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Abstract— Machine learning has achieved great suc-
cess in electroencephalogram (EEG) based brain-computer
interfaces (BCIs). Most existing BCI studies focused on
improving the decoding accuracy, with only a few consid-
ering the adversarial security. Although many adversarial
defense approaches have been proposed in other applica-
tion domains such as computer vision, previous research
showed that their direct extensions to BCIs degrade the
classification accuracy on benign samples. This phe-
nomenon greatly affects the applicability of adversarial
defense approaches to EEG-based BCIs. To mitigate this
problem, we propose alignment-based adversarial training
(ABAT), which performs EEG data alignment before adver-
sarial training. Data alignment aligns EEG trials from differ-
ent domains to reduce their distribution discrepancies, and
adversarial training further robustifies the classification
boundary. The integration of data alignment and adversarial
training can make the trained EEG classifiers simulta-
neously more accurate and more robust. Experiments
on five EEG datasets from two different BCI paradigms
(motor imagery classification, and event related potential
recognition), three convolutional neural network classifiers
(EEGNet, ShallowCNN and DeepCNN) and three different
experimental settings (offline within-subject cross-block/-
session classification, online cross-session classification,
and pre-trained classifiers) demonstrated its effectiveness.
It is very intriguing that adversarial attacks, which are
usually used to damage BCI systems, can be used in
ABAT to simultaneously improve the model accuracy and
robustness.

Index Terms— Electroencephalogram, brain-computer
interface, adversarial attack, adversarial training, data
alignment.

I. INTRODUCTION

ABRAIN-COMPUTER interface (BCI) establishes a direct
communication channel connecting the human brain and
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a computer [1]. Electroencephalogram (EEG), which records
the brain’s electrical activities from the scalp, is the most
commonly utilized input signal in non-invasive BCIs, due to its
affordability and ease of use [2]. An EEG-based BCI system
typically includes four components: signal acquisition, signal
processing, machine learning, and controller, as illustrated in
Fig. 1.

Most prior research on EEG decoding primarily focused
on the accuracy and efficiency of machine learning algo-
rithms [3]. Nonetheless, a critical discovery by Zhang and
Wu [4] revealed that adversarial examples, generated using
unsupervised fast gradient sign method (FGSM) [5], can sig-
nificantly degrade the performance of deep learning classifiers
in EEG-based BCIs. They introduced an attack framework
that transforms a benign EEG epoch into an adversarial
one by injecting a jamming module before machine learn-
ing to add adversarial perturbations, as depicted in Fig. 2.
Furthermore, Zhang et al. [6] demonstrated that adversarial
examples can also fool traditional machine learning classi-
fiers in BCI spellers, misleading them to output an arbitrary
(incorrect) character specified by the attacker. Liu et al. [7]
and Jung et al. [8] developed approaches to generate uni-
versal adversarial perturbations for EEG-based BCIs, making
adversarial attacks much easier to implement. Bian et al. [9]
employed simple square wave signals to generate adversarial
examples, for attacking steady-state visual evoked potential
based BCIs. Wang et al. [10] investigated physically con-
strained adversarial attacks to BCIs. Meng et al. [11] also
performed adversarial attacks in EEG-based BCI regression
problems.

Adversarial attacks to EEG-based BCIs could have various
consequences, from mere user frustration to life-threatening
accidents. As pointed out in [12], “In BCI spellers for Amy-
otrophic Lateral Sclerosis patients, adversarial attacks may
hijack the user’s true input and output wrong letters. The
user’s intention may be manipulated, or the user may feel
too frustrated to use the BCI speller, losing his/her only way
to communicate with others. In BCI-based driver drowsiness
estimation [13], adversarial attacks may manipulate the out-
put of the BCI system and increase the risk of accidents.
In EEG-based awareness evaluation/detection for disorder of
consciousness patients [14], adversarial attacks may disturb
the true responses of the patients and lead to misdiagnosis.” In
military applications, adversarial attacks to BCIs may generate
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Fig. 1. Flowchart of a closed-loop BCI system.

