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Simplifying Multimodal With Single EOG
Modality for Automatic Sleep Staging
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Abstract— Polysomnography (PSG) recordings have
been widely used for sleep staging in clinics, containing
multiple modality signals (i.e., EEG and EOG). Recently,
many studies have combined EEG and EOG modalities for
sleep staging, since they are the most and the second most
powerful modality for sleep staging among PSG recordings,
respectively. However, EEG is complex to collect and
sensitive to environment noise or other body activities,
imbedding its use in clinical practice. Comparatively, EOG
is much more easily to be obtained. In order to make full
use of the powerful ability of EEG and the easy collection of
EOG, we propose a novel framework to simplify multimodal
sleep staging with a single EOG modality. It still performs
well with only EOG modality in the absence of the EEG.
Specifically, we first model the correlation between EEG
and EOG, and then based on the correlation we generate
multimodal features with time and frequency guided
generators by adopting the idea of generative adversarial

Manuscript received 24 November 2023; revised 1 February
2024 and 8 March 2024; accepted 5 April 2024. Date of publication
18 April 2024; date of current version 25 April 2024. This work was sup-
ported in part by the Science Technology Innovation (STI) 2030 Major
Projects under Grant 2021ZD0200400; in part by the Key Program of the
Natural Science Foundation of Zhejiang Province, China, under Grant
Z24F020009; and in part by the Natural Science Foundation of China
under Grant 61925603. (Corresponding author: Sha Zhao.)

This work involved human subjects or animals in its research. Approval
of all ethical and experimental procedures and protocols was granted by
the Institutional Review Board of Zhejiang University.

Yangxuan Zhou, Sha Zhao, Jiquan Wang, and Shijian Li are
with the College of Computer Science and Technology, Zhejiang
University, Hangzhou, Zhejiang 310013, China, and also with the
State Key Laboratory of Brain-Machine Intelligence, Zhejiang University,
Hangzhou, Zhejiang 311121, China (e-mail: zyangxuan@zju.edu.cn;
szhao@zju.edu.cn; wangjiquan@zju.edu.cn; shijianli@zju.edu.cn).

Haiteng Jiang and Tao Li are with the Department of Neurobiology,
Affiliated Mental Health Center, Hangzhou Seventh People’s Hospital,
Zhejiang University School of Medicine, Hangzhou, Zhejiang 310063,
China, also with the MOE Frontier Science Center for Brain Science
and Brain—Machine Integration, Hangzhou, Zhejiang 310063, China,
and also with the State Key Laboratory of Brain—Machine Intelligence,
Zhejiang University, Hangzhou, Zhejiang 311121, China (e-mail:
h.jiang@zju.edu.cn; litaozjusc@zju.edu.cn).

Zhenghe Yu is with the Department of Sleep Medicine, Affiliated
Mental Health Center, Hangzhou Seventh People’s Hospital, Zhejiang
University School of Medicine, Hangzhou, Zhejiang 310063, China
(e-mail: yuzhcoo@sina.com).

Gang Pan is with the College of Computer Science and Technology,
Zhejiang University, Hangzhou, Zhejiang 310013, China, also with
the State Key Laboratory of Brain—-Machine Intelligence, Zhejiang
University, Hangzhou, Zhejiang 311121, China, and also with the
MOE Frontier Science Center for Brain Science and Brain-Machine
Integration, Zhejiang University, Hangzhou, Zhejiang 310063, China
(e-mail: gpan@zju.edu.cn).

Digital Object Identifier 10.1109/TNSRE.2024.3389077

learning. We collected a real-world sleep dataset containing
67 recordings and used other four public datasets for
evaluation. Compared with other existing sleep staging
methods, our framework performs the best when solely
using the EOG modality. Moreover, under our framework,
EOG provides a comparable performance to EEG.

Index Terms— Multi modalities, PSG recordings, sleep
staging.

[. INTRODUCTION

LEEP quality is vital for everyone’s wellbeing, since

an individual spends almost one-third of her life either
sleeping or trying to do so [1], [2]. Sleep staging is
important for both monitoring sleep quality and diagnosing
sleep disorders [3], which categorizes sleep into different
stages, such as Wake, REM (Rapid Eye Movement) and
non-REM sleep. In clinical practice, polysomnography (PSG)
has been widely used for sleep staging, recording various
physiological signals of the human body, such as EEG
(electroencephalogram), EOG (electrooculogram), EMG (elec-
tromyogram), and ECG (electrocardiogram). PSG recordings
are stored as consecutive epochs, each of which is 30-
seconds. Traditionally, experts categorize each epoch into five
different stages, namely, W, N1, N2, N3, and REM, following
the sleep staging standards established by the American
Academy of Sleep Medicine (AASM) [4]. It usually takes
several hours for one expert to scoring the overnight PSG
recordings of one person. Obviously, such manual process
is time-consuming. Meanwhile, the sleep staging results are
relatively subjective, since the manual staging heavily depends
on experts’ experiences.

With the rapid advancement of deep learning techniques,
there is a growing interest in the development of automatic
sleep staging methods using PSG recordings [5], [6], [7], [8].
Given that there are various types of signals in PSG, many
studies have tried different types of single modality for sleep
staging, and relatively popularly used modalities are EEG,
EOG, EMG, and ECG. For instance, some studies [10], [11],
and [12] have solely used EEG for sleep staging and achieved
good performance across multiple publicly available datasets.
Instead of employing EEG, Eognet [13] proved that using
single EOG modality also effectively discriminates different
sleep stages, but the predictive ability of EOG is not so
strong as that of EEG. As for EMG, Andreotti et al. [14]
demonstrated that only using EMG modality is not feasible for
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Fig. 1. (a) Sleep staging using multimodalities and (b) Simplifying
multimodal with single EOG modality for sleep staging.

sleep staging, and its predictive ability is much weaker than
that of EEG and EOG. Similarly, solely using other types of
signals (i.e., ECG [15]) in PSG recordings cannot work for the
sleep staging task. Taken together, the EEG modality stands
out as the most powerful for sleep staging among all PSG
signals, and EOG is the second most powerful.

