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Alignment-Based Adversarial Training (ABAT) for
Improving the Robustness and Accuracy of
EEG-Based BCls
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Abstract— Machine learning has achieved great suc-
cess in electroencephalogram (EEG) based brain-computer
interfaces (BCIs). Most existing BCI studies focused on
improving the decoding accuracy, with only a few consid-
ering the adversarial security. Although many adversarial
defense approaches have been proposed in other applica-
tion domains such as computer vision, previous research
showed that their direct extensions to BCls degrade the
classification accuracy on benign samples. This phe-
nomenon greatly affects the applicability of adversarial
defense approaches to EEG-based BCls. To mitigate this
problem, we propose alignment-based adversarial training
(ABAT), which performs EEG data alignment before adver-
sarial training. Data alignment aligns EEG trials from differ-
ent domains to reduce their distribution discrepancies, and
adversarial training further robustifies the classification
boundary. The integration of data alignment and adversarial
training can make the trained EEG classifiers simulta-
neously more accurate and more robust. Experiments
on five EEG datasets from two different BCl paradigms
(motor imagery classification, and event related potential
recognition), three convolutional neural network classifiers
(EEGNet, ShallowCNN and DeepCNN) and three different
experimental settings (offline within-subject cross-block/-
session classification, online cross-session classification,
and pre-trained classifiers) demonstrated its effectiveness.
It is very intriguing that adversarial attacks, which are
usually used to damage BCI systems, can be used in
ABAT to simultaneously improve the model accuracy and
robustness.

Index Terms— Electroencephalogram, brain-computer
interface, adversarial attack, adversarial training, data
alignment.

[. INTRODUCTION

BRAIN-COMPUTER interface (BCI) establishes a direct
communication channel connecting the human brain and
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a computer [1]. Electroencephalogram (EEG), which records
the brain’s electrical activities from the scalp, is the most
commonly utilized input signal in non-invasive BCIs, due to its
affordability and ease of use [2]. An EEG-based BCI system
typically includes four components: signal acquisition, signal
processing, machine learning, and controller, as illustrated in
Fig. 1.

Most prior research on EEG decoding primarily focused
on the accuracy and efficiency of machine learning algo-
rithms [3]. Nonetheless, a critical discovery by Zhang and
Wu [4] revealed that adversarial examples, generated using
unsupervised fast gradient sign method (FGSM) [5], can sig-
nificantly degrade the performance of deep learning classifiers
in EEG-based BCIs. They introduced an attack framework
that transforms a benign EEG epoch into an adversarial
one by injecting a jamming module before machine learn-
ing to add adversarial perturbations, as depicted in Fig. 2.
Furthermore, Zhang et al. [6] demonstrated that adversarial
examples can also fool traditional machine learning classi-
fiers in BCI spellers, misleading them to output an arbitrary
(incorrect) character specified by the attacker. Liu et al. [7]
and Jung et al. [8] developed approaches to generate uni-
versal adversarial perturbations for EEG-based BClIs, making
adversarial attacks much easier to implement. Bian et al. [9]
employed simple square wave signals to generate adversarial
examples, for attacking steady-state visual evoked potential
based BCIs. Wang et al. [10] investigated physically con-
strained adversarial attacks to BCIs. Meng et al. [11] also
performed adversarial attacks in EEG-based BCI regression
problems.

Adpversarial attacks to EEG-based BCIs could have various
consequences, from mere user frustration to life-threatening
accidents. As pointed out in [12], “In BCI spellers for Amy-
otrophic Lateral Sclerosis patients, adversarial attacks may
hijack the user’s true input and output wrong letters. The
user’s intention may be manipulated, or the user may feel
too frustrated to use the BCI speller, losing his/her only way
to communicate with others. In BCI-based driver drowsiness
estimation [13], adversarial attacks may manipulate the out-
put of the BCI system and increase the risk of accidents.
In EEG-based awareness evaluation/detection for disorder of
consciousness patients [14], adversarial attacks may disturb
the true responses of the patients and lead to misdiagnosis.” In
military applications, adversarial attacks to BCIs may generate
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Flowchart of a closed-loop BCI system.
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Fig. 2. The attack framework proposed in [4], which injects a jamming
module between signal processing and machine learning to generate
adversarial examples.

false commands, potentially causing friendly fire [15]. Conse-
quently, it is very important to develop BCI machine learning
models that are robust against adversarial attacks.

Many adversarial defense approaches have been proposed in
the literature [16], [17], [18], among which robust training [19]
may be the most classical and effective strategy. Adversarial
training (AT) [16] is a representative robust training approach,
and many other approaches [17], [18] can be regarded as
its variants. AT solves a minimax problem (the saddle point
problem). During training, AT generates adversarial examples
along gradients that increase the model’s loss to the input, and
then minimizes the model’s loss on these adversarial examples
repeatedly [16]. This process aims to minimize the model’s
loss on adversarial examples, but does not explicitly optimize
the performance on benign examples. Many studies [16], [20],
[21], [22] have shown that robust training may result in a
significant decrease of the accuracy on benign samples, which
is undesirable.

Few studies have explored the possibility of improving
the machine learning performance using adversarial exam-
ples. For image classification, Xie et al. [23] employed a
separate auxiliary batch normalization for adversarial exam-
ples to prevent model overfitting. For EEG classification,
Ni et al. [24] used a loss on adversarial examples to improve
the cross-subject and cross-state transfer learning performance.
However, Li et al. [21] and Meng et al. [22] have shown
that conventional robust training approaches usually lead to an
evident reduction in BCI model accuracy on benign samples,
i.e., it is difficult to achieve both high accuracy and good
robustness through robust training.

Robust models aim to maintain good classification per-
formance under adversarial attacks, which is important in
safety-critical applications. However, the accuracy degradation
of robust models on benign samples seriously affects their
adaption. To mitigate this problem, we propose alignment-
based adversarial training (ABAT) to align EEG data for each
session before performing robust training on them. This simple
approach can be readily used in deep model training. After
ABAT, the model’s classification accuracy on benign samples
and robustness on adversarial samples can simultaneously be

this is the first work on simultaneously improving the accuracy
and robustness of the classifiers in EEG-based BCls, and also
the first time that EEG data alignment has been used in BCI
adversarial defense. We hope that our findings can inspire
more future research on robust EEG classifiers.

The remainder of this paper is organized as follows:
Section II introduces related works. Section III pro-
poses ABAT. Section IV describes the experimental set-
tings. Section V presents the experimental results. Finally,
Section VI draws conclusions.

[I. RELATED WORK

This section introduces background knowledge on EEG data
alignment, adversarial attacks, and AT.

A. Euclidean Alignment

EEG data from different subjects/sessions can be regarded
as data from different domains. Due to inter-subject/-session
variations, the marginal probability distributions of EEG tri-
als from different subjects/sessions are usually (significantly)
different [25]. Consequently, it is important to perform EEG
data alignment to reduce the domain discrepancy.

Various EEG data alignment approaches have been
proposed, which are reviewed and compared in [26].
Zanini et al. [27] introduced Riemannian alignment to align
the covariance matrices of EEG trials from different subjects in
the Riemannian space. He and Wu [28] extended Riemannian
alignment to Euclidean alignment (EA), which aligns the raw
EEG trials in the Euclidean space. EA is efficient and com-
pletely unsupervised, demonstrating promising performance in
different BCI paradigms [29].

For N EEG trials {X n},11v:1 in a particula£ domain, EA first
computes the Euclidean arithmetic mean R of all N spatial
covariance matrices:

1 N
P __ T
R = N nzngn Xn) ' . (1)

Then, it performs the alignment by:

X, =R"?X,, n=1,..

