and without resam-
pling. (a) Percentages without resampling. The Mid SWS group had the
most samples, while the Low SWS group had the least. (b) Percentages
with resampling. The percentages were more balanced between groups
after SMOTE-Tomek resampling.

markers that showed significant inter-group differences: rela-
tive beta power, beta/delta power ratio, stress level, raw Theta
power, FuzzEn, FuzzEn asymmetry, and SpEn (theta). We con-
ducted two parallel training routines, one with SMOTE-Tomek
resampling and one without. In the routine without resam-
pling, the group size percentages between Low:Mid:High SWS
groups were 40:42:18 (Fig 6a). In the routine with resampling,
the percentages were 40:33:34 (Fig 6b), which was more
balanced.

Fig. 7 shows the confusion matrices resulting from super-
vised learning without over-under sampling. The accuracies
of the classifiers for the Mid SWS group, which contains
the most samples, ranged from 0.75 (in linear SVM) to
0.85 (in Gaussian SVM). The accuracies for the Low SWS
group ranged from 0.74 (in KNN) to 0.81 (in the random
forest). These results demonstrate that the selected markers
can effectively identify EEG segments collected from SWS-
deficient subjects. On the other hand, EEG segments from
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Fig. 7. Classifications results with no resampling. (a) KNN classifier
(b) random forest classifier (c) linear SVM classifier (d) Gaussian SVM
classifier.

the High SWS group were poorly classified, with accuracies
ranging from 0.24 to 0.52. In both linear SVM and Gaussian
SVM, segments from the High SWS group were largely mis-
classified as coming from the Mid SWS group. The suboptimal
classification result for the High SWS group might be because
of sample imbalance.

Fig. 8a-d shows the confusion matrices using the over-under
sampling routine. All classifiers showed increased accuracy in
identifying the High SWS class but at the expense of decreased
accuracy for the Mid SWS and the Low SWS classes. In par-
ticular, the KNN classifier (Fig. 8a) and the linear SVM
classifier (Fig. 8c) showed accuracies below 0.7 for the Mid
and Low SWS classes. On the other hand, the random forest
classifier (Fig. 8b) showed the smallest decrease in the Low
SWS group (from 0.83 to 0.76) while showing significantly
increased accuracy for the High SWS group (from 0.38 to
0.76). Fig. 8e shows the overall performance of all classifiers.
With the SMOTE-Tomek routine, both the random forest
classifier and the Gaussian SVM showed increased Cohen’s
Kappa values. (Fig. 8e). The random forest classifier also
showed an increased balanced accuracy of 0.77. Overall, our
results show that stress-related neural markers can be used to
predict SWS deficiency.

V. DISCUSSION

The importance and quality of sleep have garnered atten-
tion in the recent decades. Psychological stress is a major
factor affecting sleep quality is stress, as it is known to
cause decreased subjective sleep quality and prolonged SOL
in humans. Previous studies have consistently reported that
negative anticipation stress can lead to disrupted sleep patterns
and reduced SWS. These impacts are especially detrimen-
tal to individuals working in high-stress environments with
limited sleep opportunities and those who are experiencing
traumatic events, such as the COVID-19 pandemic [3], [21],
[22], [23]. While most studies on stress and sleep relied
on subjective questionnaires to assess stress levels, recent

Fig. 8. Classifications results with SMOTE-Tomek resampling. (a) KNN
classifier, (b) random forest classifier, (c) linear SVM classifier, (d) Gaus-
sian SVM classifier, and (e) accuracy and Cohen’s Kappa values of
various classifiers with and without resampling. Linear SVM showed
reduced performance after resampling, while Gaussian SVM and ran-
dom forest classifiers showed improved accuracy and Kappa value.

advances in cognitive science and EEG analysis have allowed
a more objective way to measure stress levels in human
subjects. This approach also opens the possibility of using
stress-related neuromarkers to predict changes in sleep patterns
and, potentially, overall sleep quality. This study took a novel
approach combining mental state assessment and sleep study
by extracting stress-related neural markers in pre-sleep EEG.
We found that subjects with SWS deficiency (<13%) exhibited
higher stress levels and signs of restlessness in pre-sleep rest-
ing frontal EEG, while subjects with abundant SWS showed
the opposite. These results suggest that an individual’s pre-
sleep mental state is linked to subsequent sleep structure
and SWS percentage. Based on these findings, we show that
neural markers from pre-sleep EEG can be used to predict
SWS deficiency, with the highest accuracy of 0.77. Our result
implies that pre-sleep mental state may affect more than just
SOL and that pre-sleep EEG may be used to predict sleep
quality.