However, the collection of EEG signals is quite complex
and expensive. Typically, subjects are required to do several
inevitable preparations, such as preparing head skin, wearing
a cap with dozens of electrodes, and injecting conductive
gel. Moreover, EEG signals are very sensitive and subtle
to environment noise or disturbance of other body activities
(i.e., eye movement, leg movement). It is hard to guarantee
the high quality of EEG signals, especially for one person
lying for so long time of approximately 8 hours during sleep.
These limitations severely restrict the usability of EEG in
real-world practical sleep-related applications. Comparatively,
EOG, another important type of cues for sleep staging,
is relatively easily to collect by simply placing sensors near
the eyes during sleep. Meanwhile, the EOG signals are not
so sensitive to environment and other body activities. Due to
the powerful ability of EEG in sleep staging and the easy
collection nature of EOG, it is necessary to figure out how to
solely use EOG modality for sleep staging but take advantage
of EEG information.

In order to make full use of the advantages of EEG and
EOG for sleep staging, some studies have employed both
EEG and EOG modalities to address sleep staging [16],
[17], [18], [19]. As expected, the combination of EEG and
EOG improves the sleep staging performance, compared
with the performance when solely using EEG or EOG [14].
The success of multimodal studies indicates the potential
correlation between EEG and EOG modality. It motivates us

to first learn the multimodal representation of EEG and EOG
and capture their correlation. Then, based on such correlation,
we try to generate multimodal representation from the single
EOG modality for sleep staging. As shown in Fig. 1, we can
simplify multimodal with single EOG modality to classify
sleep stages when EEG is not available, making full use of
the easy collection nature of EOG and powerful ability of
EEG and avoiding the complex collection of EEG.

However, simplifying multimodal with EOG for sleep
staging is a nontrivial task, and there are some difficulties.
The first one is how to generate multimodal representations
containing both EEG and EOG information when EEG modal-
ity is not available. Undoubtedly, the generated multimodal
representations are the key factor for simplifying multimodal,
since it decides the performance when we only use EOG
for sleep staging. We train generators to generate multimodal
representations with single EOG based on the correlation
between EEG and EOG, by adopting the idea of generative
adversarial learning. The second difficulty is how to align the
characteristics in time and frequency of EOG with that of
EEG. Many studies have proved the significance of temporal
and spectral features of EEG for sleep staging [20]. Thus,
we conditionally guide the generators from the perspectives
of time and frequency, respectively, to generate multimodal
representations for sleep staging when EEG is not available.

In this paper, in order to overcome the limitations of
EEG in clinical practice, we propose a novel framework
to simplify multimodal sleep staging using a single EOG
modality. It makes full use of the powerful predictive ability
of EEG and easy collection nature of EOG. We collected one
real-world dataset consisting of 67 subjects and used other four
public datasets to evaluate our framework. Our contributions
can be summarized as follows:

« We propose a novel framework to simplify multimodal
with single EOG modality for sleep staging, which
can perform well with only inputting EOG instead of
inputting EEG and EOG together.

« We first model the correlation between EEG and
EOG. Then, we generate multimodal representations
based on the correlation by adopting the idea of
generative adversarial learning. In particular, we consider
the temporal and spectral features into the generated
multimodal representations.

e Our framework is evaluated on our collected dataset
and four public datasets, and the results demonstrate its
effectiveness. Compared with existing methods, when
only using EOG as input, our framework performs the
best. Moreover, by our framework, the EOG provides
comparable performance to EEG.

[I. RELATED WORK

A. Sleep Staging With Single Modality
In previous studies, considering the multiple types of
signals present in PSG, many studies have employed different
modalities for BCI tasks [21], [22], [23], such as EEG,
EOG and ECG. For instance, Supratak et al. [9] proposed
DeepSleepNet which is a CNN-BiLSTM based network using
EEG, aiming to extract invariant features across different shifts
and learn the transition rules among different sleep stages.
U-time [10], [24] is a fully CNN network based on the
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Fig. 2. Overview of the multimodal simplification framework. The entire process can be divided into three phases. The multimodal correlation will
be modeled in Stage I. In Stage Il, synthetic multimodal representations will be generated, and the dashed lines represent the guiding conditions.
In Stage Ill, only the EOG data will be input for inference. Here, €@ denotes the concatenation operation.

U-net architecture that can excellently model sleep-related
features from EEG. RecSleepNet [11] improved the modeling
accuracy of EEG by reconstructing the intermediate-level
feature representations. Eognet [13] introduced a two-step
training strategy, focusing on modeling the EOG feature
representations for sleep staging. Sun et al. [15] employed
CNN-RNN based network to extract the ECG features for
distinguishing different sleep stages, but the performance is
much worse compared to that of models based on EEG or
EOG signals. Taking together, the EEG modality stands out
as the most powerful for sleep staging among all the PSG
signals and the EOG modality ranks the second.

B. Sleep Staging With Multiple Modalities

Considering the complementarity between EEG and other
modalities, some studies constructed sleep staging models
based on multimodal feature representations, achieving better
performance than single-modal based approaches. Based on
EEG and EOG, Jia et al. [17] proposed SalientSleepNet,
which includes a Multimodal Attention Module designed to
extract multimodal features for specific sleep stage. Compared
with SalientSleepNet, MMASleepNet [25] and XSleepNet [16]
additionally introduced EMG modality, learning sleep infor-
mation from three different modalities. These multimodal
based models demonstrate better performance than single-
modal based methods on public sleep datasets. Whether
employing single modal or multimodal based approaches, the
EEG modality proves the irreplaceability for sleep staging.
Some studies [26] and [27] have explored cross-modal knowl-
edge distillation. Zhang et al. [28] proposed a visual-to-EEG
cross-modal knowledge distillation for emotion recognition.
Zhang et al. [29] proposed a knowledge distillation algorithm

based on Multi-Channel Multi-Domain to enhance single
EEG channel based sleep staging. Liang et al. [30] proposed
SleepKD, a Teacher Assistant-Based model using knowledge
distillation, which can capture multi-level sleep features using
a single EEG channel. These existing knowledge distillation
methods can effectively improve the performance of single
EEG-based task. However, the complexity and the high-cost
of EEG modality acquisition limit its practical application in
real-world scenarios. Based on GANs (Generative adversarial
nets) [31], Yan et al. [32] tackled the challenges of one-
to-many cross-modal transfer in the domain of emotion
recognition. Inspired by the previous work, we propose a
novel multimodal representation generation based framework
to simplify the multimodal sleep staging with single EOG
modality, alleviating the limitations of EEG utilization.