N 2)

After EA, the aligned EEG trials {X ,,}111\’: | in each domain
are whitened, i.e., their average spatial covariance matrix
becomes the identity matrix. Thus, EEG data distributions
from different domains become more consistent.

B. Incremental EA

In online applications, target domain EEG trials X' arrive
one by one on-the-fly, so there is a need to perform incremental
EA on them.

Incremental EA applies EA to online EEG classifica-
tion [30]. Let Rﬁl be the average spatial covariance matrix
computed from the first n target domain EEG trials. When
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the (n + 1)-th target domain EEG trial X fq 4 arrives, we first
update:

1 - T
Ry = nrl [”R; + X (Xop) ] ; 3)
and then perform EA on X; 41 using:

X =R, )X )

C. Adversarial Attack

Adversarial examples should closely resemble benign ones,
achieved by imposing constraints on the perturbation mag-
nitude. Let D be a distance matric (a common choice is
the £, norm), and XV an adversarial example satisfying
D(X%" X) < €, where € regulates the magnitude of the
perturbation.

We consider the following three representative adversarial
attack approaches:

1) Fast gradient sign method (FGSM) [5], a straightforward
yet highly effective adversarial attack strategy. It con-
structs an adversarial example through a single-step
gradient computation:

X9V — X 4 €. sign (VxL(Cy(X), y)), )]

where Cy is a classifier with parameter 6, and L its loss
function. FGSM perturbs the input along the gradient
direction, increasing the classifier’s loss on its true label
and leading to misclassification.

2) Projected Gradient Descent (PGD) [16], which is an
iterative extension of FGSM. It starts from a perturbed
version of the benign example X:

X5 =X +&, (©)

where & is uniform random noise sampled from (—e, €).
The iterative step is given by:

X¢t =Projy . (X74y
- sign(V e LCo (X2, y)) . ()

where o < € is the step size. The function Projy .
ensures that Xl‘.‘d” remains within the e-neighborhood
of X according to the £, norm.

3) AutoAttack [31], which combines four distinct attack
strategies, including two budget-aware step size-free
PGD variants with different losses (cross-entropy loss,
and difference of logits ratio loss), square attack [32],
and fast adaptive boundary attack [33], each serving a
unique purpose. AutoAttack is parameter-free, and has
demonstrated superior performance in defeating various
defense approaches [31].

D. AT

AT [16] is a classical robust training approach for enhancing
the robustness of machine learning models against adversarial
attacks, i.e., improving the model accuracy on adversarial

Source Domain

Adversarial

erturbation
Data AT
- - -) [ v__d--
8 Alignment A BSFt b

Target Domain . .
Aligned EEG trails Modified Classification
Boundary

Fig. 3. The influence of ABAT on EEG data from different domains.
Data alignment aligns EEG trials from different domains to reduce their
distribution discrepancies, and AT further robustifies the classification
boundary.

examples by adding them to the training data. It can be
expressed as a min-max (saddle point) optimization problem:

minEx y)~p [ max L (Co (X”d”) , y)i| , (8
0 XuveB(X,e€)

where D is the data distribution, and B(X, ¢) the £, ball
of radius € centered at X. X“?Y can be adversarial examples
generated by PGD [16] (AT-PGD) or FGSM [34] (AT-FGSM)
or AutoAttack [31], etc.

Whereas AT can significantly enhance a model’s robustness
to adversarial examples, it often comes at the cost of reduced
accuracy on benign examples [22].

[1l. ALIGNMENT-BASED ADVERSARIAL TRAINING (ABAT)

AT aims at learning model parameters 6 that minimize
the model’s loss £ on training samples’ strong adversarial
examples X%V je. to increase its robustness. AT is one of
the most effective adversarial defense approaches. However,
it often comes at the cost of reduced accuracies on benign
examples. This paper studies whether AT can be used to
improve the model’s robustness and accuracy simultaneously.

Ni et al. [24] were the first to include the loss on adversarial
examples in the overall model training loss function in EEG
classification, to improve the transfer learning classification
accuracy. However, they did not consider the adversarial
robustness. Li et al. [21] and Meng et al. [22] showed that
frequently, robust training, one of the most popular adversarial
defense approaches, degrades the accuracy of BCI models.
This may be due to the lack of EEG data alignment to reduce
the data discrepancy among different subjects or different
sessions. Multiple EEG data aliment approaches have been
proposed, e.g., Riemannian alignment [27], EA [28] and label
alignment [35]. They greatly improve the classification accu-
racy in traditional transfer learning scenarios [26]. However,
EEG dat alignment has not been used in BCI adversarial
defense.

We propose a very simple yet effective ABAT to fill this
gap, by performing EEG data alignment before AT. Data
alignment aligns EEG trials from different domains to reduce
their distribution discrepancies, and AT further robustifies the
classification boundary, as illustrated in Fig. 3. EA is used in
this paper, for its simplicity and effectiveness.

Algorithm 1 gives the pseudo-code of ABAT. It first aligns
the EEG data of each domain using EA, and then performs
adversarial training.
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Fig. 4. The complete BCI flowchart, incorporating ABAT. After MI6 10 800 64 480 1 X
preprocessing EEG data using epoching and filtering, ABAT trains MI2 60 512 27 240 1 X
the classifier, which is then used in subsequent classification and P300 8 128 32 3300 4 v
robustness evaluation. ABAT aligns EEG data centers across differ- ERP ‘ 10 206 16 1728 3 v

ent domains and robustifies the classifier's decision boundary through
adversarial training.

The complete BCI flowchart with ABAT consists of data
acquisition, data preprocessing (EEG data epoching and fil-
tering), data alignment, AT, and model evaluation (in terms
of accuracy and robustness), as shown in Fig. 4. Particularly,
after preprocessing the EEG data, ABAT is used to train the
EEG classifier, which is then used in subsequent classification
and robustness evaluation.

Algorithm 1 Alignment-Based Adversarial Training
(ABAT)

Input: S = {Ds}le,
domains;
M, the number of model training epochs.
Output: Cy, trained EEG classifier.
Randomly initialize classifier Cy or pre-train the
classifier Cy on other available data;
// Data Alignment
fors=1:S do
Perform EA on D; by (1) and (2) to obtain aligned
EEG data 755;
end
Denote S = {ﬁs}le;
// AT
form=1: M do
Generate adversarial examples SV by (5) or
by (6) and (7) or by AutoAttack on aligned
source domain data S and Co;
Update the classifier Cg by (8) on generated
adversarial examples SV,
end
Return Cy.

labeled data from S source

IV. EXPERIMENT SETTINGS
This section introduces our experiment settings, including
the datasets, models, performance evaluation metrics, testing
scenarios, and hyper-parameters. Our source code, includ-
ing data preprocessing, can be found at https://github.com/
xqchen914/ABAT.

A. Datasets

The following four datasets, summarized in Table I, were
used:

1) Four-class motor imagery dataset (MI4) [36]: This is
Dataset 2a in BCI Competition IV!. It was collected

1 https://www.bbci.de/competition/iv/

from 9 subjects in two sessions on different days.
There are four classes, i.e., left hand, right hand, feet,
and tongue. The 22-channel EEG signals were sampled
at 250 Hz. We extracted the data in [0, 4] seconds after
each imagination prompt and band-pass filtered the trials
at [8, 32] Hz. Each subject had 144 EEG epochs per
class.

2) Six-class motor imagery dataset (MI6) [37]: It was
collected from 10 subjects for seven-class classification,
i.e., left hand, right hand, feet, both hands, left hand
combined with right foot, right hand combined with
left foot, and rest state. The data collection process was
divided into 9 sections, with 5 to 10 minutes intersection
break. We only used data from the first six classes.
The 64-channel EEG signals were sampled at 200 Hz.
We extracted the data in [0, 4] seconds after each
imagination prompt and band-pass filtered the trials at
[4, 32] Hz. Each subject had 80 EEG epochs per class.

