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Automatic Detection of Scalp High-Frequency
Oscillations Based on Deep Learning

Yutang Li , Dezhi Cao, Junda Qu , Wei Wang, Xinhui Xu, Lingyu Kong, Jianxiang Liao, Wenhan Hu,
Kai Zhang, Jihan Wang, Chunlin Li, Xiaofeng Yang, and Xu Zhang

Abstract— Scalp high-frequency oscillations (sHFOs)
are a promising non-invasive biomarker of epilepsy.
However, the visual marking of sHFOs is a time-consuming
and subjective process, existing automatic detectors
based on single-dimensional analysis have difficulty with
accurately eliminating artifacts and thus do not provide
sufficient reliability to meet clinical needs. Therefore,
we propose a high-performance sHFOs detector based on
a deep learning algorithm. An initial detection module was
designed to extract candidate high-frequency oscillations.
Then, one-dimensional (1D) and two-dimensional (2D) deep
learning models were designed, respectively. Finally, the
weighted voting method is used to combine the outputs
of the two model. In experiments, the precision, recall,
specificity and F1-score were 83.44%, 83.60%, 96.61% and
83.42%, respectively, on average and the kappa coefficient
was 80.02%. In addition, the proposed detector showed a
stable performance on multi-centre datasets. Our sHFOs
detector demonstrated high robustness and generalisation
ability, which indicates its potential applicability as a
clinical assistance tool. The proposed sHFOs detector
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achieves an accurate and robust method via deep learning
algorithm.

Index Terms— Deep learning, epilepsy, scalp electroen-
cephalography, scalp high-frequency oscillations.

I. INTRODUCTION

H IGH-FREQUENCY oscillations (HFOs) are considered
a promising biomarker for epileptogenic zone (EZ)

localisation and are highly correlation with a good surgical
prognosis [1], [2], [3], [4]. HFOs are defined as at least
four continuous oscillations between 80 and 500 Hz that are
significantly higher than the background brain activity [5],
[6]. According to the spectral range, HFOs can be subdivided
into ripples (80–200 Hz) and fast ripples (200–500 Hz) [7],
[8]. However, intracranial EEG can be difficult to obtain.
Conversely, scalp EEG has the advantages of non-invasiveness,
low costs and repeatable rerecording [9]; it can be used to
detect scalp HFOs (sHFOs) [10], [11], [12] as a promising
non-invasive biomarker of epilepsy [13]. These sHFOs
originate from small cortical areas [14], [15] and show up
in the scalp EEG signal as continuous oscillations. However,
the thickness and high electrical resistance of the skull reduce
intracranial electrical signal conduction, so sHFOs have a
lower amplitude than intracranial HFOs, which often causes
an isolated-island waveform to appear in the high-frequency
band (>80 Hz) of time–frequency maps. Recent studies
have applied sHFOs to diagnosing epilepsy [16], predicting
the risk of a seizure [17], evaluating the effectiveness of
treatments [18] and evaluating the postoperative situation [19].

The gold standard for sHFOs detection is visual marking by
experienced electrophysiologists [20], [21], but this is highly
time-consuming and subjective, which has limited the clinical
application of sHFOs [22]. To provide a more objective tool
and reduce clinical workload, many studies have explored
automatic sHFOs detection. Ellenrieder et al. [23] designed
a sHFOs detector based on extracting two EEG features: the
band signal amplitude ratio and absolute narrowband signal
amplitude. Their detector could detect >95% of sHFOs events,
but only 40% of the events were true positives. Chu et al.
[24] applied the Hilbert transform to the filtered data and
computed the amplitude envelope as the threshold. However,
their approach is only semiautomatic and artifacts still need
to be removed manually. Wang et al. [18] adjusted the
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parameters of the maximum distribution peak point algorithm
for detecting intracranial HFOs and applied it to detecting
sHFOs. They realised a sensitivity and specificity for the
algorithm of 82.666% ± 5.428% and 63.352% ± 10.424%,
respectively. Thus, existing sHFOs detectors have achieved a
high detection rate, but the false detection rate is still very
high. This indicates that they cannot effectively identify and
remove artifacts such as EMG, harmonic signals or sharp
transients [25].