1. METHODS

A. Problem Formulation

Here, we simplify multimodal with single EOG modality,
and introduce a novel task of generating multimodal repre-
sentations for sleep staging. Formally, given a sleep sequence
S=(x1, x2, x3, ..., x1) of length L, where x; denotes the i-th
epoch in the sequence S. Our goal is to compute the sequence
of outputs Y=(y1, y2, y3, ..., yr) that maximizes the condi-
tional probability p(x1, x2, x3,...xL|y1, ¥2, ¥3, ..., yL). Here
y; € {0, 1}V is corresponding one-hot encoding of real sleep
stage of x; and N = 5 denotes the number of sleep stage.

B. Overview

Figure. 2 illustrates the architecture of the proposed
framework, which is composed of three stages. In the first
stage, we model the correlation between EEG and EOG to
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obtain real multimodal features. In the second stage, based
on the modeled correlation, we generate synthetic multimodal
features by training dual generators using a generative
adversarial learning method. In the third stage, with the trained
generators, we input single EOG modality for sleep staging.
Stage I: Inputting the EEG and EOG modality, we first capture
the correlation between EEG and EOG by pretraining a model,
and obtain a real multimodal representations containing EEG
and EOG information. Stage II: We generate multimodal
representations from Gaussian noises based on the learned
correlation in the Stage I, and employ adversarial learning with
real multimodal features obtained in the Stage I to enhance
the reliability of generated multimodal representations. The
temporal and spectral features of EOG are considered into
the generated multimodal representations. Stage III: In test
stage, we only use the EOG modality as input to generate the
reliable multimodal features, and classify sleep stages. In the
subsequent subsections, we will introduce more details for
each stage.

C. Stage I: Modeling Multimodal Correlation

In this stage, we first model the correlation between EEG
and EOG by pretraining a sleep staging model, which is
fundamental for simplifying multimodal sleep staging. After
pretraining, we can obtain real multimodal features, and the
quality of the obtained multimodal features is crucial for
generating synthetic multimodal representations in Stage II.
Here, the pretrained model consists of three components: the
Feature Extractor, Fusion Block and Temporal Encoder. Taking
EEG and EOG sequences as inputs, we employ multi-scale
convolutional networks to extract invariant features across
different shifts from each modality. Given that small-scale
convolutions are good at capturing temporal information, and
large-scale convolutions are usually used to capture frequency
information [9], we perform the small-scale and large-scale
convolutions separately for each channel of EEG and EOG
modalities. For the spatial features of different channels,
we apply the Style-based Recalibration Module (SRM) [33]
to weight each channel, and focus on the more important
channels. The equation is as follows:

X =Fyn(X,0) X (1)

We utilize several fully connected layers to fuse the
EEG and EOG channels. Subsequently, a feedforward neural
network is employed to integrate the EEG and EOG modalities
and extract multimodal features. After fusion, the multimodal
features will be input into the Transformer Encoder [34] to
obtain real multimodal representations containing EEG and
EOG information. We apply the feed-forward network as the
classifier and train the model by minimizing the cross-entropy
loss:

L
1 -
Lo=—7 2 vilogs @)
1
where y; is the real sleep stage label for input epoch x;.
D. Stage Il: Generating Multimodal Representations

Based on the real multimodal representation obtained in
Stage I, our objective is to generate synthetic multimodal
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Fig. 3. The backbone of Time/Frequency dual generators.

features using single EOG modality in this stage. Similarly
to other generation methods, we generate multimodal features
from gaussian noise. Considering the sequential nature of
sleep signals, it remains challenging to guarantee the reliability
of the generation without guidance. Hence, we utilize the
EOG modality as a guided condition to generate synthetic
multimodal features from gaussian noise. Given the real
multimodal features obtained in stage I and the generated
synthetic multimodal features, we first map these two
multimodal representations into a high-dimensional feature
space and then employ adversarial training to align them.
Specifically, in our framework, a discriminator D is trained
to classify the real and synthetic multimodal features, while
two generators G1 and G2 try to generate indistinguishable
representations between the real and synthetic features.
By doing so, the generated multimodal features can be
trained to approximate the distribution of the real ones,
promoting better performance when using single EOG
modality. Adopting a standard GAN loss, the discriminator
can be optimized using a cross-entropy loss. The objective of
this operation L£p can be defined as:

_]E(frvXeog)'\’Pr [log D(fy, Xeug)]
- D(fgv Xeug))] (3)

where f, and f, denote the real and generated multimodal
features, respectively. X.,, denotes the EOG conditional
constraint. £p is used to optimize the discriminator separately
so that it discriminates the real and synthetic features. Here we
adopt the inverted labels to address the gradient vanishing [35].

Simultaneously, the generators are trained to confuse the
discriminator by generating synthetic features that closely
resemble the real ones. The objective function can be described
as:

min Lp =
D

- E(fgvxeog)’\’Pg [log(l

_]E(Xeegaxeog)wpr [log(l - D(fr» Xeog))]
- ]E(X,,,Xe,,g)NPg [logD(G(Xp, Xeog)9 Xeog)] €]

where X, and X, denote the EOG constraint and the
gaussian noise. f, denotes the real multimodal features.
Notably, we have applied conditional constraints to both
the generator and the discriminator. Due to the freezing of

min L;q, =
G
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pretrained network parameters, the first step of the Eq. 4
does not participate in network optimization. Therefore, the
equation can be reformulated as:

Hgn Ladgy =— E(X,,,Xe,,g)NPg [log D(G(Xp, Xeog)v Xeog)] (5)

The above is about the process of how to generate synthetic
multimodal features. We will introduce our generators,
discriminators and classifiers in detail.