3) Two-class motor imagery (MI2) [38] includes EEG data
from 60 users performing left hand and right hand motor
imagery tasks for 6 runs. 27-channel EEG signals were
recorded at 512 Hz. After [4, 32] Hz band-pass filtering,
we downsampled the data to 128 Hz and extracted data
within [0, 4] seconds of each imagination prompt. Each
subject had 120 EEG epochs per class.

4) P300 evoked potentials (P300) [39]: It was collected
from four disabled subjects and four healthy ones in
four sessions for two-class classification (target and non-
target). The EEG data were recorded from 32 channels
at 2048 Hz. We re-referenced the data, discarded the
mastoid channels, filtered the data using a [1, 12] Hz
bandpass filter, and down-sample the data to 128 Hz.
EEG epochs between [0, 1] second were extracted. Each
subject had 3,300 epochs, among which 557 were target.

5) Event related potential (ERP) [40]: It was collected from
10 subjects in three sessions for two-class classification
(target and non-target). The EEG signals were recorded
using 16 electrodes at 250 Hz. We used MOABB API”
to get the preprocessed EEG data. EEG epochs between
[0, 0.8] second were extracted. Each subject had 1,728
EEG epochs, among which about 288 were target.

B. Evaluation Metrics

We used balanced classification accuracy (BCA) to eval-
uate the classification performance. The frequently-used raw
classification accuracy (RCA) is the ratio of the number of
correctly classified examples to the number of total examples.

2https://neur0techx‘ github.io/moabb/api.html
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The BCA is the average of the per-class RCAs. BCA was
preferred in our experiments because the ERP and P300
datasets have significant intrinsic class imbalance, so using
RCA is misleading. When all classes have the same number
of samples (e.g., MI4 and MI6), BCA reduces to RCA.

We repeated each experiment three times, and their averages
were reported.

C. Evaluated Classifiers

The following three CNN classifiers were used:

1) EEGNet [41]: It is a compact CNN architecture specifi-
cally designed for EEG classification tasks. This model
comprises two convolutional blocks and a single clas-
sification block. It employs depthwise and separable
convolutions, as opposed to conventional convolutions,
to effectively reduce the model’s parameter size.

2) DeepCNN [42]: In contrast to EEGNet, DeepCNN has a
higher number of parameters. It consists of three convo-
lutional blocks and a softmax layer for classification.
The first convolutional block is customized for EEG
inputs, and the last two are standard ones.

3) ShallowCNN [42]: ShallowCNN is a simplified variant
of DeepCNN, inspired from filter bank common spatial
patterns. Compared with DeepCNN, ShallowCNN has
a convolutional block with a larger kernel, a different
activation function, and different pooling techniques.

If not specified otherwise, the three convolutional
blocks of DeepCNN used 25, 50 and 100 convolu-
tional kernels, respectively, and the convolutional block
of ShallowCNN used 40 convolutional kernels. EEGNet,
DeepCNN and ShallowCNN had 1676, 94,079 and 57,804
parameters, respectively. In terms of model capacity,
EEGNet<ShallowCNN<DeepCNN.

D. Testing Scenarios

We tested the performance of different models under adver-
sarial attacks, i.e., their robustness, in offline scenario, where
adversarial attacks are most effective. We also tested their
classification accuracies on benign samples in both offline and
online scenarios. Algorithms 2 gives the pseudo-code of the
corresponding online test, offline test, and offline robust test
procedures.

On MI4 and ERP, we used the first session as the training
set and the remaining ones as the test set. On P300, we used
the first two sessions as the training set. On MI6 and MI2,
we used the first two blocks of data as the training set.

E. Hyper-Parameters

When training within-subject models, batch size 32 was
used on MI4, MI6 and ERP datasets, and batch size 128 on the
P300 dataset. When training cross-subject models, batch size
128 was used on all four datasets. All models were trained for
100 epochs with initial learning rate 0.01, which was reduced
to 0.001 after 50 epochs.

Since the perturbation magnitude is correlated with the
original EEG signal magnitude, we selected the perturbation
magnitude to be € times of the EEG signal standard deviation.

Algorithm 2 Online Test, Offline Test, and Offline
Robustness Test Procedures

Ny

Input: T target sessions/domains {X]} ",

t=1,...,T;
f, the classifier.
Output: 3!, classification results for X! ;
f},tz’”dv, classification results for adversarial
counterparts of X?.
// Online test
fort=1:T do
forn=1:N; do
Perform incremental EA on X/, by (3) and (4)
to obtain 5(;;
Compute §, = f(X});
end
end
// Offline test

fort=1:T do
Perform EA on {X! r]:/;] by (1) and (2) to obtain
(D AREE
end
Compute 3!, = f()};);
// Offline robustness test
Compute adversarial examples { Af,’“dv}flv; , of (X Z},I,V; |

by (5), or (6) and (7), or AutoAttack [31];
Compute $5%Y = £ (X},

In adversarial attacks, we chose 20 iterations for PGD and
AutoAttack, with attack step size €/10 for PGD. In AT and
ABAT, we used 10 iterations for PGD, with PGD attack step
size o = €/5.

Deep learning models perform very differently on adver-
sarial examples with different perturbation amplitudes [22].
To have a more comprehensive assessment, we evaluated
the model performance with different adversarial training
perturbation amplitudes on adversarial examples with different
perturbation amplitudes.

We implemented AT-FGSM, AT-PGD, ABAT-FGSM and
ABAT-PGD with various training perturbation magnitudes €
on the four datasets. More specifically, ¢ = 0.01 was used
in AT-FGSM and AT-PGD on MI4, MI6 and P300, and
€ € {0.01,0.03} on ERP. € € {0.01,0.03, 0.05} were used
in ABAT-FGSM and ABAT-PGD on MI4, MI6 and P300,
and € € {0.01,0.03, 0.05, 0.07, 0.09} on ERP. We calculated
the resulting classifiers’ BCAs for benign samples, and under
FGSM, PGD and AutoAttack adversarial attacks with € =
{0.01, 0.03, 0.05}.

V. EXPERIMENTAL RESULTS

This section presents experimental results to verify the
effectiveness of our proposed ABAT.

A. Offline Cross-Block/-Session Performance on Benign
Samples

Offline cross-block/-session BCAs of EEGNet, DeepCNN
and ShallowCNN under benign training (BT), AT-FGSM and
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Fig. 5. Online cross-session performance of ABAT using incremental
EA on (a) MI4 and (b) P300.

DeepCNN

AT-PGD, and ABAT-FGSM and ABAT-PGD with different
training perturbation magnitudes €, on the benign samples
of the five datasets are shown in the ‘No Attack’ column of
Tables II-VI, respectively. Observe that:

1) Without EA, AT-FGSM and AT-PGD had similar or
lower BCAs on the benign samples than BT.

2) With EA, as ABAT-FGSM or ABAT-PGD perturbation
amplitude increased from 0.01 to 0.05, the BCAs on
the benign samples first increased and then decreased,
or kept increasing.

3) On MI4, MI6, MI2 and P300, EA greatly improved the
BCAs of BT, and ABAT-FGSM and ABAT-PGD further
improved the BCAs, regardless of the perturbation mag-
nitude. On the ERP dataset, although EA decreased the
BCAs, ABAT-FGSM and ABAT-PGD still outperformed
BT.