A. Stress-Related Power Differences Corresponds With
Insufficient SWS

The frontal lobe is crucial to many cognitive functions of
the human brain. When comparing frontal spectra, we found
that subjects showed SWS-deficient subjects exhibited several
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differences compared to other subjects. The first difference is
the correlation between beta and delta power. We observed that
EEG segments from SWS-deficient subjects showed a stronger
correlation, while subjects with abundant SWS showed a
weaker correlation. This difference may have resulted from
the increased competition between the middle prefrontal cor-
tex and subcortical regions, as suggested by traditional fear
network theory [39], [40]. The increased correlation in the
Low SWS group suggests a more active fear network, which
could lead to experiences of stress and restlessness. Indeed, the
Low SWS subjects showed the highest average stress level,
while the High SWS subjects showed the lowest. Besides
spectral signatures related to stress, we also found that Low
SWS subjects tended to show stronger theta band activity
than High SWS subjects. Theta activity in the prefrontal
cortex (particularly the middle prefrontal cortex) is known to
be related to motor and impulse inhibition [58], [59]. The
increased motor inhibition suggests that the Low SWS subjects
may have experienced greater restlessness and a greater need
to inhibit body movement. The spectral differences suggest
that the Low SWS group may have had more difficulty falling
asleep, as reflected in their longer SOL. Overall, our findings in
spectral power differences are consistent with previous studies
showing that the presence of stress is negatively related to the
SWS ratio.

B. SWS Deficiency Is Related to Increased EEG Signal
Complexity

Previous studies have shown that EEG signal complexity
would increase during periods of stress [43] and decrease
during relaxation [60], [61] in healthy humans. These findings
suggest that entropy can be a biomarker for detecting psycho-
logical stress. Our study found that subjects in the Low SWS
group tended to show higher FuzzEn values. The increased
entropy value was more prominent in the F4 channel than in
the F3 channel, consistent with a previous study by García-
Martínez et al. [43]. Additionally, we observed that while the
Low and Mid SWS groups showed a right-over-left bias in
FuzzEn, the High SWS group did not. A previous study by
Ren et al. suggests that right-over-left complexity asymmetry
indicates the presence of negative emotion, while a lack of
asymmetry indicates calmness [62]. Therefore, the absence of
entropy asymmetry in the High SWS group indicates they were
more composed and less agitated when falling asleep.

Aside from signal entropy, we also noted differences in
spectral entropy in the theta and alpha bands. The spectral
entropy value is inversely proportional to how frequently
certain rhythms occur in a given signal. The Low SWS group
showed decreased SpEn in the theta band, consistent with their
overall increased theta activity. Curiously, the Low SWS group
showed higher SpEn in right frontal cortex. This contrasts with
their higher stress level, which is derived from right-to-left
alpha power. A possible explanation is that while the alpha
rhythm occurred less frequently in the right frontal cortex
in the Low SWS subjects, it occurred in higher magnitude.
This also implies that EEG in the Low SWS subjects was
less stationary than in other subjects, which may be linked to
increased fear network activity in these subjects.

C. Potential Biological Link Between Sleep and Stress
While slow waves during NREM sleep are most prominent

in the neocortex, several studies have suggested that they are
likely regulated by the thalamus [63], [64], [65]. An earlier
study by David et al. found that blocking the thalamic signal
to the neocortex greatly diminished slow-wave activity in
rats [64]. A later study by Gent et al. also found that centrome-
dial thalamus (CMT) neurons are phase-advanced to cortical
slow waves in mice [65]. Traditionally, the thalamus had been
viewed as a passive relay for sensory inputs and subcortical
signals to the cerebral cortex. However, studies in the last
decade have revealed that the thalamus is critical in mediating
complex cognitive functions in the human brain [66], [67],
[68]. While most studies have associated the stress response
with the hypothalamic–pituitary–adrenal (HPA) axis, recent
animal studies suggest that paraventricular thalamus is also
involved in the stress response, including increased alert-
ness [69] and binge eating [70]. This may provide a biological
link between psychological stress and decreased slow-wave
activity in mammals, although more studies are needed to
confirm this hypothesis.