Fig. 2. The attack framework proposed in [4], which injects a jamming
module between signal processing and machine learning to generate
adversarial examples.

false commands, potentially causing friendly fire [15]. Conse-
quently, it is very important to develop BCI machine learning
models that are robust against adversarial attacks.

Many adversarial defense approaches have been proposed in
the literature [16], [17], [18], among which robust training [19]
may be the most classical and effective strategy. Adversarial
training (AT) [16] is a representative robust training approach,
and many other approaches [17], [18] can be regarded as
its variants. AT solves a minimax problem (the saddle point
problem). During training, AT generates adversarial examples
along gradients that increase the model’s loss to the input, and
then minimizes the model’s loss on these adversarial examples
repeatedly [16]. This process aims to minimize the model’s
loss on adversarial examples, but does not explicitly optimize
the performance on benign examples. Many studies [16], [20],
[21], [22] have shown that robust training may result in a
significant decrease of the accuracy on benign samples, which
is undesirable.

Few studies have explored the possibility of improving
the machine learning performance using adversarial exam-
ples. For image classification, Xie et al. [23] employed a
separate auxiliary batch normalization for adversarial exam-
ples to prevent model overfitting. For EEG classification,
Ni et al. [24] used a loss on adversarial examples to improve
the cross-subject and cross-state transfer learning performance.
However, Li et al. [21] and Meng et al. [22] have shown
that conventional robust training approaches usually lead to an
evident reduction in BCI model accuracy on benign samples,
i.e., it is difficult to achieve both high accuracy and good
robustness through robust training.

Robust models aim to maintain good classification per-
formance under adversarial attacks, which is important in
safety-critical applications. However, the accuracy degradation
of robust models on benign samples seriously affects their
adaption. To mitigate this problem, we propose alignment-
based adversarial training (ABAT) to align EEG data for each
session before performing robust training on them. This simple
approach can be readily used in deep model training. After
ABAT, the model’s classification accuracy on benign samples
and robustness on adversarial samples can simultaneously be

improved. Experiments on five datasets using two different
BCI paradigms, three classifiers and three different experimen-
tal settings demonstrated its effectiveness. To our knowledge,
this is the first work on simultaneously improving the accuracy
and robustness of the classifiers in EEG-based BCIs, and also
the first time that EEG data alignment has been used in BCI
adversarial defense. We hope that our findings can inspire
more future research on robust EEG classifiers.

The remainder of this paper is organized as follows:
Section II introduces related works. Section III pro-
poses ABAT. Section IV describes the experimental set-
tings. Section V presents the experimental results. Finally,
Section VI draws conclusions.

II. RELATED WORK

This section introduces background knowledge on EEG data
alignment, adversarial attacks, and AT.

A. Euclidean Alignment
EEG data from different subjects/sessions can be regarded

as data from different domains. Due to inter-subject/-session
variations, the marginal probability distributions of EEG tri-
als from different subjects/sessions are usually (significantly)
different [25]. Consequently, it is important to perform EEG
data alignment to reduce the domain discrepancy.

Various EEG data alignment approaches have been
proposed, which are reviewed and compared in [26].
Zanini et al. [27] introduced Riemannian alignment to align
the covariance matrices of EEG trials from different subjects in
the Riemannian space. He and Wu [28] extended Riemannian
alignment to Euclidean alignment (EA), which aligns the raw
EEG trials in the Euclidean space. EA is efficient and com-
pletely unsupervised, demonstrating promising performance in
different BCI paradigms [29].

For N EEG trials {Xn}
N
n=1 in a particular domain, EA first

computes the Euclidean arithmetic mean R̄ of all N spatial
covariance matrices:

R̄ =
1
N

N∑
n=1

Xn (Xn)⊤ . (1)

Then, it performs the alignment by:

X̃n = R̄−1/2 Xn, n = 1, . . . , N (2)

After EA, the aligned EEG trials {X̃n}
N
n=1 in each domain

are whitened, i.e., their average spatial covariance matrix
becomes the identity matrix. Thus, EEG data distributions
from different domains become more consistent.