4) On the MI datasets, networks with larger capacities
achieved their best performance on benign samples
under larger ABAT perturbation amplitudes. More
specifically, on MI4, EEGNet achieved its highest BCA
on benign samples at € = 0.01, whereas ShallowCNN
and DeepCNN at € = 0.03; on MI6, EEGNet reached
its highest BCA on benign samples at € = 0.01 (PGD)
or ¢ = 0.03 (FGSM), whereas ShallowCNN at ¢ =
0.03 (PGD) or ¢ = 0.05 (FGSM), and DeepCNN at
€ = 0.05; on MI2, EEGNet achieved its highest BCA
on benign samples at € = 0.03, whereas ShallowCNN
and DeepCNN at € = 0.05. This difference was not
obvious on the P300 and ERP datasets, probably due to
the intrinsic differences of BCI paradigms.

B. Offline Cross-Block/-Session Performance on
Adversarial Examples

Offline cross-block/-session BCAs of EEGNet, DeepCNN
and ShallowCNN under BT, AT-FGSM and AT-PGD, and

ABAT-FGSM and ABAT-PGD with different training pertur-
bation magnitudes ¢, under FGSM, PGD and AutoAttack
adversarial attacks on the five datasets are shown in
Tables II-VI. Observe that:

1) AT-FGSM, AT-PGD, ABAT-FGSM and ABAT-PGD
with different perturbation amplitudes greatly improved
the BCAs on the adversarial examples, showing good
generalization.

2) When the perturbation amplitude of ABAT-FGSM and
ABAT-PGD increased, the BCAs for adversarial exam-
ples with larger perturbation amplitudes also increased,
but the BCAs for adversarial examples with small pertur-
bation amplitude may be reduced. Many times there was
a trade-off between the BCAs on adversarial examples
with large perturbation amplitude and those with small
perturbation amplitude.

3) The overall performance of ABAT-FGSM and
ABAT-PGD on the three classifiers and four datasets
was similar. However, ABAT-FGSM is much faster
than ABAT-PGD.

C. Online Cross-Session Performance on Benign
Samples

We simulated the online cross-session EEG classification
scenario and performed incremental EA for each incoming
EEG trail in the target session on MI4 and P300 datasets.
The classifiers were the same as those in Subsection V-A.
The results are shown in Fig. 5. When EA was not used, the
results for online scenarios were the same as those for offline
scenarios.

Using incremental EA in online scenarios improved model
performance, and ABAT can further improve the BCAs.

D. ABAT Using Pre-Trained Models

In real-world applications, we could pre-train a classifier
on other subjects’ EEG data, and then fine-tune it with target
subject’ data. The results on MI4 and MI6 are shown in
Tables VII-VIII, respectively.

Compared with BCAs without pre-training in Tables II-III,
when EA was used, pre-training achieved higher BCAs
on benign samples of the target user; however, the BCAs
decreased on adversarial examples with larger perturbations.
Nevertheless, ABAT can further improve the BCAs on both
benign samples and adversarial examples.

E. Discussions

To explore the influence of training data size on the clas-
sification performance in offline within-subject classification,
we trained the classifiers using different number of blocks
of data on MI6, and computed their BCAs under different
AutoAttack amplitudes. We used EA in BT, and ABAT used
PGD with € = 0.01. The results are shown in Figs. 6(a)-6(c).
Perturbation amplitude 0 means benign samples.

It can be observed that increasing the training data size
steadily improved the classification performance on benign
samples, which is intuitive. However, the classifiers were still
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TABLE Il
BCASs OF DIFFERENT TRAINING APPROACHES UNDER BENIGN SAMPLES AND VARIOUS ATTACKS ON MI4
Model EA Trainin. No FGSM FGSM FGSM PGD PGD PGD AutoAttack AutoAttack AutoAttack Av

& Attack  0.01 0.03 0.05 0.01 0.03 0.05 0.01 0.03 0.05 &
wio BT 60.78  36.14 8.89 1.66 3592 7.70 1.05 35.64 7.32 0.94 19.60

EA AT-FGSM 0.01 56.71 48.95 3410 2261  49.02 3374 21.63 48.87 33.51 21.17 37.03

AT-PGD 0.01 5599 4833 34.25 2231 4847 3403 21.37 48.28 33.71 20.95 36.77

BT 69.79 5754 3511 19.98  57.50 3474  19.01 57.46 34.49 18.45 40.41

EEGNet ABAT-FGSM 0.01 71.08 64.11 49.52 35.65 6412 49.28  35.11 64.08 49.10 34.70 51.67
with | ABAT-FGSM 0.03  68.92 6533 56.71 4825 6533  56.61 48.11 65.33 56.58 47.90 57.91

EA | ABAT-FGSM 0.05 6546 6291 57.29 5134 6292 5723 51.35 62.91 57.20 51.16 57.98

ABAT-PGD 0.01 7328  66.82  51.53 3749 6680 5129  36.70 66.78 51.09 36.34 53.81

ABAT-PGD 0.03 7069  66.85 5881 4976 66.85 58.83  49.50 66.85 58.74 4931 59.62

ABAT-PGD 0.05 67.48 6475 5926 5316 6475 59.25 53.15 64.74 59.19 53.00 59.87

wio BT 5406  31.61 6.93 1.02 3129 630  0.82 31.08 5.97 0.68 16.98

EA AT-FGSM 0.01 49.19  41.82  27.87 1623 41.74 2747  15.65 41.69 27.22 15.30 30.42

AT-PGD 0.01 49.06  41.53 27.69 16.54  41.51 2740 1595 41.49 27.26 15.63 30.41

BT 5970 44.21 20.41 770 4398 1943  6.42 43.84 18.88 5.93 27.05

DeepCNN ABAT-FGSM 0.01 6273 5320 3508  21.58 53.15 3457 20.78 53.15 3432 20.37 38.89
with | ABAT-FGSM 0.03  66.05 5882  44.71 3233 5882 4455 3171 58.80 44.37 31.44 47.16
EA | ABAT-FGSM 005 6388  59.08 4874 3871  59.08 48.66 38.49 59.08 48.60 38.28 50.26
ABAT-PGD 0.01 61.54 5228 34.23 21.14 5220 3377 2022 52.17 33.56 19.88 38.10

ABAT-PGD 0.03 64.98 5864 4482 3272  58.60 44.68 32.19 58.59 44.60 31.88 47.17

ABAT-PGD 0.05 62.83 5800  48.01 3825 5800 47.92 37.96 57.97 47.81 37.80 49.45

wio BT 60.57 3192 7.27 1.08 31.60  6.11 0.73 31.48 5.80 0.57 17.71

EA AT-FGSM 0.01 5747 4715 29.57 16.87  47.13 2937  16.00 47.08 29.05 15.46 33.51

AT-PGD 0.01 5747 4749 2973 16.80 4748  29.64  16.06 47.44 29.24 15.44 33.68

BT 71.46 5701 34.40 1924 5694 3390 1824 56.91 33.74 17.75 39.96

ShallowCNN ABAT-FGSM 0.01 ~ 73.82  65.41 48.83 3445 6535 48.68  33.90 65.34 48.61 33.71 51.81
with | ABATFGSM 0.03 7479  68.58 5499 4248 6857 54.85 4221 68.56 54.81 42.08 57.19

EA | ABAT-FGSM 005 7388 6836 5742 4588 6835 57.39 4582 68.35 57.38 45.64 58.85

ABAT-PGD 0.01 7395  65.61 4870 3430  65.59 4847  33.69 65.59 48.34 33.38 51.76

ABAT-PGD 0.03 7499  68.85  55.65 4226  68.85 5556 41.96 68.84 55.52 41.67 57.41

ABAT-PGD 0.05 73.51 68.17 56.97 4574  68.16 5694  45.63 68.16 56.93 45.46 58.57

TABLE IlI
BCASs OF DIFFERENT TRAINING APPROACHES UNDER BENIGN SAMPLES AND VARIOUS ATTACKS ON MI6

Model EA Trainine No FGSM FGSM FGSM  PGD PGD  PGD  AutoAttack  AutoAttack  AutoAttack Ave
& Attack  0.01 0.03 0.05 0.01 0.03 0.05 0.01 0.03 0.05 &

wio BT 29.52 16.75 491 1.80 1671 4.71 1.52 16.61 4.44 1.42 9.84

EA AT-FGSM 0.01 2069  25.60 18.50 1277 2559 1849  12.59 25.57 18.40 12.30 19.95
AT-PGD 0.01 2838  24.79 17.50 1224 2477 1745 1208 24.76 17.39 11.99 19.14