1) Time-Frequency Dual Generators: Considering the
importance of time and frequency characteristics of sleep
signals for sleep staging [36], [37], we employ time-frequency
dual generators to generate different multimodal features: in
the time domain generator generatorl, we apply the time-
domain EOG as the input and we perform Fourier transform
on the EOG signal and take its modulus as the input in
the frequency domain generator generator2. Then we adopt
randomly generated Gaussian noise as one of the inputs for
generators. It is worth noting that the variance of the standard
normal distribution significantly differs from that of the
original sleep signals. So we set its mean and variance to match
those of the original EOG signals, making the distribution
of Gaussian noise closer to that of the EOG signal. This
step facilitates the subsequent adversarial generation training.
The noise will be input into multiple fully connected layers
to improve the fitting ability. Then, we input time-frequency
domain EOG signals into different feature extractors, each
of which contains multiple CNN layers and shares the same
structure, respectively. After feature extraction, the time-
frequency domain EOG signals will be combined with the
noise in order to add conditional constraints. Notably, the
Time Feature Extractor and the Frequency Feature Extractor
share the same structure. Further details are illustrated in
Fig. 3. Subsequently, we apply transformer encoder to learn
temporal information within a sequence of synthetic features.
The generated multimodal features F and F, will be input into
the discriminator to optimize the generators by minimizing Eq.
4. The total adversarial loss can be described as follows:

L = MLagv1 + 22 Laaw2 (6)

where Ly 401 and Ly, denote the adversarial loss of
generated time domain multimodal features F and frequency
domain multimodal F,, respectively.

2) Discriminator: The discriminator is a binary classifier
used to distinguish the real multimodal features f, or synthetic
multimodal features f,. We first concatenate these two
multimodal features f, and f,. Then in the discriminator,
the input vector will first be concatenated with the guiding
conditions: the single EOG modality. Then, the concatenated
vector undergoes a linear fusion layer, mapping it to a
dimension of 512. We have constructed multiple layers
of linear units, enabling the discriminator to output a
binary classification probability indicating whether the multi-
modal features are from real or generated distributions. The
discriminator can be optimized by minimizing Eq. 3. The total
loss of discriminator can be described as follows:

Lp = MLais1 + 2 Lagis2 @)

where L1 and Lg;s» denote the discriminator loss of
generated multimodal features F; and F», respectively.

Algorithm 1 Multimodal Simplification Algorithm

Input: Xgeg, Xpoc
Output: Evaluation indicators of test data
The Stage 1:
Initialize parameters 6 in the pretrained model.
fori =11tondo
| Optimize 6 by minimizing Eq. 2
end
return multimodal feature R.
The Stage II:
Initialize generator G1 and G2, classifier C1 and C2,
discriminator D.

fori =1 ton do
Generate synthetic multimodal features F| and F5.

Concentrate F; and F, with R, respectively.
Optimize D by minimizing Eq. 7.
Optimize G1, G2, C1 and C2 by minimizing Eq.

10.
end

return trained G1, G2, C1 and C2.

The Stage III:

Using random noise and Xgp¢ to generate
multimodal features through trained G1 and G2.

Use the trained classifier C1 and C2 for sleep staging.

return evaluation indicators.

3) Dual Classifiers: After generation, we do the addition
operation for the multimodal features F7 and F> and control
the operation by a hyperparameter « as follows:

Four =aF1 + (1 —-a)F? ®)

Some existing studies [38], [39] have demonstrated that
dual classifiers can assist the model in reducing variance
during the training process and decreasing the probability of
low-confidence predictions by utilizing the average prediction
vector. Given the real multimodal feature R and the synthetic
multimodal feature F,,; generated from dual generators,
the discrepancies are aligned through discriminative cross-
modality alignment. Then, the dual classifiers, which share
the same architecture, will further enhance the sleep staging
decision boundaries and improve the robustness of predictions.
We choose two sets of initialization methods: He [40] and
Glorot and Bengio [41] to ensure the diversity of predictions,
making sure that the dual classifier does not converge to
become the same one throughout training. We use cross-
entropy loss to optimize dual classifiers as follows:

Lc=MLc1+ 1L )

To sum up, we integrate the adversarial loss with the
classification loss in one objective loss function as follows.

Eoverall = VEC + (1 - V)EG (10)

Notably, the loss of discriminator £p will be updated and
optimized separately. In our study, we are more concerned with
the parameters updated on the classifiers. We set y to 0.7. For
generatorl and generator?2, we attach equal importance to
them, setting A1 = A, = 0.5. But for the multimodal features
F1 and F, with different generation conditions, we pay more
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TABLE |
AN OVERVIEW OF THE DATASETS

Dataset Size K-CV  Sample Rate  Scoring  Channels
SSND 67 10 100 AASM  F3-M2, C3-M2, O1-M2, F4-M1, C4-M1, 02-M1, E1-M2, E2-M1
ISRUC 98 10 100 AASM  F3-M2, C3-M2, O1-M2, F4-M1, C4-M1, 02-M1, E1-M2, E2-M1
SleepEDF-153 153 10 100 R&K Fpz-Cz, Pz-Oz, EOG horizontal
HMC 147 10 100 AASM  F4-Ml1, C4-M1, 02-M1, C3-M2, E1-M2, E2-M2
MASS SS2 20 5 150 AASM  F3-M2, C3-M2, O1-M2, F4-M1, C4-M1, 02-M1, EOG LH, RH, UV, LV

K-CV denotes the K-fold number. On the MASS SS2 dataset, EOG LH, RH, UV, LV denote EOG Left Horiz, EOG Right Horiz, EOG Upper Vertic,

EOG Lower Vertic, respectively.

attention to the features guided by time-domain information
after we conduct the paramenter experiment of «. Finally,
we set o = 0.7.