B. Incremental EA
In online applications, target domain EEG trials X t arrive

one by one on-the-fly, so there is a need to perform incremental
EA on them.

Incremental EA applies EA to online EEG classifica-
tion [30]. Let R̄t

n be the average spatial covariance matrix
computed from the first n target domain EEG trials. When
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the (n + 1)-th target domain EEG trial X t
n+1 arrives, we first

update:

R̄t
n+1 =

1
n + 1

[
n R̄t

n + X t
n+1

(
X t

n+1
)⊤

]
, (3)

and then perform EA on X t
n+1 using:

X̃ t
n+1 = (R̄t

n+1)
−1/2 X t

n+1. (4)

C. Adversarial Attack
Adversarial examples should closely resemble benign ones,

achieved by imposing constraints on the perturbation mag-
nitude. Let D be a distance matric (a common choice is
the ℓp norm), and Xadv an adversarial example satisfying
D(Xadv, X) < ϵ, where ϵ regulates the magnitude of the
perturbation.

We consider the following three representative adversarial
attack approaches:

1) Fast gradient sign method (FGSM) [5], a straightforward
yet highly effective adversarial attack strategy. It con-
structs an adversarial example through a single-step
gradient computation:

Xadv
= X + ϵ · sign (∇XL(Cθ (X), y)) , (5)

where Cθ is a classifier with parameter θ , and L its loss
function. FGSM perturbs the input along the gradient
direction, increasing the classifier’s loss on its true label
and leading to misclassification.

2) Projected Gradient Descent (PGD) [16], which is an
iterative extension of FGSM. It starts from a perturbed
version of the benign example X :

Xadv
0 = X + ξ , (6)

where ξ is uniform random noise sampled from (−ϵ, ϵ).
The iterative step is given by:

Xadv
i =ProjX,ϵ

(
Xadv

i−1

+α · sign(∇Xadv
i−1
L(Cθ (Xadv

i−1), y))
)

, (7)

where α ≤ ϵ is the step size. The function ProjX,ϵ

ensures that Xadv
i remains within the ϵ-neighborhood

of X according to the ℓ∞ norm.
3) AutoAttack [31], which combines four distinct attack

strategies, including two budget-aware step size-free
PGD variants with different losses (cross-entropy loss,
and difference of logits ratio loss), square attack [32],
and fast adaptive boundary attack [33], each serving a
unique purpose. AutoAttack is parameter-free, and has
demonstrated superior performance in defeating various
defense approaches [31].

D. AT
AT [16] is a classical robust training approach for enhancing

the robustness of machine learning models against adversarial
attacks, i.e., improving the model accuracy on adversarial

Fig. 3. The influence of ABAT on EEG data from different domains.
Data alignment aligns EEG trials from different domains to reduce their
distribution discrepancies, and AT further robustifies the classification
boundary.

examples by adding them to the training data. It can be
expressed as a min-max (saddle point) optimization problem:

min
θ

E(X,y)∼D

[
max

Xadv∈B(X,ϵ)
L

(
Cθ

(
Xadv

)
, y

)]
, (8)

where D is the data distribution, and B(X, ϵ) the ℓ∞ ball
of radius ϵ centered at X . Xadv can be adversarial examples
generated by PGD [16] (AT-PGD) or FGSM [34] (AT-FGSM)
or AutoAttack [31], etc.

Whereas AT can significantly enhance a model’s robustness
to adversarial examples, it often comes at the cost of reduced
accuracy on benign examples [22].