BT 3271 9.67 0.80 0.06 940  0.61 0.04 9.21 0.52 0.03 6.31

EEGNet ABAT-FGSM 0.01 ~ 41.13  29.81 13.69 626 2978 1340 578 29.73 13.18 5.52 18.83
with | ABAT-FGSM 0.03 4291 3824 3037 2293 3823 3030 2294 38.23 30.25 22.57 31.70

EA | ABAT-FGSM 005 4057  37.86 3289 2801 3785 3297 28.02 37.85 32.86 27.91 33.68

ABAT-PGD 0.01 4098  29.54 12.69 509 2954 1245  4.67 29.44 12.16 430 18.09

ABAT-PGD 0.03 4028  36.07 28.18 2124 3607 2815 21.16 36.07 28.00 20.97 29.62

ABAT-PGD 0.05 3829 3584 3072 2670 3584 3074  26.67 35.84 30.65 26.56 31.79

wio BT 21.96 15.78 7.46 3.04 1573 7.8 2.83 15.72 7.23 271 9.97

EA AT-FGSM 0.01 2222 17.63 10.09 5.57 17.60  9.96 5.41 17.59 9.93 5.27 12.13

AT-PGD 0.01 2221 18.01 10.38 5.40 1801 1027 525 18.01 10.23 5.11 12.29

BT 25.08 9.69 0.81 0.05 952 066  0.03 9.45 0.56 0.01 5.59

DeepCNN ABAT-FGSM 0.01  27.76 14.18 2.44 0.33 1408 227 027 14.01 2.08 0.21 7.76
with | ABAT-FGSM 0.03 3121 20.78 7.94 264 2075  7.67 2.36 20.71 7.57 221 12.38

EA | ABAT-FGSM 0.05 3454 2643 14.88 8.14 2641 14.68  7.92 26.39 14.64 7.69 18.17

ABAT-PGD 0.01 27.51 14.52 2.66 0.25 1445 242 0.19 14.41 2.24 0.18 7.88

ABAT-PGD 0.03 3207 2149 8.12 287 2147 7.86 2.63 21.47 7.78 2.51 12.83
ABAT-PGD 0.05 3417 2657 14.81 7.93 26.55 1461  7.68 26.54 14.54 7.58 18.10

wio BT 3569  22.10 7.31 288 2208 7.8 2.75 22.03 7.07 2.63 13.17

EA AT-FGSM 0.01 3462 2832 17.90 1019 2831 17.80  9.97 28.31 17.69 9.81 20.29

AT-PGD 0.01 3480 2841 17.94 1049 2840 17.86  10.31 28.40 17.79 10.14 20.45

BT 4645 2144 4.11 070 2131  3.83 0.59 21.19 3.67 0.48 12.38

ShallowCNN ABAT-FGSM 0.01 ~ 49.77  36.72 17.92 8.26 36.66 1771 1.79 36.66 17.60 7.62 23.67
with | ABATFGSM 0.03  50.65  42.14 2741 1695 4211 2734  16.67 42.11 27.32 16.56 30.92

EA | ABAT-FGSM 0.05 5072 43.68 31.53 2203  43.69 3149 21.84 43.68 31.45 21.73 34.18

ABAT-PGD 0.01 4992  36.90 18.23 8.67 3689 17.97 836 36.88 17.89 8.12 23.98

ABAT-PGD 0.03 5144 4209 2771 17.19 4210 2761  16.92 42.08 27.56 16.78 31.15

ABAT-PGD 0.05 5116 44.11 31,79 22.04 4409 3174 21.86 44.09 31.71 21.74 34.43
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TABLE IV
BCAS OF DIFFERENT TRAINING APPROACHES UNDER BENIGN SAMPLES AND VARIOUS ATTACKS ON MI2