E. Stage lll: Sleep Staging With Single EOG Modality

During the inference phase, we solely use single
EOG modality as input. The trained generatorl and
generator?2 can generate corresponding synthetic multimodal
features F; and F>. After addition, F,,; will be passed into
trained dual classifiers. We calculate the average probability
from the two classifiers and get the final prediction y as
follows:

P

1
E[Cl(Fuul) + CZ(Fout)]
y = argmax(P)

Y
12)

The algorithm of our multimodal simplification framework
is illustrated in Algorithm 1.

IV. EXPERIMENTS
A. Datasets

In order to evaluate our framework, we collected a sleep
dataset, namely, SSND. For the fairness of the evaluation,
we further conducted evaluation experiments on four publicly
available sleep datasets, including ISRUC, SleepEDF-153,
HMC, and MASS SS2. The PSG recordings in each dataset
differ from others in many aspects, such as EEG channels,
collection instruments, and populations. A brief summary of
all the datasets is given in Tab. L.

SSND is collected by ourselves and contains 67 PSG
recordings from 17 healthy subjects and 50 subjects with
narcolepsy. The dataset consists of 42 females and 35 males,
and the PSG recordings were collected at the Affiliated
Mental Health Center & Hangzhou Seventh People’s Hospital,
Zhejiang University School of Medicine. The research was
conducted at Zhejiang University with Institutional Review
Board approval, and written consent was acquired from all
the subjects or their caregivers. For each subject, we collected
PSG recordings for an entire night, starting at approximately
21:00 and ending at 5:00 of the following morning, totaling
approximately 8 hours. All signals were stored in the standard
EDF+ data format with a.edf extension. The recordings were
divided into 30-second epochs, with each epoch manually
labeled as a sleep stage by sleep experts or technicians
according to AASM [4] guidelines. In our SSND dataset, there
are a total of 84,546 epochs, consisting of 56,895 sleep epochs
from 50 patients aged 11 to 49, and 27,651 sleep epochs

from 17 healthy people aged 22 to 32. All the 67 PSG sleep
recordings were used for evaluation.

ISRUC is a public dataset [42] composed of 3 sub-
groups. We choose sub-groupl which includes overnight PSG
recordings of 100 adults. We excluded subject 8 and 40 due
to some missing channels.

SleepEDF-153 is a public PhysioNet dataset [43] consisting
of 78 healthy subjects aged 25-101. Each subject contains
two day-night PSG recordings except subjects 13, 36, and
52 whose one recording is missed due to device failure. All
the 153 PSG sleep recordings were used for evaluation.

HMC is a public dataset [44] including a total
of 154 PSG recordings gathered retrospectively from the
sleep center dataset of the Haaglanden Medisch Centrum
(The Netherlands). We excluded subject 14,32,33,64,112 and
135 due to some missing channels.

MASS SS2 is a subset of public MASS dataset [45]
composed 20 PSG recordings which were segmented into
20s epochs. All the 20 PSG sleep recordings were used for
evaluation.

B. Settings

1) Implementation and Metrics: We employ K-fold cross-
validation (CV) to assess the performance of our model across
the 5 different datasets and the values of K number are listed
in Tab. I. In each fold, we apply a subject-independent policy
where the samples of the same one subject cannot appear in
the test data and the training data simultaneously. We use the
Adam optimizer to train the model. The 8 is set to [0.5,0.99],
the weight decay is set to 3e-4 and the learning rate is set to
le-4. The length of sequence L is set to 20 and the batch size
is set to 16. We employ Accuracy (ACC) and Macro-F1 score
(MF1) as the evaluation metrics. The model is trained on a
single machine equipped with an Intel Core 19 10900K CPU
and eight NVIDIA RTX 3080 GPUs using PyTorch.

2) Compared Methods of Sleep Staging: Based on single
EOG modality as input, we compared with several deep
learning methods and one traditional machine learning
method for automatic sleep staging. All the selected
methods are designed for single modality. Some methods
designed for multiple modalities are not compared here,
such as SalientSleepNet [17], MMASIleepNet [25], and
XSleepNet [16], since we focus on the performance of using
single EOG modality. RF [46] is a classical ensemble learning
method, which has been widely used in classification tasks.
Here, we calculate the average power spectral density of
different frequency bands to construct features. DeepSleepNet
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TABLE I
THE OVERVIEW PERFORMANGE OF DIFFERENT MODALITIES ON 5 DATASETS
ISRUC SleepEDF HMC MASS SSND

ACC MF1 ACC MF1 ACC MF1 ACC MF1 ACC MF1

EEG 78.2 74.7 82.4 75.9 80.7 76.7 87.4 80.0 83.7 78.8

EEG+EOG 80.6 77.9 84.1 78.2 81.5 779 86.1 78.7 85.4 81.2

EOG 74.6 70.8 79.5 71.6 75.9 71.2 82.2 74.4 82.4 77.1
EOG(Ours) 77.3(+2.7) 74.3(+3.5) 80.6(+1.1) 73.3(+1.7) 77.7(+1.8) 74.0(+2.8) 85.0(+2.8) 76.4(+2.0) 83.8(+1.4) 79.3(+2.1)

TABLE Il architecture. The above models except CNN+Transformer,

PERFORMANCE COMPARISON WITH EXISTING METHODS FOR
SLEEP STAGING BASED ON EOG MODALITY

Per-class Macro F1

Dataset System ACC MF1

w N1 N2 N3 REM

RF 564 488 689 21.0 622 593 328
DeepSleepNet 709 679 803 409 697 79.6 668
TinySleepNet 717  67.0 81.7 360 699 784  65.1

ISRUC RecSleepNet 72.1 678 831 381 703 796 68.0
CNN+Transformer ~ 74.6 708 812 397 744 837 750

Eognet 76.6 737 851 445 742 833 812

sDREAMER 76.1 72.1 860 381 751 824 794

Ours 773 743 859 439 763 84.0 813

RF 56.6 393 636 109 679 21.7 325

DeepSleepNet 756 674 869 349 792 673 685
TinySleepNet 757 669 873 298 787 685 70.0