D. Pre-Sleep Frontal EEG Predicts Lack of SWS for
Sleep Monitoring and Improvement

Based on our observations in the frontal EEG power spec-
tra and complexity, we employed several supervised models
(KNN, random forest, linear SVM, Gaussian SVM) to validate
if the neurological metrics could discriminate EEG segments
from subjects with SWS deficiency. Initially, all classifiers
could identify EEG segments from the Low SWS subjects
(accuracy ranging from 0.74 to 0.81) and the Mid SWS
subjects (accuracy ranging from 0.75 to 0.85). However, the
classifiers showed suboptimal performance in classifying High
SWS subjects (accuracy ranging from 0.24 to 0.52). This is
likely because of imbalanced sample sizes. Specifically, the
High SWS group’s size was less than half the size of the
Mid SWS group. We used the SMOTE-Tomek resampling
technique to address the imbalance issue As shown in Fig. 7b,
the three groups became more balanced after the re-sampling
procedure. In Fig. 8e, the Gaussian SVM and the random
forest classifier showed improved performance. In particular,
the random forest showed an accuracy of 0.77 in distinguishing
EEG segments from subjects with different SWS levels. Over-
all, our study showed that EEG from the frontal lobe contains
valuable information for predicting sleep structure. A proper
hyperparameter tuning strategy and resampling strategy could
further enhance the performance in the future.

E. Stress Evaluation and SWS Deficiency Prediction
May Be Utilized to Enhance Immediate Sleep Quality
and Long-Term Brain Health

Studies on mammal brain metabolism in the last decade
have suggested that SWS is crucial in removing excessive
materials from the brain [71], [72]. Moreover, an animal model
of Parkinson’s disease found that enhancing SWS promotes the
removal of misfolded alpha-Syn protein and the expression
of enzymes that prevent misfolding [73]. Psychological stress
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may have a larger implication on the brain’s overall health
as it diminishes SWS and crucial material exchange. On the
other hand, various relaxation methods have been proposed to
promote SWS in human adults, including aromatherapy [74],
muscle relaxation [33], and acoustic hypnosis [31]. These
methods offer opportunities to supplement SWS artificially in
users experiencing a deficiency.

The present study establishes pre-sleep EEG as a reliable
predictor of SWS deficiency. Its simplicity allows seamless
integration with our team’s existing frontal-EEG-based sleep
stage classification algorithms [75], [76], paving the way
for an IoT system. This IoT system would assess stress
levels and predict potential SWS deficiency, then, automat-
ically activate activating relaxation protocols (e.g., speakers,
aroma dispensers) when needed. Such automation promises
a significant advancement in personalized sleep profiling and
improvement.

F. Limitations

Firstly, the study was done on a relatively small population
who are majorly female. The presented findings need to be
validated with a larger sample size to determine whether they
are gender dependent. Secondly, this study did not use a
questionnaire to evaluate the subjects’ subjective stress levels.
We omitted the questionnaire because we preferred to use
the objective information from the subjects’ EEG, which
may differ from their conscious feelings. For future studies,
we intend to increase our subject number so that we may
develop a machine learning system that can automatically
detect stress in real-time and develop it into a solution for
sleep monitoring and profiling.

VI. CONCLUSION

This study presents a novel approach to predict SWS defi-
ciency through stress-related neurological markers in resting
EEG. We did so by explicitly selecting frontal resting EEG
immediately before sleep onset and extracting stress-related
neurological markers through PSD and complexity analyses.
Our study found that subjects with SWS deficiency showed
longer SOL than others. They also showed strong beta/delta
correlation, higher alpha asymmetry, increased theta band
activity, higher signal complexity, and decreased spectral
entropy in the theta band. These signs indicate restlessness
and stress in these subjects. On the other hand, subjects with
sufficient SWS showed the opposite trend in these neural
markers. Based on these findings, we used several supervised
learning classifiers to predict SWS deficiency. The classifiers
can detect segments from EEGs collected from subjects with
SWS deficiency. The classifiers’ performance can be further
enhanced through the SMOTE-Tomek over-under-sampling
technique, with the best model showing a mean balanced
accuracy of 0.77. Overall, our results show that stress-related
neurological markers in pre-sleep forehead EEG can be used
as predictors for SWS deficiency. Future applications can use
this information to realize personalized sleep monitoring and
improvement.
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