No FGSM  FGSM  FGSM PGD PGD PGD AutoAttack  AutoAttack  AutoAttack

Model ‘ EA ‘ Training Attack 001 003 005 001 003 005 0.01 0.03 0.05 Ave.
wio BT 6422 43.05 17.32 749 43.02 1699  7.00 43.01 16.93 6.92 26.60
EA AT-FGSM 0.01 6434 5744 4316 3029 5744 4307 29.89 57.44 43.04 29.82 45.59
AT-PGD 0.01 63.94 5728 4343 3076 5728 4338 3043 57.28 43.36 30.37 45.75
BT 64.96  47.68  23.28 1212 47.66 2310 11.77 47.66 23.06 11.72 31.30
ABAT-FGSM 0.01  67.53 5687 3746 2372 56.86 3731 2328 56.86 37.29 2321 42.04
EEGNet with | ABATFGSM 0.03  71.02 6512 5333 4273 6511 5328 42.57 65.11 53.28 42.55 55.41
EA | ABAT-FGSM 0.05 7098  67.18 5947 5206 67.18 5944 5194 67.18 59.44 51.92 60.68
ABAT-PGD 0.01 68.36 5742 3756 2347 5741 3740 23.13 57.41 37.38 23.07 42.26
ABAT-PGD 0.03 70.81 65.05 5353 4249 6505 5348 4232 65.05 53.48 42.30 55.36
ABAT-PGD 0.05 7006 6662  59.17 5151  66.62 59.16 51.38 66.62 59.16 51.37 60.17
wio BT 5731 4890  33.05 1948  48.89 3295 19.32 48.88 3291 19.30 36.10
EA AT-FGSM 0.01 5795  51.89  39.64  28.63 51.89 39.61 2851 51.89 39.59 28.48 41.81
AT-PGD 0.01 5747 5133 3925 2776 51.33 3922 27.62 51.33 39.21 27.59 41.21
BT 6837  56.88 3590 2148 5687 3579 21.24 56.87 35.75 21.18 41.03
ABAT-FGSM 0.01  69.74  60.96  43.41 2067  60.95 4330 29.40 60.94 43.24 29.35 47.10
DeepCNN with | ABATFGSM 0.03 7385 6748 5437 4237 6748 5427 4212 67.48 54.26 42.03 56.57
EA | ABAT-FGSM 0.05  77.07  72.66 6224 5188  72.65 6216 51.63 72.65 62.13 51.57 63.66
ABAT-PGD 0.01 7030  61.74 4456  30.17 6172 4445  29.90 61.72 44.41 29.82 47.88
ABAT-PGD 0.03 7453 6845 5510 42,67 6843 5502 4237 68.43 54.98 42.30 57.23
ABAT-PGD 0.05 7715 7236 6219 5222 7236 6210 51.95 72.36 62.09 51.88 63.67
wio BT 73.58  44.67 13.87 493 4439 13.08 433 44.32 12.95 4.24 26.04
EA AT-FGSM 0.01 7375  64.67 4396 2586 6465 43.64 25.10 64.65 43.45 24.71 47.44
AT-PGD 0.01 73.60 6412 43.61 2570  64.11 4336 24.97 64.11 43.23 24.60 47.14
BT 7426  39.42 12.86 632 3928 1250  5.89 39.28 12.43 5.82 24.81
ABAT-FGSM 0.01 7642 6493 4215 2603 6492 4190 2521 64.91 41.68 24.53 47.27
ShallowCNN| - | ABATFGSM 003 7794 6935 5112 3614 6935 5103 3590 69.35 51.02 35.78 54.70
‘% A | ABATEGSM 005  77.98 7071 5487 4100 7071 5485  40.86 70.71 54.84 40.84 57.74
ABAT-PGD 0.01 7646  65.14 4195 2555 6512 41.63 2474 65.11 41.42 24.00 47.11
ABAT-PGD 0.03 77.80  69.10  50.84 3598  69.10 50.78 35.75 69.10 50.77 35.65 54.49
ABAT-PGD 0.05 78.00 7074 5496 4124 7074 5494 4111 70.74 54.94 41.09 57.86
TABLE V
BCAs OF DIFFERENT TRAINING APPROACHES UNDER BENIGN SAMPLES AND VARIOUS ATTACKS ON P300
Model ‘ EA ‘ Training No FGSM  FGSM  FGSM PGD PGD PGD AutoAttack  AutoAttack  AutoAttack Ave.
Attack  0.01 0.03 0.05 0.0l 003 005 0.01 0.03 0.05
wio BT 6139 5829  50.83  44.00 5829 50.80 43.95 58.29 50.80 43.94 52.06
EA AT-FGSM 0.01 60.74 5852 5419 4985 5851 54.18  49.80 58.51 54.18 49.79 54.83
AT-PGD 0.01 60.37 5837 5421 4988 5836 5419  49.85 58.35 54.19 49.84 54.76
BT 6723 6150 5053 3898 6149 5046  38.67 61.49 50.43 38.66 51.95
EEGNet ABAT-FGSM 0.01  69.60 6560  57.36  48.81 6560 57.33  48.61 65.60 57.32 48.61 58.44
with | ABATFGSM 0.03  69.94 6730 6244 5711 6730 6243  57.06 67.30 62.43 57.05 63.04
EA | ABAT-FGSM 0.05 6898 6724  63.61 5971 6724 63.61  59.68 67.24 63.61 59.67 64.06
ABAT-PGD 0.01 69.48 6553  57.19 4870 6553 57.15  48.55 65.53 57.15 48.50 58.33
ABAT-PGD 0.03 ~ 70.31  67.82  62.55  56.95 67.82 6255 56.92 67.82 62.55 56.91 63.22
ABAT-PGD 0.05  69.18  67.38 6352 5979  67.38 63.51  59.79 67.38 63.51 59.78 64.12
wio BT 7178  67.05  56.67 4624  67.04 5647 4591 67.03 56.42 45.83 58.04
EA AT-FGSM 0.01 70.16 6750 6175 5587 6749 61.69 5570 67.48 61.67 55.65 62.50
AT-PGD 0.01 7092 68.15 6235 5634  68.14 6230 56.19 68.14 62.29 56.13 63.10
BT 7177 6481 4939 3528 6475 4885 33.76 64.73 48.71 33.21 51.53
DeepCNN ABAT-FGSM 0.01 ~ 72.83  68.07 58.11 48.04  68.04 57.96 47.54 68.03 57.86 47.37 59.38
with | ABATFGSM 0.03 7334 7032 64.02 5747 7031 63.96 57.24 70.31 63.92 57.17 64.81
EA | ABAT-FGSM 0.05  73.00  70.85 6594 6127 7085 6592 6120 70.85 65.90 61.18 66.70
ABAT-PGD 0.01 7278 6824 5826  48.12  68.24 58.11  47.55 68.23 58.06 47.43 59.50
ABAT-PGD 0.03  73.61  70.54 6442  57.90 7054 6438 5774 70.54 64.38 57.69 65.17
ABAT-PGD 0.05 7270 7076  66.02 6141  70.76 6599  61.34 70.76 65.99 61.33 66.71
wio BT 6297 5996  53.62 4743 5996 53.62 4742 59.96 53.62 47.41 54.60
EA AT-FGSM 0.01 61.94 5979 5510  50.67 5979 5510  50.67 59.79 55.10 50.67 55.86
AT-PGD 0.01 6232 60.17 5547 5120  60.17 5546  51.19 60.17 55.46 51.18 56.28
BT 66.61  60.77 4950  37.35  60.77 49.46 3731 60.77 49.46 37.29 50.93
ShallowCNN ABAT-FGSM 0.01 6828 6434 5581  47.10 6434 5580 47.03 64.34 55.80 47.03 56.99
with | ABATFGSM 003 68.66 ~ 66.04 6095 5533  66.04 60.94 5530 66.04 60.94 55.30 61.55
EA | ABAT-FGSM 0.05  67.50 6564 6196 5798 6564 6196 57.97 65.64 61.96 57.97 62.42
ABAT-PGD 0.01 68.44 6438 5594 4720 6438 5593 47.17 64.38 55.93 47.15 57.09
ABAT-PGD 0.03 6881  66.17  61.05 5548 6617 61.04 5546 66.17 61.04 55.46 61.68
ABAT-PGD 0.05 6744 6569 6193  58.02 6569 6192 58.00 65.69 61.92 58.00 62.43
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TABLE VI
BCAS OF DIFFERENT TRAINING APPROACHES UNDER BENIGN SAMPLES AND VARIOUS ATTACKS ON ERP