In recent years, deep learning has shown a distinguished
performance at EEG data processing [26], [27], [28] and
has achieved a state-of-art performance in intracranial HFO
detection. The ability of a convolution neural network (CNN)
to extract features from time–frequency images and the ability
of long short-term memory (LSTM) to integrate information
from temporal EEG data make deep learning-based HFO
detectors superior to traditional detection algorithms. Zuo et al.
[29] converted 1D intracranial EEG (iEEG) into a 2D image
signal and proposed a CNN-based intracranial HFO detector.
Zhao et al. [30] applied the Morlet wavelet transform to
converting candidate HFOs (c-HFOs) into time–frequency
maps as the input for a CNN classifier. Lai et al. [31] combined
short-time energy and a CNN for application to HFO detection.
Both the time-domain features (EEG) and frequency-domain
features (time–frequency maps) of sHFOs contain important
information. However, most existing deep learning-based
detectors only focus on data from a single dimension and do
not integrate the two-dimensional characteristics of sHFOs.
Artifacts due to muscle activity or bad electrode connections
generally have similar continuous oscillations and a high
amplitude in the time domain as sHFOs as well as a similar
frequency range in the frequency domain. Therefore, a detector
is needed that combines the two-dimensional information of
sHFOs to eliminate artifacts in scalp EEG data.

In this paper, we propose an automatic sHFOs detector that
addresses the above issues. It begins with an initial detection
module to extract candidate HFOs (c-HFOs) in long-term
EEG data and plot the corresponding time–frequency map.
Then, 1D-CNN+LSTM and attention-based 2D-CNN deep
learning models are applied to sHFOs detection. The 1D model
takes the c-HFOs as input data to extract the time-domain
characteristics and the 2D model takes the time–frequency map
that is plotted by a continuous Morlet wavelet transform as the
input data. Finally, weighted soft voting is applied to ensemble
the prediction probabilities of the two models and to obtain
the final classification results.

II. METHODS

A. Data Acquisitions
In this study, scalp EEG data were collected from three

clinical hospitals. Dataset 1 included 43 patients (24 males,
aged 3 months–17 years old) diagnosed with epilepsy from
May 2018 to July 2020 in the Department of Neurology
of Beijing Children’s Hospital. The scalp EEG monitoring
data were obtained with a 10–20 system at a sampling rate
of 1000 Hz. Approval for this study was obtained from the
Ethical Committee of Beijing Children’s Hospital (reference
number 2017SY38). Dataset 2 included 12 patients (five
males, aged 7 months–10 years old) diagnosed with epilepsy
from September 2021 to April 2022 in Shenzhen Children’s

TABLE I
DATASET IMPLEMENTATION

Hospital. The scalp EEG monitoring (10–20 system) data
were obtained with a 10–20 system at a sampling rate
of 1000 Hz. Approval for this study was obtained from the
Ethical Committee of Shenzhen Children’s Hospital (reference
number 201904102). Dataset 3 included 11 patients (six males,
aged 1–5 years old) diagnosed with epilepsy from March
2016 to September 2021 at Beijing Tiantan Hospital. The scalp
EEG monitoring data were obtained with a 10–20 system at
a sampling rate of 500 or 1000 Hz. Approval for this study
was obtained from the Ethical Committee of Beijing Tiantan
Hospital (reference number KY2022-016-02).

The datasets were divided as follows. For Dataset 1, scalp
EEG data were recorded once for 37 patients. Then, 28 of
35 cases were selected for the training set and the remaining
seven cases were selected for the test set. In addition, scalp
EEG data were recorded twice for eight patients within an
interval of less than 2 months. The first recording was selected
for the training set and the second recording was selected for
the test set. Overall, the training set had 36 cases and the
test set had 15 cases. Datasets 2 and 3 were used as external
datasets to test the robustness of the proposed detector. The
details are presented in Table I.

B. Data Pre-Processing

The raw EEG data were pre-processed by using EEGLAB
(https://sccn.ucsd.edu/eeglab/index.php), which is an open-
source MATLAB toolbox that is widely applied to processing
EEG data. The sHFOs were mainly detected as ripples (80–
200 Hz) [10] because scalp EEG can only record fast ripples
(200–500 Hz) in a few patients [32], [33]. We used the finite
impulse response filter for 80–200 Hz band-pass filtering of
all data. The data were then transformed to a bipolar montage
of 18 bipolar channels for each patient. To obtain the spectral
characteristics of sHFOs, the time–frequency map of the 80–
200 Hz bandpass-filtered signal was plotted by a continuous
Morlet wavelet transform (Fig. 1).