SleepEDF RecSleepNet 762 674 877 31.1 795 68.1 694
CNN+Transformer ~ 79.5 716 895 356 81.6 694 82.2

Eognet 763 693 81.6 349 81.6 725 757

sDREAMER 799 705 89.8 304 822 669 83.6

Ours 80.6 732 90.6 40.5 825 686 839

RF 537 448 614 139 632 564 287

DeepSleepNet 740 702 80.1 398 764 81.1 739

TinySleepNet 742 69.6 807 364 756 808 741

HMC RecSleepNet 748 708 80.7 399 758 815 754
CNN+Transformer 759 712 814 355 775 820 799

Eognet 76.1 719 805 383 77.1 813 824

sDREAMER 760 688 813 230 779 8.0 797

Ours 717 740 832 427 786 828 822

RF 652 494 496 26 780 640 528

DeepSleepNet 76.1 651 748 240 81.0 760 694

TinySleepNet 76.1 637 726 158 808 782 710

MASS RecSleepNet 768 650 774 168 81.8 778 71.0
CNN+Transformer ~ 82.2 744 83.0 394 854 786 85.0

Eognet 798 71.8 788 412 836 746 804

sDREAMER 840 754 836 380 872 826 854

Ours 850 764 820 398 888 842 878

RF 57.1 468 61.8 105 666 634 31.6

DeepSleepNet 813 760 899 449 824 860 76.6
TinySleepNet 820 768 895 474 832 869 769

SSND RecSleepNet 81.6 762 895 455 820 86.6 773
CNN+Transformer 824  77.1 89.8 455 832 859 81.0

Eognet 812 755 88.6 409 817 855 792

sDREAMER 813 733 884 303 81.8 862 80.

Ours 838 793 919 51.0 837 864 83.6

[9] is a classical CNN-BiLSTM network using multi-scale
convolution to capture features. TinySleepNet [47] is a
more lightweight model based on DeepSleepNet. RecSleepNet
[11] uses a Convolutional Reconstruction Block to enhance
modeling capabilities. Eognet [13] is a novel sequential
hierarchical neural network that utilizes a single EOG modality
for sleep staging. SDREAMER [48] is a MoME module-based
network that employs a self-distilled strategy to handle single
or multiple modalities for sleep staging. In addition, we build
a CNN+Transformer model for comparison, considering our
original single EOG prediction network is based on this

Eognet and sDREAMER, in the original papers all used
single EEG modality as input, we implement all of them
according to the core code provided in their papers, and
input single EOG modality instead of EEG in our comparison
study. Notably, based on our settings, we implement the
sequence SDREAMER instead of the epoch sDREAMER for
comparision.

C. Result Analysis

1) Comparison With Other Methods Based on EOG:
As shown in Tab. III, when solely using single EOG
modality as input, our method achieves the state-of-the-
art performance across all the datasets, with 80.9%
on average ACC and 75.4% on average MF1. It proves
that our multimodal simplification framework can effectively
improve the performance of sleep staging task based on
single EOG modality. Among deep learning-based methods
using a standard training strategy (employing single EOG data
for training and testing), DeepSleepNet performs the worst,
specifically with only the EOG modality, about 75.6% on
average ACC and 69.3% on average MF1. The performance
of TinySleepNet is close to that of DeepSleepNet, with ACC
75.9% and MF1 68.8% on average. RecSleepNet performs
better than these two models, with 76.3% on average ACC
and 69.4% on average MF1. Eognet performs a little better
than those three models, with 78.0% on average ACC and
72.4% on average MF1. CNN+Transformer achieves the
best performance compared to the above CNN-LSTM based
models, with 78.9% on average ACC and 73.0% on average
MF1. It demonstrates that transformer-based models have an
advantage over LSTM-based models in modeling temporal
sequences. For the sDREAMER which employs a self-
distillation strategy to transfer multimodal information to the
single-modal-based network, it performs a little worse than our
approach, especially on the average ACC with a difference
of 1.4% (79.5% vs 80.9%). It even performs slightly better
than our model on the easily distinguishable sleep stage of
W (wake) on the MASS and ISRUC datasets. However, its
average MF1 is worse than ours, with a gap of 3.4% (72.0%
vs 75.4%). Moreover, it performs much worse than our model
for N1 stage that is difficult to distinguish on several datasets,
about 20.7% MF1 lower on SSND, 19.7% MF1 lower on
HMC, and 10.1% MF]1 lower on SleepEDF.

2) Comparison Between Single Modality and Multiple Modal-
ities: We further investigate how the single EOG modality
performs under our framework, especially compared with EEG
or the combination of EEG and EOG. Here, we test the
performance of single EEG modality, single EOG modality,
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TABLE IV
ABLATION EXPERIMENT OVERVIEW
Dataset ISURC SleepEDF HMC MASS SSND Average

Model ACC MF1I ACC MF1 ACC MF1I ACC MF1 ACC MF1I ACC MFI
G1-Time 764 729 803 726 774 738 84.6 754 834 785 804 746
G2-Frequency 763 734 79.6 71.8 742 704 79.2 705 82.1 77.1 783  72.6
Ours 773 743 806 733 777 740 850 764 838 793 809 755

TABLE V in ACC and 4.2% in MF1 before and now with an average

PERFORMANCE COMPARISON WITH EXISTING METHODS FOR SLEEP
STAGING BASED ON EEG MODALITY

ISRUC SleepEDF

ACC MF1 ACC MFI

EOG 773 743 806 733

Ours EEG 782 747 824 759

A 0.9 0.4 1.8 2.6

EOG - - 75.7  66.9

TinySleepNet EEG - - 83.1 78.1
A - - 7.4 11.2
EOG 72.1 678 762 674

RecSleepNet EEG 797 779 830 779
A 7.6 10.1 6.8 10.5
EOG - 71.0 - 70.0
U-time EEG - 77.0 - 76.0

A - 6.0 - 6.0

A denotes the gap between singly using EEG and singly using EOG.