III. ALIGNMENT-BASED ADVERSARIAL TRAINING (ABAT)
AT aims at learning model parameters θ that minimize

the model’s loss L on training samples’ strong adversarial
examples Xadv , i.e., to increase its robustness. AT is one of
the most effective adversarial defense approaches. However,
it often comes at the cost of reduced accuracies on benign
examples. This paper studies whether AT can be used to
improve the model’s robustness and accuracy simultaneously.

Ni et al. [24] were the first to include the loss on adversarial
examples in the overall model training loss function in EEG
classification, to improve the transfer learning classification
accuracy. However, they did not consider the adversarial
robustness. Li et al. [21] and Meng et al. [22] showed that
frequently, robust training, one of the most popular adversarial
defense approaches, degrades the accuracy of BCI models.
This may be due to the lack of EEG data alignment to reduce
the data discrepancy among different subjects or different
sessions. Multiple EEG data aliment approaches have been
proposed, e.g., Riemannian alignment [27], EA [28] and label
alignment [35]. They greatly improve the classification accu-
racy in traditional transfer learning scenarios [26]. However,
EEG dat alignment has not been used in BCI adversarial
defense.

We propose a very simple yet effective ABAT to fill this
gap, by performing EEG data alignment before AT. Data
alignment aligns EEG trials from different domains to reduce
their distribution discrepancies, and AT further robustifies the
classification boundary, as illustrated in Fig. 3. EA is used in
this paper, for its simplicity and effectiveness.

Algorithm 1 gives the pseudo-code of ABAT. It first aligns
the EEG data of each domain using EA, and then performs
adversarial training.
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Fig. 4. The complete BCI flowchart, incorporating ABAT. After
preprocessing EEG data using epoching and filtering, ABAT trains
the classifier, which is then used in subsequent classification and
robustness evaluation. ABAT aligns EEG data centers across differ-
ent domains and robustifies the classifier’s decision boundary through
adversarial training.

The complete BCI flowchart with ABAT consists of data
acquisition, data preprocessing (EEG data epoching and fil-
tering), data alignment, AT, and model evaluation (in terms
of accuracy and robustness), as shown in Fig. 4. Particularly,
after preprocessing the EEG data, ABAT is used to train the
EEG classifier, which is then used in subsequent classification
and robustness evaluation.

Algorithm 1 Alignment-Based Adversarial Training
(ABAT)

Input: S = {Ds}
S
s=1, labeled data from S source

domains;
M , the number of model training epochs.

Output: Cθ , trained EEG classifier.
Randomly initialize classifier Cθ or pre-train the
classifier Cθ on other available data;
// Data Alignment
for s = 1 : S do

Perform EA on Ds by (1) and (2) to obtain aligned
EEG data D̃s ;

end
Denote S̃ = {D̃s}

S
s=1;

// AT
for m = 1 : M do

Generate adversarial examples S̃adv by (5) or
by (6) and (7) or by AutoAttack on aligned
source domain data S̃ and Cθ ;

Update the classifier Cθ by (8) on generated
adversarial examples S̃adv .

end
Return Cθ .

IV. EXPERIMENT SETTINGS

This section introduces our experiment settings, including
the datasets, models, performance evaluation metrics, testing
scenarios, and hyper-parameters. Our source code, includ-
ing data preprocessing, can be found at https://github.com/
xqchen914/ABAT.

A. Datasets
The following four datasets, summarized in Table I, were

used:
1) Four-class motor imagery dataset (MI4) [36]: This is

Dataset 2a in BCI Competition IV1. It was collected

1https://www.bbci.de/competition/iv/

TABLE I
SUMMARY OF FOUR DATASETS

from 9 subjects in two sessions on different days.
There are four classes, i.e., left hand, right hand, feet,
and tongue. The 22-channel EEG signals were sampled
at 250 Hz. We extracted the data in [0, 4] seconds after
each imagination prompt and band-pass filtered the trials
at [8, 32] Hz. Each subject had 144 EEG epochs per
class.