C. Visual Marking of sHFOs

For each patient, 5–10-min segments of scalp EEG
data were selected in the non-rapid eye movement (non-
REM) sleep phase [34], [35], [36]. Two experienced
electrophysiologists visually marked sHFOs independently and
the kappa coefficient was used to evaluate the consistency
of the visual marking. The two electrophysiologists visually
marked the scalp EEG data for the first minute and calculated
the kappa coefficient [29], [37], [38]. If kappa > 0.5, one of
the viewers visually marked the remaining 4 min of scalp EEG
data. If kappa < 0.5, the two viewers visually marked the data
jointly again to establish a consensus.
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Fig. 1. EEG and time–frequency maps of sHFOs and artifact. (A) First
row: two second of raw data; second row: two second of band-pass
filtered (80–200 Hz) data; third row: Time–frequency map of band-
pass filtered (80–200 Hz) data. (B) First row: two second of band-pass
filtered (80–200 Hz) data; second row: Time–frequency map of band-
pass filtered (80–200 Hz) data.

Fig. 2. Framework of the proposed sHFOs detector. The initial detection
extracts candidate HFOs (c-HFOs) from 80–200 Hz bandpass-filtered
EEG data and a time–frequency map is plotted. The processed data
are input into the 1D-CNN+LSTM and attention-based 2D-CNN models.
Finally, the classification results are obtained using the weighted soft
voting method.

D. Proposed Detector
Fig. 2 shows the framework of the proposed detector, which

includes the initial detection and deep learning models.
1) Initial Detection: Some studies have used root mean

square or short-time energy detectors for the initial detection
of HFOs, but the reported detection rate is less than 90% [37],
[39], which implies that about 10% of HFOs will be missed.
To improve the initial detection performance, we designed a

Fig. 3. Threshold filtering module. (A) 1000- and 50-ms sliding
windows with 50% overlap. (B) The standard deviations (SD50ms and
SD1000ms) are calculated for each sliding window. Further, the ratio
(SD50ms/SD1000ms) and duration of continuous 50-ms sliding windows
are calculated. (C) c-HFOs (250 ms) and the time–frequency map
(250 × 250) are extracted from the continuous 50-ms sliding windows.

threshold-filtering module to extract c-HFO segments from
long-term scalp EEG data. The module uses a sliding window
to calculate a dynamic threshold and to locate and extract
c-HFO segments (250 ms) that exceed the target threshold.
Because sHFOs have a duration of 30–100 ms, we selected a
length of 250 ms to extract a complete sHFOs and sufficient
background information from the EEG data.

The procedure is as follows. Two sliding windows are
applied with lengths of 1000 and 50 ms with an overlap of
50%. Each 1000-ms sliding window has 39 50-ms sliding
windows (with 50% overlap). The 1000-ms sliding window
was taken as the baseline and the ratio of the standard
deviation (SD50ms/SD1000ms) for each 50-ms sliding window
is calculated. A c-HFO event was defined as when at least
1 ratio (SD50ms/SD1000ms) of 50-ms sliding window exceeds
the target threshold (1.7 SD) and at most 7 continuous ratios
(SD50ms/SD1000ms) exceed the target threshold (1.7 SD)
(the actual duration of continuous sliding windows is less
than 200ms, see Fig. 3(B)). Then, the center position of
the continuous ratios is calculated. Finally, two 125ms EEG
segments before and after the centre position are extracted as a
c-HFO segment (250ms×1) and time–frequency map (250ms
× 250Hz) is extracted at the corresponding positions. Fig. 3
shows the threshold-filtering module.

2) 1D-CNN+LSTM Model: Fig. 4(A) shows the 1D-
CNN+LSTM model of the deep learning framework. The
detailed parameters are presented in Table II. This model
combines a 1D-CNN and LSTM to extract and analyse the
time-domain characteristics of the EEG data. The c-HFO
segments with a size of 250 × 1 are used as the input. The first
two layers of the model are multiscale convolutional layers that
extract waveform and amplitude features from the 1D raw data.
Four different convolution kernels are used with sizes of 1 ×

16, 1 × 32, 1 × 64 and 1 × 128 and zero-padding is applied to
ensure the same output size at each scale. Four different scale
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Fig. 4. Deep learning framework. (A) Architecture of the 1D-
CNN+LSTM model. (B) Architecture of the attention-based 2D-CNN
model. (C) Architecture of convolutional block attention module. (D)
Channel attention module. (E) Spatial attention module.