No FGSM FGSM  FGSM PGD PGD PGD AutoAttack  AutoAttack  AutoAttack

Model ‘ EA ‘ Training Attack 001 003 005 00l 003 005 0.01 0.03 0.05 Avg.
BT 8497  77.15 57.04 3696  77.12 5646  35.12 77.11 56.37 34.78 59.31
wio AT-FGSM 0.01 85.87  81.61 7124 5873 81.60 71.11 5824 81.60 71.08 58.17 71.93
EA AT-FGSM 0.03 83.77 8149 7606 6990 81.49  76.05 69.79 81.49 76.04 69.78 76.59
AT-PGD 0.01 85.73 81.71 7130 5882 8171  71.18  58.42 81.71 71.15 58.32 72.00
AT-PGD 0.03 83.66 8129 7591 69.80 8128 7588  69.72 81.28 75.88 69.72 76.44
BT 84.37  81.41 7449  67.03 8141 7445 66.92 81.41 74.45 66.88 75.28
ABAT-FGSM 0.01  85.04 8246  76.83 70.57 8246 7681  70.44 82.46 76.81 70.43 77.43
EEGNet ABAT-FGSM 0.03  85.95 83.95 79.72 7476 8395  79.72 7471 83.95 79.72 74.71 80.11
ABAT-FGSM 0.05  86.21 84.71 81.31 77.70 8471 8130  77.65 84.71 81.30 77.65 81.73
with | ABAT-FGSM 0.07 8623  84.86 8206  79.15 8486 8206 79.14 84.86 82.06 79.13 82.44
EA | ABATFGSM 0.09 8582 8482 8246  79.93 8482 8246 79.93 84.82 82.46 79.93 82.75
ABAT-PGD 0.01 85.19 8297 77.07 7074 8297  77.06  70.63 82.97 77.06 70.63 77.73
ABAT-PGD 0.03 86.07  84.13 79.75 7490  84.13  79.74  74.76 84.13 79.74 74.76 80.21
ABAT-PGD 0.05 86.22  84.61 81.14 7735 8461 8112 77.32 84.61 81.12 77.31 81.54
ABAT-PGD 0.07 86.15 84.71 82.08 7924 8471 8207 79.21 84.71 82.07 79.21 82.41
ABAT-PGD 0.09 8590  84.81 8238  79.90 8481 8238  79.89 84.81 82.38 79.89 82.72
BT 83.56  75.63 5471 3468  75.61 5443 3401 75.60 54.30 33.75 57.63
wio AT-FGSM 0.01 84.18 7979 6898 5597  79.78 6891  55.69 79.78 68.87 55.53 69.75
EA AT-FGSM 0.03 82.86  80.09  73.95 67.11  80.09 73.93  67.02 80.09 73.92 67.01 74.61
AT-PGD 0.01 84.02  79.56  68.64 5577  79.55 68.56 55.45 79.54 68.51 55.34 69.49
AT-PGD 0.03 83.30  80.52 7428 6732 8052 7426 67.26 80.51 74.24 67.23 74.94
BT 8243 7866 7090 6228  78.64 70.61 6148 78.64 70.52 61.12 71.53
ABAT-FGSM 0.01  83.10  80.18 7337 6633  80.16 7328 6592 80.16 73.24 65.79 74.15
DeepCNN ABAT-FGSM 0.03  83.70 8144  76.10  70.05 81.44 76.00 69.83 81.44 75.98 69.75 76.57
ABAT-FGSM 0.05  84.38  82.57 78.06  72.83 8257 78.01 72.66 82.57 77.99 72.61 78.42
with | ABATFGSM 0.07 8482 8320 7959 7501 8319 7958 74.93 83.19 79.57 74.88 79.80
EA | ABAT-FGSM 0.09 8524 8377 8048 7682 8377 8046  76.80 83.77 80.46 76.76 80.83
ABAT-PGD 0.01 8273 7976 7328 6637  79.73  73.09 65.94 79.71 73.05 65.82 73.95
ABAT-PGD 0.03 83.59 8132  76.01 7021 81.32 7598  69.99 81.32 75.97 69.93 76.56
ABAT-PGD 0.05 84.16 8221 77.90  73.01 8221 7787 72.92 82.21 71.87 72.88 78.32
ABAT-PGD 0.07 84.67  83.07 79.38  75.03  83.07 7936  74.97 83.07 79.35 74.95 79.69
ABAT-PGD 0.09 8541 8383 8062 77.10 83.83 80.62 77.07 83.83 80.62 77.06 81.00
BT 84.54 7649  55.63 3565 7648 5543 3507 76.46 55.41 34.98 58.61
wio AT-FGSM 0.01 84.85 80.73 70.69 5858  80.73  70.65  58.39 80.73 70.64 58.36 71.44
EA AT-FGSM 0.03 83.31 80.97 76.01 69.51  80.97 76.00 69.49 80.97 76.00 69.48 76.27
AT-PGD 0.01 84.92 8091 70.67 5845 8091  70.64  58.30 80.91 70.62 58.27 71.46
AT-PGD 0.03 83.15 80.89  75.85 69.35  80.89 7585  69.33 80.89 75.85 69.33 76.14
BT 82.53 7959 7357 6588  79.59 73.56  65.86 79.59 73.56 65.85 73.96
ABAT-FGSM 0.01 ~ 83.34  80.97 75.61 69.09  80.97 7561  69.06 80.97 75.61 69.06 76.03
ShallowCNN ABAT-FGSM 0.03  84.65 82.59 78.16 7277 8259  78.16  72.76 82.59 78.16 72.76 78.52
ABAT-FGSM 0.05  85.11 83.26 7926  75.12 8326 79.25 75.11 83.26 79.25 75.10 79.80
with | ABAT-FGSM 0.07  85.45 83.97 80.40  76.81 8397 8040 76.81 83.97 80.40 76.81 80.90
EA | ABAT-FGSM 0.09 8562  84.17 81.28  78.04  84.17 8128 78.03 84.17 81.28 78.03 81.61
ABAT-PGD 0.01 83.39  81.11 75.63 69.11  81.11  75.63  69.11 81.11 75.63 69.11 76.09
ABAT-PGD 0.03 84.57 8250  78.04 7278 8250 78.04 7277 82.50 78.04 72.77 78.45
ABAT-PGD 0.05 85.19 8332 7949 7532 8332 7949 7532 83.32 79.49 75.32 79.96
ABAT-PGD 0.07 8536  83.93 80.52  77.03 8393 8052 77.02 83.93 80.52 77.02 80.98
ABAT-PGD 0.09 8554 8422 8130 7795 8422 8130 77.93 84.22 81.30 77.93 81.59
70 70 70

===BT with 2 blcok
===BT with 3 blcok
BT with 4 blcok
===BT with 5 blcok
===BT with 6 blcok
== ABAT with 2 blcok
=== ABAT with 3 blcok
ABAT with 4 blcok
== ABAT with 5 blcok
== ABAT with 6 blcok

Fig. 6. BCAs of (a) EEGNet (b) DeepCNN and (c) ShallowCNN with different training data size and perturbation magnitude on MI6.