2) Six-class motor imagery dataset (MI6) [37]: It was
collected from 10 subjects for seven-class classification,
i.e., left hand, right hand, feet, both hands, left hand
combined with right foot, right hand combined with
left foot, and rest state. The data collection process was
divided into 9 sections, with 5 to 10 minutes intersection
break. We only used data from the first six classes.
The 64-channel EEG signals were sampled at 200 Hz.
We extracted the data in [0, 4] seconds after each
imagination prompt and band-pass filtered the trials at
[4, 32] Hz. Each subject had 80 EEG epochs per class.

3) Two-class motor imagery (MI2) [38] includes EEG data
from 60 users performing left hand and right hand motor
imagery tasks for 6 runs. 27-channel EEG signals were
recorded at 512 Hz. After [4, 32] Hz band-pass filtering,
we downsampled the data to 128 Hz and extracted data
within [0, 4] seconds of each imagination prompt. Each
subject had 120 EEG epochs per class.

4) P300 evoked potentials (P300) [39]: It was collected
from four disabled subjects and four healthy ones in
four sessions for two-class classification (target and non-
target). The EEG data were recorded from 32 channels
at 2048 Hz. We re-referenced the data, discarded the
mastoid channels, filtered the data using a [1, 12] Hz
bandpass filter, and down-sample the data to 128 Hz.
EEG epochs between [0, 1] second were extracted. Each
subject had 3,300 epochs, among which 557 were target.

5) Event related potential (ERP) [40]: It was collected from
10 subjects in three sessions for two-class classification
(target and non-target). The EEG signals were recorded
using 16 electrodes at 250 Hz. We used MOABB API2

to get the preprocessed EEG data. EEG epochs between
[0, 0.8] second were extracted. Each subject had 1,728
EEG epochs, among which about 288 were target.

B. Evaluation Metrics
We used balanced classification accuracy (BCA) to eval-

uate the classification performance. The frequently-used raw
classification accuracy (RCA) is the ratio of the number of
correctly classified examples to the number of total examples.

2https://neurotechx.github.io/moabb/api.html
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The BCA is the average of the per-class RCAs. BCA was
preferred in our experiments because the ERP and P300
datasets have significant intrinsic class imbalance, so using
RCA is misleading. When all classes have the same number
of samples (e.g., MI4 and MI6), BCA reduces to RCA.

We repeated each experiment three times, and their averages
were reported.

C. Evaluated Classifiers
The following three CNN classifiers were used:

1) EEGNet [41]: It is a compact CNN architecture specifi-
cally designed for EEG classification tasks. This model
comprises two convolutional blocks and a single clas-
sification block. It employs depthwise and separable
convolutions, as opposed to conventional convolutions,
to effectively reduce the model’s parameter size.

2) DeepCNN [42]: In contrast to EEGNet, DeepCNN has a
higher number of parameters. It consists of three convo-
lutional blocks and a softmax layer for classification.
The first convolutional block is customized for EEG
inputs, and the last two are standard ones.

3) ShallowCNN [42]: ShallowCNN is a simplified variant
of DeepCNN, inspired from filter bank common spatial
patterns. Compared with DeepCNN, ShallowCNN has
a convolutional block with a larger kernel, a different
activation function, and different pooling techniques.

If not specified otherwise, the three convolutional
blocks of DeepCNN used 25, 50 and 100 convolu-
tional kernels, respectively, and the convolutional block
of ShallowCNN used 40 convolutional kernels. EEGNet,
DeepCNN and ShallowCNN had 1676, 94,079 and 57,804
parameters, respectively. In terms of model capacity,
EEGNet<ShallowCNN<DeepCNN.

D. Testing Scenarios
We tested the performance of different models under adver-

sarial attacks, i.e., their robustness, in offline scenario, where
adversarial attacks are most effective. We also tested their
classification accuracies on benign samples in both offline and
online scenarios. Algorithms 2 gives the pseudo-code of the
corresponding online test, offline test, and offline robust test
procedures.