TABLE II
ARCHITECTURE OF THE 1D-CNN+LSTM MODEL

feature maps are concatenated into the 2D matrix. Then, two
stacked bidirectional LSTM layers with 256 cells are used to
extract temporal features. Finally, three fully connected (FC)
layers are employed to integrate features and the last FC layer
has a sigmoid activation function to obtain the final prediction
results.

3) Attention-Based 2D-CNN Model: Fig. 4(B) shows the
attention-based 2D-CNN model. The detailed parameters are
presented in Table III. Resnet18 is applied as the backbone
model to extract the frequency-domain characteristics of HFO
events [40]. The core feature of Resnet18 is the stacking of
residual blocks, which uses skip connection to reduce the
influence of the vanishing gradient problem on the network.
H (x) is the desired underlying mapping to be fitted by a few
stacked layers:

H(x) = F(x) + x (1)

where x denotes the inputs to the first of these layers. Each
residual block comprises two stacked 3 × 3 convolutional
layers and the number of block stacks is [2, 2, 2, 2].

TABLE III
ATTENTION-BASED 2D-CNN MODEL

We added a convolutional block attention module (CBAM)
to each residual block to capture texture details in the feature
maps [41]. As shown in Fig. 4(C), CBAM is a lightweight
attention mechanism module comprising a channel attention
module and spatial attention module. As shown in Fig. 4(D),
the channel attention module analyses the information between
feature maps by using average pooling and max pooling.
Then, a multilayer perceptron (MLP) is used to add the output
features, which are activated by a sigmoid function to obtain
the attention-weighted feature map. The channel attention is
computed as follows:

Mchannel(F) = σ (M L P (AvePool (F))

+ M L P (Max Pool (F))) (2)

where σ denotes the sigmoid function and F is the input
feature map.

As shown in Fig. 4(E), the spatial attention module is
calculated by global average pooling and global max pooling.
Then, the output features are concatenated and a convolution
operation is used to reduce the feature map dimensions to one.
Finally, the sigmoid activation function is used to obtain the
spatial weighted feature map. The spatial attention is computed
as follows:

Mspatial(F) = σ
(

f 7×7 ([AvePool (F) ; Max Pool (F)])
)
(3)

where σ denotes the sigmoid function, f 7×7 represents a
convolution operation with a kernel size of 7 × 7 and F is
the input feature map.

4) Implementation: All deep learning models were imple-
mented in Python 3.7 and TensorFlow 2.2 and were trained
on Intel(R) Xeon(R) Gold 5118 CPU and NVIDIA Quadro
P5000 GPU. The positive samples (sHFOs) of the training set
are obtained from visual marking result, while the negative
samples (artifacts) are extracted from EEG segments that do
not include sHFOs. To ensure that the number of positive and
negative samples is 1:1, we performed data augmentation on
the positive samples and shifted the midpoint of each high-
frequency oscillation by 0–50 ms to extract multiple positive
samples with variation. Then, we randomly selected 90% of
samples for training and 10% of samples for validation. The
batch size was 32 with 35 epochs for the 1D-CNN+LSTM
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model and 32 with 50 epochs for the attention-based 2D-CNN
model. We applied the Adam optimiser [42] at a learning rate
of 1e−4. Binary cross-entropy was used for the loss function:

Loss = −
1
N

N∑
i=1

[
yi log y + (1 − yi ) log (1 − y)

]
(4)

where yi is the actual label, y ∈ {0, 1}, y is the predicted output
and N is the batch size. We used five-fold cross-validation
to evaluate the stability and generalisation ability of the 1D-
CNN+LSTM and attention-based 2D-CNN models.

5) Weighted Soft Voting: The 1D-CNN+LSTM and
attention-based 2D-CNN models were each trained and used
to extract features from the time and frequency domains
of scalp EEG data for sHFOs detection. The two models
focus on different features, so we selected weighted soft
voting to combine their outputs [43]. The model outputs were
given different weights and combined linearly to obtain the
final predicted detection probability. Weighted soft voting is
formulated as follows:

Predictvoting =w × Predict1D +(1 − w)×Predict2D (5)

where w and Predict1D are the weight and output,
respectively, of the 1D-CNN+LSTM model and (1 − w) and
Predict2D are the weight and output, respectively, of the
attention-based 2D-CNN model. w has a range of 0–1.