and multiple modalities of EEG and EOG, using the pretrained
model (baseline model) in the Stage I (as shown in Fig. 2
Stage I ). Notably, when we input the single EEG or single
EOG modality, we remove the Fusion Block, designed to
fuse multimodal features, from the model in Stage I. And
then, we compare the results of the above three experiments
with the performance of a single EOG modality using our
framework, shown in Tab. II. As we can see, as expected
in the most cases, inputting multimodal of EEG and EOG
performs the best, which is reasonable as we mentioned above
(On the MASS dataset, solely using EEG signals performs
slightly better than using multimodal EEG and EOG). What
is worth paying more attention is that, when using single
EOG modality, our framework significantly improves the
performance compared to the baseline model (1.96% average
improvement in ACC and 2.4% in MF1), especially on the
ISRUC (2.7% improvement in ACC and 3.5% in MF1) and
MASS (2.8% improvement in ACC and 2.0% in MF1).
It proves the effectiveness of our multimodal simplification
framework in generating synthetic multimodal features even
without EEG. Moreover, solely using EOG modality under
our framework provides a comparable performance to using
single EEG modality under the baseline model (80.9% vs.
82.5% on average ACC, 75.5% vs. 77.2% on average MF1).
This significantly closes the gap between single EOG and
single EEG under the model (an average difference of 3.6%

difference of 1.6% in ACC and 1.7% in MF1). Particularly,
on the SSND dataset, using single EOG under our framework
outperforms using single EEG modality under the baseline
model (83.8% vs. 83.7% on average ACC and 79.3% vs.
78.8% on average MF1). This demonstrates the potential of
EOG modality, which is convenient to collect using wearable
devices in daliy life, making it possible to monitor the sleep
quality in a home-based setting.

3) Ablation Study: In this experiment, we investigate the
effectiveness of time-frequency domain generators of our
framework. In our work, we design two generators using time
and frequency domain EOG signal as guilding conditions,
respectively, to generate synthetic multimodal features. Here,
we conduct ablation experiments to validate the effectiveness
of each generator in our model. The model variants are defined
as follows:

o G1: the generator2 in frequency is removed from our

framework.

e G2: the generatorl in time is removed from our
framework.

e G1+4G2: we apply both of generatorl and

generator? in time and frequency.

As shown in Tab. IV, both of time and frequency features
contribute to generating synthetic multimodal features for
sleep staging, and combining of them performs the best. As we
can see, when we employ the time-domain EOG signal as
the guiding condition, the model provides superior overall
performance compared to using the frequency-domain EOG
signal as the guiding condition (80.4% vs. 78.3% on average
ACC and 74.6% vs. 72.6% on average MF1). In particular,
on both HMC and MASS datasets, the frequency-domain
EOG guided models perform much worse compared to the
time-domain EOG guided models, about 3% to 5% lower in
ACC and MF1, respectively. And using solely time-domain or
frequency-domain as the guiding conditions perform closely
on the datasets of ISRUC and Sleep-EDF. It may be caused
by the differences in collection devices and environmental
conditions during data gathering. In this ablation study, we set
the hyperparameter o to 0.7 when fusing the dual synthetic
features from different generators (o denotes the proportion of
time-frequency domain feature fusion). The more details about
the choice of o will be explained in subsequent experiment.

4) Comparison With Other EEG-Based Methods: In this
section, we list three existing EEG-based methods [10], [11],
[47] for comparision shown in Tab. V. We referred to the
performance of the existing methods using EEG reported in
the corresponding papers, and we obtained the performance
of these methods using EOG by implementing them by



1676

IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 32, 2024

Y
'2:&‘:‘8;.;} NI

T '-ab‘ . N2
~5.3 e N3
s ™ s REM

[
. %!
r;. . ?
'e," . ”% ...a .
—~

% ! lg

- ) ) N

Foelg g:'u 3
i x';{

~ o W

B e NI
.":3;,"., e N2
K 3
LRt . N3
Ryt ° REM
tif:'.{)"’ R
b & \ -
-
1Y -
W, 2
AN é
~afr AW
(858 1ES
» \‘J’}" it "'}:
- <
VA
“ s ! 4]
A T Fag'y
- . ¢
"‘}’3 o 'z;-':(,
", ~ ey, N

(c) Generated multimodal feature (d) Real Multimodal feature of EEG and EOG

Fig. 4.  Feature visualization based on different modalities, where
different colors represent different sleep stages.

ourselves. Due to the page limit, here, we conducted this
experiment on the two datasets of ISRUC and Sleep-EDF.
The results demonstrate that our proposed framework provides
a competitive performance when only using EOG, compared
with only using EEG, and the gap is only less than 1% (ACC:
0.9%, MF1:0.4%) on the ISRUC dataset, and the gap is 1.8%
in ACC and 2.6% in MF1 on the SleepEDF dataset. When
compared to other existing models, although their performance
based on EEG surpasses ours, the gap under the distinct
input of EEG and EOG is much larger than that of ours. For
example, there is an average ACC gap of 7.4% and an average
MF1 gap of 11.2% on the SleepEDF dataset for TinySleepNet.
Among the compared methods, U-time has the smallest gap
between EEG and EOG, with an average MF1 difference of
6.0% on the both ISRUC and SleepEDF datasets.

5) Single and Multiple Modal Features Visualization: To
demonstrate the effectiveness of our method, we chose a
subject from the ISRUC dataset to visualize the intermediate
features based on single or multiple modalities. The
visualization is based on the t-SNE method [49]. Fig. 4 (a)
and Fig. 4 (b) illustrate the feature distributions by employing
single EOG and single EEG as input. Fig. 4 (c) and Fig. 4 (d)
depict the generated and real multimodal feature distributions.
As we can see, the samples from EEG modality belonging
to the same sleep stage are nicely clustered within the same
cluster in Fig. 4 (b), compared with the samples from the
EOG modality in Fig. 4 (a). It demonstrates that the EEG
modality has a more powerful predictive ability than that of
the EOG modality. Notably, the samples represented by the
generated multimodal features from the same stage also form
a cluster, which looks quite similar to those by EEG modality
features, as shown in Fig. 4 (b) and Fig. 4 (c). Compared
with the single EOG modal features in Fig. 2 (a), where
different stages lie in a chaotic, the nice clusters by the

generated features in Fig. 2 (c) further prove the effectiveness
of our method. As shown in Fig. 4 (d), based on the real
multimodal feature of EEG and EOG, the different stages are
clustered separately. The visualization comparison shows that,
our method is capable of learning the correlation between
EEG and EOG and generating reliable multimodal feature
representations based on single EOG modality.