On MI4 and ERP, we used the first session as the training
set and the remaining ones as the test set. On P300, we used
the first two sessions as the training set. On MI6 and MI2,
we used the first two blocks of data as the training set.

E. Hyper-Parameters
When training within-subject models, batch size 32 was

used on MI4, MI6 and ERP datasets, and batch size 128 on the
P300 dataset. When training cross-subject models, batch size
128 was used on all four datasets. All models were trained for
100 epochs with initial learning rate 0.01, which was reduced
to 0.001 after 50 epochs.

Since the perturbation magnitude is correlated with the
original EEG signal magnitude, we selected the perturbation
magnitude to be ϵ times of the EEG signal standard deviation.

Algorithm 2 Online Test, Offline Test, and Offline
Robustness Test Procedures

Input: T target sessions/domains {X t
n}

Nt
n=1,

t = 1, . . . , T ;
f , the classifier.

Output: ŷt
n , classification results for X t

n ;
ŷt,adv

n , classification results for adversarial
counterparts of X t

n .
// Online test
for t = 1 : T do

for n = 1 : Nt do
Perform incremental EA on X t

n by (3) and (4)
to obtain X̃ t

n ;
Compute ŷt

n = f (X̃ t
n);

end
end
// Offline test
for t = 1 : T do

Perform EA on {X t
n}

Nt
n=1 by (1) and (2) to obtain

{X̃ t
n}

Nt
n=1;

end
Compute ŷt

n = f (X̃ t
n);

// Offline robustness test

Compute adversarial examples {X̂ t,adv
n }

Nt
n=1 of {X̂ t

n}
Nt
n=1

by (5), or (6) and (7), or AutoAttack [31];
Compute ŷt,adv

n = f (X̃ t,adv
n ).

In adversarial attacks, we chose 20 iterations for PGD and
AutoAttack, with attack step size ϵ/10 for PGD. In AT and
ABAT, we used 10 iterations for PGD, with PGD attack step
size α = ϵ/5.

Deep learning models perform very differently on adver-
sarial examples with different perturbation amplitudes [22].
To have a more comprehensive assessment, we evaluated
the model performance with different adversarial training
perturbation amplitudes on adversarial examples with different
perturbation amplitudes.

We implemented AT-FGSM, AT-PGD, ABAT-FGSM and
ABAT-PGD with various training perturbation magnitudes ϵ

on the four datasets. More specifically, ϵ = 0.01 was used
in AT-FGSM and AT-PGD on MI4, MI6 and P300, and
ϵ ∈ {0.01, 0.03} on ERP. ϵ ∈ {0.01, 0.03, 0.05} were used
in ABAT-FGSM and ABAT-PGD on MI4, MI6 and P300,
and ϵ ∈ {0.01, 0.03, 0.05, 0.07, 0.09} on ERP. We calculated
the resulting classifiers’ BCAs for benign samples, and under
FGSM, PGD and AutoAttack adversarial attacks with ϵ =

{0.01, 0.03, 0.05}.

V. EXPERIMENTAL RESULTS

This section presents experimental results to verify the
effectiveness of our proposed ABAT.

A. Offline Cross-Block/-Session Performance on Benign
Samples

Offline cross-block/-session BCAs of EEGNet, DeepCNN
and ShallowCNN under benign training (BT), AT-FGSM and
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Fig. 5. Online cross-session performance of ABAT using incremental
EA on (a) MI4 and (b) P300.

AT-PGD, and ABAT-FGSM and ABAT-PGD with different
training perturbation magnitudes ϵ, on the benign samples
of the five datasets are shown in the ‘No Attack’ column of
Tables II-VI, respectively. Observe that:

1) Without EA, AT-FGSM and AT-PGD had similar or
lower BCAs on the benign samples than BT.

2) With EA, as ABAT-FGSM or ABAT-PGD perturbation
amplitude increased from 0.01 to 0.05, the BCAs on
the benign samples first increased and then decreased,
or kept increasing.