E. Statistical Analysis
For sHFOs detection, we evaluated the performance of

sHFOs detectors using c-HFOs segments obtained from the
initial detection; each c-HFOs is marked as sHFOs or
artifact based on the visual marking result. We selected the
accuracy, precision, recall, specificity and F1-score as the main
evaluation indicators:

Accuracy =
T P + T N

T P + F P + T N + F N

Precision =
T P

T P + F P

Recall =
T P

T P + F N

Speci f ici t y =
T N

T N + F P

F1 − score = 2 ×
Precision × Recall
Precision + Recall

(6)

where a true positive (T P) is a c-HFO that is detected
by the proposed detector and visually marked as sHFOs; a
true negative (T N ) is a c-HFO that is not visually marked
as sHFOs; and a false positive (F P) is an artifact that
is detected as an sHFOs and a false negative (F N ) is a
visually marked HFO that is missed by the proposed detector.
We applied the kappa coefficient to evaluate the consistency
of the visual marking and proposed detector, where we
defined kappa < 0.5 as agreement due to chance, kappa
> 0.5 as excellent consistency and kappa = 1 as complete
agreement. The Pearson correlation coefficient was used to
analyse the correlation between the automatic detection and

Fig. 5. Initial detection results. (A) Relationship between artifacts and
the sHFOs detection rate at different thresholds (1.5–2SD). (B) sHFOs
detection rate for the test set at a threshold of 1.7SD.

visual marking results and it is expressed as follows:

Pearson =

n∑
i=1

(
X i − X̄

) (
Yi − Ȳ

)
√

n∑
i=1

(
X i − X̄

)2
√

n∑
i=1

(
Yi − Ȳ

)2
(7)

where n is the sum of bipolar channels in the test set and
X i and Yi are the sHFOs number of automatic detection and
visual marking for each bipolar channel, respectively, for each
EEG electrode. A correlation coefficient (r) of 0.8–1 indicates
a strong correlation and P < 0.05 was considered significant.

III. RESULTS

A. Visual Marking Results
For Dataset 1, visual marking obtained 11,368 sHFOs in the

training set and 6181 sHFOs in the test set (kappa = 0.76). For
the external datasets, visual marking obtained 2785 sHFOs in
Dataset 2 (kappa = 0.78) and 1506 sHFOs in Dataset 3 (kappa
= 0.76).

B. Initial Results
We applied the threshold-filtering module to automatically

extract c-HFOs from long-term EEG data. The module
extracted about 96% of the visually marked sHFOs on average,
but a large number of artifacts exceeding the threshold
were also extracted and the number of artifacts increased
exponentially as the threshold decreased. Fig. 5(A) shows
the initial results for the test set with different thresholds.
Based on the elbow method [44], a target threshold of 1.7SD
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Fig. 6. Weighted soft voting result. The weight ranges from 0-1. The
relationship between 1D and 2D model weights is w:(1)-w). When the
weight of the 1D model is 0.65, and the weight of the 2D model is 0.35.

Fig. 7. Comparison between number of sHFOs with automatic
detection and visual marking.

was selected to balance the number of sHFOs and artifacts.
Fig. 5(B) shows the initial results for the test set with a
threshold of 1.7SD. In addition, we compared the initial
detection results of the threshold-filtering module and the
RMS method [39]. The threshold filtering module has a higher
detection rate and lower number of artifacts. Table IV shows
the comparison of initial detection.

C. Proposed Detector Results
The 1D-CNN+LSTM model classifies sHFOs based

on time-domain characteristics. We chose five-fold cross-
validation to test the robustness of the 1D-CNN+LSTM
model. The average accuracy was 93.21% (precision =

80.67%, recall = 81.05%, F1-score = 80.85%) per fold,
which demonstrated that the classification model was robust.
The 1D-CNN+LSTM model achieved an accuracy of 93.60%
(precision = 81.43%, recall = 79.54%, F1-score = 80.32%).
The attention-based 2D-CNN model classifies sHFOs based
on frequency-domain characteristics. The average accuracy
of the five-fold cross-validation was 91.5% (precision =

72.11%, recall = 86.95%, F1-score = 78.84%) per fold.
The 2D-CNN+LSTM model achieved an accuracy of 92.13%
(precision = 73.43%, recall = 86.72%, F1-score = 79.44%)
for the test set.