6) Analysis of Time-Frequency Generators Ratio: In our
framework, the multimodal generators consist of two parts:
a time-domain generator and a frequency-domain generator.
The two generators share the same structure but use time
and frequency domain EOG modality as a guiding condition,
respectively. As mentioned above, we use a hyperparameter
a to control the ratio of multimodal features fusion by dual
generators. In this section, we explored the impact of the
ratio o of time and frequency features for the fusion on the
experimental results. We conduct the hyperparameter study
on five datasets and set the o from O to 1 in increments
of 0.1. As shown in Fig. 5, in most cases, when « is equal
to 0.7, which means that the time domain synthetic feature
has a higher proportion compared to the frequency domain
feature (0.7 v.s. 0.3), the model performs the best. In other
words, the synthetic feature generated using the time domain
EOG signal as the guiding condition includes much more
important information in this study. Particularly, on the Sleep-
EDF dataset, the model performs the best when « is set to
0.9 (with an average accuracy of 80.6% compared to 80.7%).
On the MASS dataset, when « is set to 0.8, the average MF1
score is slightly better (76.4% compared to 76.8% with « set
to 0.7 and 0.8, respectively). Notably, on the Sleep-EDF and
SSND datasets, the curves of their evaluation metrics vary
more smoothly when compared to the other datasets, implying
the networks are not very sensitive to the changes in the feature
fusion ratio in these two datasets. To summarize, the variation
trends of the metrics on the five datasets remain consistent: as
« increases, the model’s performance first improves and then
declines, reaching its optimal performance within the range
where time domain features have a larger proportion. Some
subtle variation differences may be because of the different
environmental conditions during data gathering.

V. DISCUSSION

In this work, our proposed method can effectively simplify
the multimodal sleep staging task, making the performance
based on single EOG modality to closely approximate that
based on EEG modality. This simplification framework allows
us to make full use of the easy collection nature of EOG
and the powerful capabilities of EEG in sleep staging. This
makes it possible to use only single EOG for sleep staging.
In current clinical practice, patients are required to wear a
cap with dozens of electrodes to collect EEG and EOG data
from several dozen channels for monitoring sleep quality
in the hospital, which is complex and expensive. Hence,
we are interested in exploring the possibility of home-
based sleep monitoring. When in a home-based setting, it is
hard to guarantee the high quality of the collected EEG
signals due to its sensitivity to environment. The existing
mainstream end-to-end sleep staging models require both
EEG and EOG signals with high qualities to build sleep
staging task to achieve good performance [50]. Fortunately,
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Fig. 5. Analysis of the Time-Frequency Generator Ratio, where we vary

we can collect high-quality EOG signals at home due to their
low environmental requirements. As mentioned above, our
framework can simplify the multimodal sleep staging task and
solely require EOG data as input. Therefore, our proposed
method can be integrated in wearable devices to gather
individual EOG data for sleep staging. Once after inputting
the single EOG modality into the pre-trained network, the
highly reliable predictions could be obtained. This process can
be conducted at home by wearing a lightweight EOG data
collection device, eliminating the need to visit a hospital and
use professional EEG acquisition equipment to collect EEG
data for sleep staging.

On the downside, there are still some limitations of this
work. Firstly, the total number of subjects in our utilized
datasets is very small. As shown in Fig. 2, our framework has
two pretraining stages before we can use it for inference: one
for obtaining real multimodal features and another for training
the time-frequency generators and dual classifiers. The quality
of the real multimodal features obtained from the pre-trained
network can directly impact the ultimate performance in the
test stage to some extent. This necessitates our utilization of a
large-scale sleep staging dataset for pretraining. However, the
largest dataset in our experiments is HMC, which contains
only 153 PSG recordings. The size of the datasets limits the
generalization of the two-step pre-trained network. Secondly,
the individual discrepancies among different subjects are
significant. Our method is fundamentally based on the pre-
trained generators that can generate synthetic multimodal
features from subjects using a single EOG modality. The input
EOG modality combined with Gaussian noise, should align
with the real multimodal features obtained from the training
set. If there are significant individual differences between the
target domain and the source domain, which means that the

0 01 02 03 04 05 0.6
(e)

0.7 08 09 1.0

the hyperparameter o from 0 to 1 in increments of 0.1.

actual general multimodal feature distributions obtained from
the training set may differ from those of the unseen subjects,
potentially resulting in poor performance for them.

VI. CONCLUSION

In this paper, we propose a novel multimodal simplification
framework for sleep staging that allows us to generate
multimodal feature representations based on single EOG
modality. Specifically, we first model the multimodal corre-
lations between the EEG and EOG modalities. Leveraging
this correlation, we adopt a conditional generative framework
guided by the time-frequency EOG signals to generate
multimodal feature representations in the absence of EEG
modality. Then, we input single EOG modality in the test
stage for sleep staging, reducing the dependence on EEG
modality. The framework was evaluated on our collected
dataset and four public datasets. Compared with existing
methods, when only using EOG as input, our framework
performs the best. Moreover, by our framework, the single
EOG modality provides comparable performance to single
EEG modality. The results demonstrate the potential of single
EOG modality for sleep staging in clinics, overcoming the
collection limitations of EEG. Motivated by the success of
simplification multimodal with single EOG, in the near future,
we plan to generalize the proposed framework to other more
easily collected signals, such as ECG signal, for monitoring
sleep quality, making sleep monitoring more easily accessible.
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