3) On MI4, MI6, MI2 and P300, EA greatly improved the
BCAs of BT, and ABAT-FGSM and ABAT-PGD further
improved the BCAs, regardless of the perturbation mag-
nitude. On the ERP dataset, although EA decreased the
BCAs, ABAT-FGSM and ABAT-PGD still outperformed
BT.

4) On the MI datasets, networks with larger capacities
achieved their best performance on benign samples
under larger ABAT perturbation amplitudes. More
specifically, on MI4, EEGNet achieved its highest BCA
on benign samples at ϵ = 0.01, whereas ShallowCNN
and DeepCNN at ϵ = 0.03; on MI6, EEGNet reached
its highest BCA on benign samples at ϵ = 0.01 (PGD)
or ϵ = 0.03 (FGSM), whereas ShallowCNN at ϵ =

0.03 (PGD) or ϵ = 0.05 (FGSM), and DeepCNN at
ϵ = 0.05; on MI2, EEGNet achieved its highest BCA
on benign samples at ϵ = 0.03, whereas ShallowCNN
and DeepCNN at ϵ = 0.05. This difference was not
obvious on the P300 and ERP datasets, probably due to
the intrinsic differences of BCI paradigms.

B. Offline Cross-Block/-Session Performance on
Adversarial Examples

Offline cross-block/-session BCAs of EEGNet, DeepCNN
and ShallowCNN under BT, AT-FGSM and AT-PGD, and

ABAT-FGSM and ABAT-PGD with different training pertur-
bation magnitudes ϵ, under FGSM, PGD and AutoAttack
adversarial attacks on the five datasets are shown in
Tables II-VI. Observe that:

1) AT-FGSM, AT-PGD, ABAT-FGSM and ABAT-PGD
with different perturbation amplitudes greatly improved
the BCAs on the adversarial examples, showing good
generalization.

2) When the perturbation amplitude of ABAT-FGSM and
ABAT-PGD increased, the BCAs for adversarial exam-
ples with larger perturbation amplitudes also increased,
but the BCAs for adversarial examples with small pertur-
bation amplitude may be reduced. Many times there was
a trade-off between the BCAs on adversarial examples
with large perturbation amplitude and those with small
perturbation amplitude.

3) The overall performance of ABAT-FGSM and
ABAT-PGD on the three classifiers and four datasets
was similar. However, ABAT-FGSM is much faster
than ABAT-PGD.

C. Online Cross-Session Performance on Benign
Samples

We simulated the online cross-session EEG classification
scenario and performed incremental EA for each incoming
EEG trail in the target session on MI4 and P300 datasets.
The classifiers were the same as those in Subsection V-A.
The results are shown in Fig. 5. When EA was not used, the
results for online scenarios were the same as those for offline
scenarios.

Using incremental EA in online scenarios improved model
performance, and ABAT can further improve the BCAs.

D. ABAT Using Pre-Trained Models
In real-world applications, we could pre-train a classifier

on other subjects’ EEG data, and then fine-tune it with target
subject’ data. The results on MI4 and MI6 are shown in
Tables VII-VIII, respectively.

Compared with BCAs without pre-training in Tables II-III,
when EA was used, pre-training achieved higher BCAs
on benign samples of the target user; however, the BCAs
decreased on adversarial examples with larger perturbations.
Nevertheless, ABAT can further improve the BCAs on both
benign samples and adversarial examples.

E. Discussions
To explore the influence of training data size on the clas-

sification performance in offline within-subject classification,
we trained the classifiers using different number of blocks
of data on MI6, and computed their BCAs under different
AutoAttack amplitudes. We used EA in BT, and ABAT used
PGD with ϵ = 0.01. The results are shown in Figs. 6(a)-6(c).
Perturbation amplitude 0 means benign samples.