We applied weighted soft voting to combine the predicted
detection probabilities of the two models. We selected

Fig. 8. Missed and false detection of proposed detector.

weights of 0.65 for the 1D-CNN+LSTM model and 0.35 for
the attention-based 2D-CNN model. Fig. 6 shows the test
results with different weight combinations. Combining the
two models achieved an accuracy of 94.39% (precision =

83.44%, recall = 83.60%, specificity = 96.61%, F1-score =

83.42%). Table V presents the weighted soft voting results.
The automatic detection and visual marking results had a
kappa coefficient of 0.8001, Pearson correlation coefficient
of 0.9901 and significance level of less than 0.0001. Fig. 7
compares the automatic detection and visual marking results
for 15 patients in the test set. Our proposed detector not
only achieved a high sHFOs detection rate but also minimised
the false positive rate. However, the proposed detector still
had some false detections and missed detections (Fig. 8). The
missed detections can be attributed to the small amplitude of
HFO events (<3 µV). The false detections included many
irregular waveforms or three continuous oscillation events.

D. Comparison With Other Detectors
At present, few algorithms are available for the reliable and

automatic detection of sHFOs. We compared our proposed
detector with previous detectors that have been applied to
sHFOs detection, including the max-distributed peak points
detector [18] and statistic method detector [45]. We tested the
above two detectors on Dataset 1 and Table VI compares the
results.

E. Ablation Study
To evaluate the impact of different modules in the proposed

detector, we performed ablation experiments by removing the
initial detection module, 1D-CNN+LSTM model, or attention-
based 2D-CNN model. Table VII presents the influence on
each module. When the initial detection module was removed,
the input data were extracted as 250-ms segments from
the long-term EEG (80–200 Hz) data without overlap. The
application of the initial detection module effectively located
each sHFOs event, which significantly promoted the recall of
the classification performance.

F. External Dataset Results
We tested our proposed detector on datasets 2 and 3 from

Shenzhen Children’s Hospital and Beijing Tiantan Hospital,
respectively. For Dataset 2, the proposed detector achieved an
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TABLE IV
COMPARISON OF INITIAL DETECTION

TABLE V
WEIGHTED SOFT VOTING RESULT OF TEST SET

average accuracy of 96.04% (precision = 86.93%, recall =

78.33%, specificity = 98.52%, F1-score = 82.05%) with a
kappa coefficient of 0.797. The detailed results are presented
in Table VIII. For Dataset 3, the proposed detector achieved
an average accuracy of 98.23% (precision = 81.20%, recall
= 80.44%, specificity = 99.10%, F1-score = 80.71%) with a
kappa coefficient of 0.798. The detailed results are presented
in Table IX.

IV. DISCUSSION

For epilepsy diagnosis and treatment, sHFOs are a
promising non-invasive biomarker. However, visual marking of
sHFOs in EEG data is time-consuming and existing detectors
have demonstrated an unreliable performance, which has
limited their clinical application. We propose an automatic
sHFOs detector based on a deep learning framework that
extracts EEG features in both the time and frequency domains.
Compared with existing algorithms, our detector achieved a
better performance with a higher detection rate and lower false
positive rate. The results of our detector showed a high level
of consistency with the visual marking results and an excellent
performance with external datasets, which indicate its potential
for clinical application.

We designed a threshold-filtering module for the initial
detection of sHFOs (Fig. 3). However, this module also
extracts a large number of artifacts, which affects the detection
performance. We selected a target threshold of 1.7SD to
balance the sHFOs detection rate and number of artifacts
(Fig. 5). At this threshold, about 4% of the sHFOs were missed
by the initial detection, including some low-amplitude sHFOs

that did not exceed 1.7SD. In addition, artifacts with a high
amplitude before and after a sHFOs event may have also
resulted in a missed detection. In the ablation experiments,
the initial detection module was shown to be essential to
the proposed detector. Setting an appropriate target threshold
is essential to eliminating most artifacts and improving the
detector performance.