vulnerable to adversarial attacks. ABAT improved both the Subsection V-A pointed out that the optimal ABAT
classification performance on benign samples with different perturbation amplitude for a classifier to achieve their
training data sizes, and the robustness of the classifiers. highest BCAs on benign samples may be positively
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TABLE VI
BCAs OF DIFFERENT TRAINING APPROACHES ON PRE-TRAINED MODELS UNDER VARIOUS ATTACKS ON M4
Model EA Trainin. No FGSM FGSM  FGSM PGD PGD PGD AutoAttack  AutoAttack  AutoAttack Av
¢ Attack  0.01 0.03 005 001 003 005 0.01 0.03 0.05 &
wio BT 6740 3138 527 136 3074  3.69 040 30.25 3.41 0.30 17.42
EA | ATFGSM 001 6130 5166 3443 1997 5165 3381 18.80 51.52 33.36 18.29 37.48
AT-PGD 0.01 50.89 5069 3335 1928 5076 3297  18.08 50.59 32.66 17.59 36.59
BT 7431 61.09 3756 2072 61.03 3681  19.69 60.97 36.54 18.97 42.77
EEGNet ABAT-FGSM 0.01 7575  67.68  50.57 3579  67.68 50.24  34.97 67.67 49.96 34.52 53.48
with | ABAT-FGSM 003 7414 7025  60.30  49.87 7025 60.17 4954 70.25 60.10 49.24 61.41
EA | ABATFGSM 005 7063 6775 6157 5437 6775 61.60 5427 67.75 61.52 54.03 62.12
ABAT-PGD 0.01 7643 6825 5156 3628 6824 5127 3558 68.22 51.04 35.20 54.21
ABAT-PGD 0.03 7467 7032 6070 5024  70.33  60.64  49.96 70.31 60.58 49.76 61.75
ABAT-PGD 0.05  70.86  67.68 6192 5436 67.67 6195 54.17 67.67 61.87 53.99 6221
who BT 6129 2402 129 006 2335 099  0.03 23.03 0.82 0.03 13.49
EA | ATFGSM 001 5531 4466 2595 1330 4460 2541 1237 44.53 25.14 12.06 30.33
AT-PGD 0.01 5552 44.88 2643 1341 4477 2577 1273 44.73 25.51 12.26 30.60
BT 7166 4801  17.80 673 4695 1426 3.4 46.71 12.82 2.17 27.03
DeepCNN ABAT-FGSM 0.01  73.68  61.54 3853 2042 6138 3731 1865 61.32 36.74 17.57 42.71
with | ABAT-FGSM 003 7270  64.87 4826 3284 6485 4790 3202 64.84 47.75 31.56 50.76
EA | ABATFGSM 0.05 6899 6344 5189 4024 6344 5171 4001 63.44 51.63 39.78 53.46
ABAT-PGD 0.01  72.12  59.63 3726 1991 5954 3603 1833 59.50 35.49 17.32 41.51
ABAT-PGD 0.03  72.61  64.51  47.60 3327 6445 4731 3247 64.45 47.02 31.85 50.55
ABAT-PGD 0.05  69.25  64.06 5190  40.88 6406 5177  40.46 64.06 51.67 40.23 53.83
wio BT 6563 3230 505 071 3197 417 035 31.75 3.69 0.26 17.59
EAa | ATFGSM 001 60.62 4862 2807  14.16 4861 2775 1343 48.52 27.38 12.87 33.00
AT-PGD 0.01 60.69  49.10  27.89 1429  49.07 2744 13.55 49.02 27.20 12.86 33.11
BT 76.63 6205 3561 1831 6190 34.80 16.90 61.82 34.32 16.35 41.87
ShallowCNN ABAT-FGSM 0.01 7756 6878 4937  33.51 6869 49.00 32.81 68.66 48.84 32.46 52.97
with | ABAT-FGSM 003 7706  70.15 5503  40.77  70.3 5477 4038 70.13 54.71 40.16 57.33
EAa | ABATFGSM 005 7581 7000  57.50 4405 69.98 57.38 4383 69.98 57.30 43.60 58.94
ABAT-PGD 0.01 7681  68.09 4924 3327 6807 49.00 32.64 68.03 48.84 32.20 52.62
ABAT-PGD 0.03 7662  70.13 5504 4127  70.10 5486 40.88 70.11 54.73 40.73 57.45
ABAT-PGD 0.05  75.64  69.68  57.12 4424  69.68 5698  44.06 69.68 56.97 43.87 58.79
TABLE VIII
BCAs OF DIFFERENT TRAINING APPROACHES ON PRE-TRAINED MODELS UNDER VARIOUS ATTACKS ON MI6
Model EA Trainin No  FGSM FGSM FGSM PGD PGD PGD  AutoAttack  AutoAttack — AutoAtiack o
ode aming Attack  0.01 003 005 001 003 005 0.01 0.03 0.05 &
wio BT 4931 1777 151 041 1722 108  0.14 16.67 0.87 0.12 10.51
EA | ATFGSM 001 4958 3826 1854 797 3821 1783 684 38.13 17.27 6.40 23.90
AT-PGD 0.01 4875 3773 1846 798 3773 1784  7.07 37.62 17.41 6.59 23.72
BT 4897 2338 401 056 2294 316 034 22.74 278 0.26 1291
EEGNet ABAT-FGSM 0.01 5735 4193  19.02 729 4186 1796 6.10 41.80 17.43 5.49 25.62
with | ABAT-FGSM 003 6194 5517 4208 2967 5515 4187 2894 55.11 41.58 28.49 44.00
EA | ABATFGSM 005 6033 5626 4758 3897 5627 4751 3895 56.25 47.37 38.64 48.81
ABAT-PGD 0.01 5739 4173 1805 696  41.62 17.17 572 41.58 16.66 5.25 25.21
ABAT-PGD 0.03 6124 5495 4200  30.16 5492 41.80 29.56 54.91 41.64 29.18 44.04
ABAT-PGD 0.05 6021  56.04 4777 3944 5604 47.68 39.26 56.03 47.57 39.05 48.91
wio BT 3382 1452 179 039 1424 158 030 14.07 1.47 0.29 8.25
EA | ATFGSM 001 3098 2214 9.54 358 2208 929  3.05 22.06 9.11 2.87 13.47
AT-PGD 0.01 3073 2219 981 391 2204 950  3.53 22.07 9.30 3.26 13.64
BT 4955 1869  1.69 021 1778 097  0.06 17.16 0.78 0.04 10.69
DeepCNN ABAT-FGSM 0.01 4955 1869  1.69 021 1778 097  0.06 17.16 0.78 0.04 10.69
with | ABAT-FGSM 003 5329 4180 2319 1143 4172 2255 1049 41.69 22.18 9.90 27.82
EA | ABATFGSM 005 5093 4393 3113 2044 4390 3083 19.88 43.89 30.71 19.52 33.52
ABAT-PGD 0.01 5260 3290  9.65 233 3257 862 160 32.45 8.06 1.37 18.21
ABAT-PGD 0.03  52.56  41.53 2326 1145 4149 2261 1052 41.46 2236 9.90 27.71
ABAT-PGD 0.05 5096 4412 3120 2056 4410  30.85  20.00 44.09 30.78 19.71 33.64
wlo BT 4636 2445 4.09 058 2431  3.66 042 24.14 3.34 0.34 13.17
EAa | ATFGSM 001 4340 3258 1562 592 3256 1526 547 32.52 15.01 5.14 20.35
AT-PGD 0.01 4339 328 1564 602 3275 1522 542 32.72 14.90 5.18 20.41
BT 5725 3436 849 193 3393 654 067 33.77 542 0.42 18.28
ShallowCNN ABAT-FGSM 0.01 5844 4371 2177 851  43.63 2089  7.07 43.58 20.34 5.87 27.38
with | ABAT-FGSM 0.03  §9.77 4892 3044 1697 48838 3003 1620 48.84 29.82 15.64 34.55
EA | ABATFGSM 005 5935 5043 3452 2167 5037 3431 2112 50.36 34.19 20.78 37.71
ABAT-PGD 0.01 5847 4381 2164 825 4371 2072 690 43.67 19.88 5.85 27.29
ABAT-PGD 0.03 5886 4870 3051  17.15 4864 3025 1646 48.62 30.11 16.01 34.53
ABAT-PGD 0.05 5858  49.95 3424 2191 4993 3408 21.43 49.92 33.98 21.23 37.52
correlated with its capacity. This subsection performs further We tested the BCAs of ShallowCNN  with
investigations. {5, 10, 40, 80, 100} convolution kernels on MI4, and



CHEN et al.: ABAT FOR IMPROVING THE ROBUSTNESS AND ACCURACY OF EEG-BASED BCls

1713

35

-1
74 i
7 3
30( 4
< 70 5
=68 2
25
66
10 === 100
N 40 20
o 0.01 0.02 0.03 0.04 0.05 0 002 004 006 008
€ €
(a) (b)
Fig. 7. BCAs of (a) ShallowCNN on MI4, and (b) DeepCNN on M6,

for benign samples with different model capacities and perturbation
magnitude.

DeepCNN with {1 — 2 — 2,2 — 4 — 8,5 — 10 — 20,
10 — 20 — 40,20 — 40 — 80} convolution kernels (denoted
as 1, 2, 3, 4 and 5, respectively) on MI6, for benign samples
under different ABAT-PGD perturbation amplitudes. The
results are shown in Fig. 7. Generally, as the number of
model parameters increased, the optimal ABAT amplitude for
benign samples also increased.

VI. CONCLUSION AND FUTURE RESEARCH

This papers has proposed a simple yet effective ABAT
approach to perform AT on aligned EEG data in order to make
the trained model simultaneously more accurate and more
robust. Experiments on four EEG datasets from two different
BCI paradigms (MI and ERP), three CNN classifiers (EEGNet,
ShallowCNN and DeepCNN) and three different experimental
settings (offline within-subject cross-block/-session classifi-
cation, online cross-session classification, and pre-trained
classifiers) demonstrated its effectiveness. It is very intriguing
that adversarial attacks, which are usually used to damage BCI
systems, can be used in adversarial training to simultaneously
improve the model accuracy and robustness.

Our future research will:

1) Study how to perform ABAT for traditional EEG clas-
sifiers. This paper proposed ABAT for deep neural
network EEG classifiers, but there are also many promis-
ing traditional classifiers [43], [44], [45], [46], and it is
useful to adapt ABAT to them.

2) Study how ABAT can be used in cross-subject applica-
tion, to increase the accuracy and robustness simultane-
ously. EEG data exhibit large individual differences [29],
so this problem is very challenging.

3) Study how data preprocessing/denoising approaches,
e.g., multiscale principal component analysis [43], [45],
[47], [48], can be integrated with ABAT for even better
performance.
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