It can be observed that increasing the training data size
steadily improved the classification performance on benign
samples, which is intuitive. However, the classifiers were still
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TABLE II
BCAS OF DIFFERENT TRAINING APPROACHES UNDER BENIGN SAMPLES AND VARIOUS ATTACKS ON MI4

TABLE III
BCAS OF DIFFERENT TRAINING APPROACHES UNDER BENIGN SAMPLES AND VARIOUS ATTACKS ON MI6
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TABLE IV
BCAS OF DIFFERENT TRAINING APPROACHES UNDER BENIGN SAMPLES AND VARIOUS ATTACKS ON MI2

TABLE V
BCAS OF DIFFERENT TRAINING APPROACHES UNDER BENIGN SAMPLES AND VARIOUS ATTACKS ON P300



CHEN et al.: ABAT FOR IMPROVING THE ROBUSTNESS AND ACCURACY OF EEG-BASED BCIs 1711

TABLE VI
BCAS OF DIFFERENT TRAINING APPROACHES UNDER BENIGN SAMPLES AND VARIOUS ATTACKS ON ERP

Fig. 6. BCAs of (a) EEGNet (b) DeepCNN and (c) ShallowCNN with different training data size and perturbation magnitude on MI6.

vulnerable to adversarial attacks. ABAT improved both the
classification performance on benign samples with different
training data sizes, and the robustness of the classifiers.

Subsection V-A pointed out that the optimal ABAT
perturbation amplitude for a classifier to achieve their
highest BCAs on benign samples may be positively
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TABLE VII
BCAS OF DIFFERENT TRAINING APPROACHES ON PRE-TRAINED MODELS UNDER VARIOUS ATTACKS ON MI4

TABLE VIII
BCAS OF DIFFERENT TRAINING APPROACHES ON PRE-TRAINED MODELS UNDER VARIOUS ATTACKS ON MI6

correlated with its capacity. This subsection performs further
investigations.

We tested the BCAs of ShallowCNN with
{5, 10, 40, 80, 100} convolution kernels on MI4, and
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Fig. 7. BCAs of (a) ShallowCNN on MI4, and (b) DeepCNN on MI6,
for benign samples with different model capacities and perturbation
magnitude.

DeepCNN with {1 − 2 − 2, 2 − 4 − 8, 5 − 10 − 20,

10 − 20 − 40, 20 − 40 − 80} convolution kernels (denoted
as 1, 2, 3, 4 and 5, respectively) on MI6, for benign samples
under different ABAT-PGD perturbation amplitudes. The
results are shown in Fig. 7. Generally, as the number of
model parameters increased, the optimal ABAT amplitude for
benign samples also increased.

VI. CONCLUSION AND FUTURE RESEARCH

This papers has proposed a simple yet effective ABAT
approach to perform AT on aligned EEG data in order to make
the trained model simultaneously more accurate and more
robust. Experiments on four EEG datasets from two different
BCI paradigms (MI and ERP), three CNN classifiers (EEGNet,
ShallowCNN and DeepCNN) and three different experimental
settings (offline within-subject cross-block/-session classifi-
cation, online cross-session classification, and pre-trained
classifiers) demonstrated its effectiveness. It is very intriguing
that adversarial attacks, which are usually used to damage BCI
systems, can be used in adversarial training to simultaneously
improve the model accuracy and robustness.

Our future research will:
1) Study how to perform ABAT for traditional EEG clas-

sifiers. This paper proposed ABAT for deep neural
network EEG classifiers, but there are also many promis-
ing traditional classifiers [43], [44], [45], [46], and it is
useful to adapt ABAT to them.

2) Study how ABAT can be used in cross-subject applica-
tion, to increase the accuracy and robustness simultane-
ously. EEG data exhibit large individual differences [29],
so this problem is very challenging.

3) Study how data preprocessing/denoising approaches,
e.g., multiscale principal component analysis [43], [45],
[47], [48], can be integrated with ABAT for even better
performance.
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