Many sHFOs detectors only extract features in the time
domain or frequency domain [18], [22], [24], [46]. However,
the complex recording environment of scalp EEG makes it
difficult for these detectors to effectively identify artifacts
with similar characteristics to sHFOs, which results in a
high false detection rate. Our proposed detector combines
a 1D-CNN+LSTM model to extract time-domain features
from the EEG data and an attention-based 2D-CNN model
to extract frequency-domain features from the time–frequency
maps. To improve the reliability of the deep learning
model in classifying artefact segments, when processing
the training set, we retained the abnormal channels and
the data segments with Electromyographic (EMG) artefacts
and abnormal waveforms. To avoid data leakage, we chose
an independent test set to evaluate the proposed model.
Table V indicates that the proposed detector performed better
(precision = 83.44%, recall = 83.60%, F1-score = 83.42%)
than the 1D-CNN+LSTM model or attention-based 2D-CNN
model alone. The visual marking and automatic detection
results had an average kappa coefficient of 0.8001 and Pearson
correlation of 0.9901. This indicates that our proposed detector
shows close agreement with visual marking, which is the gold
standard for sHFOs detection.
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TABLE VI
COMPARISON WITH OTHER DETECTORS

TABLE VII
PERFORMANCE WITH DIFFERENT MODULE

TABLE VIII
WEIGHTED SOFT VOTING RESULT OF DATASET 2

Many automatic detectors have been reported with an
excellent detection performance for a single dataset. However,
few researchers have evaluated the performance of their
detectors with external datasets. To evaluate the robustness and
generalisation ability of the proposed detector, we tested it on
external datasets collected from two other clinical hospitals.
Tables VIII and IX present the results of the two datasets.
Our detector achieved a high level of performance and showed
good generalisation and robustness. Our detector had kappa
coefficients of over 0.79 for all three test sets, which indicates
a high level of consistency with the visual marking results.

There are several limitations to our research. Scalp EEG
signals are the sum of the cerebral cortex’s activity, which

implies that sHFOs may be recorded by adjacent scalp elec-
trodes. We visually examined the scalp EEG data of patients
with sHFOs and found that, even in low-density EEG data
(18 bipolar channels), sHFOs with a high amplitude (>5 µv)
can be recorded by adjacent electrodes because of the volume
conduction effect [47]. The spatial propagation of HFOs has
been mentioned in some studies [48], [49], [50]. In the future,
we plan to design a module to identify sHFOs recorded by
adjacent electrodes and evaluate the impact on the results.
Moreover, classification of physiological and pathological
HFOs in the ripple band is challenging. Some studies have
shown that there are differences between the two types of
HFOs in terms of time-frequency features, spatial distribution,
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TABLE IX
WEIGHTED SOFT VOTING RESULT OF DATASET 3

and low-frequency coupling [51], [52], [53], and the classifi-
cation method have been designed based on machine learning
algorithms [53], [54], lacking deep learning-based methods.
One most common approach is to classify physiological HFOs
if they occur within the normal zone [49], [55], which can label
physiological and pathological HFOs. The patients included
in this study were children and the primary treatment was
antiepileptic drugs. There were no plans to treat these patients
with surgery, so we did not obtain further clinical information,
making it uneasy to label physiological and pathological
sHFOs. The lack of labels limits the implementation of deep
learning-based detectors for training. In the future, we plan
to collect scalp EEG of patients undergoing epileptogenic
resection surgery to explore the recognition of physiological
sHFOs based on deep learning algorithms. In addition, because
of the limitations of the hospital equipment, we collected
low-density EEG data (18 channels), which is sufficient for
evaluating the effectiveness of epileptic drug treatments and
postoperative prognoses but is difficult to apply to accurate
EZ evaluation. In future studies, we plan to include the data of
children and adolescents who have undergone epilepsy surgery
and to collect high-density scalp EEG data for evaluating the
applicability of sHFOs to preoperative auxiliary localisation
and postoperative prognosis evaluation.

V. CONCLUSION

Herein, we propose an automatic deep learning algorithm
for sHFO detection. Despite the presence of EMG artifacts
and noise in EEG recordings, our algorithm can accurately
locate and identify sHFOs from scalp EEG, yielding excellent
detection results. The false positive rate was considerably
lower than the existing automatic detection algorithms.
Meanwhile, the automatic detection results of our algorithm
were highly consistent with visual marking. In addition, our
detector exhibited stable performance when applied to datasets
obtained from different centres, which makes it reliable for
clinical application.
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