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Abstract— Affective brain-computer interfaces (aBCIs)
have garnered widespread applications, with remarkable
advancements in utilizing electroencephalogram (EEG)
technology for emotion recognition. However, the time-
consuming process of annotating EEG data, inherent
individual differences, non-stationary characteristics of
EEG data, and noise artifacts in EEG data collection
pose formidable challenges in developing subject-specific
cross-session emotion recognition models. To simulta-
neously address these challenges, we propose a uni-
fied pre-training framework based on multi-scale masked
autoencoders (MSMAE), which utilizes large-scale unla-
beled EEG signals from multiple subjects and sessions
to extract noise-robust, subject-invariant, and temporal-
invariant features. We subsequently fine-tune the obtained
generalized features with only a small amount of labeled
data from a specific subject for personalization and enable
cross-session emotion recognition. Our framework empha-
sizes: 1) multi-scale representation to capture diverse
aspects of EEG signals, obtaining comprehensive infor-
mation; 2) an improved masking mechanism for robust
channel-level representation learning, addressing missing
channel issues while preserving inter-channel relation-
ships; and 3) invariance learning for regional correlations
in spatial-level representation, minimizing inter-subject and
inter-session variances. Under these elaborate designs, the
proposed MSMAE exhibits a remarkable ability to decode
emotional states from a different session of EEG data
during the testing phase. Extensive experiments conducted
on the two publicly available datasets, i.e., SEED and SEED-
IV, demonstrate that the proposed MSMAE consistently
achieves stable results and outperforms competitive base-
line methods in cross-session emotion recognition.
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I. INTRODUCTION

AFFECTIVE Brain-computer Interfaces (aBCIs) employ
brain imaging techniques to capture and interpret human

emotional states, aiming to achieve emotional communication
and expression between humans and computers. This endeavor
enhances both the immersive user experience and the effi-
ciency of human-computer interaction. Additionally, aBCIs
exhibit promising applications in fields such as healthcare
and education for long-term monitoring and prediction of
emotional states, enabling personalized psychological inter-
ventions and treatment plans [1], [2]. With aBCIs, a variety
of modalities have been utilized, including functional mag-
netic resonance imaging (fMRI), Near-Infrared Spectroscopy
(NIRS), and electroencephalography (EEG). In particular,
EEG-based aBCIs have garnered increasing attention due to
the rapid advancements in noninvasive, user-friendly, and low-
cost EEG recording devices, particularly with the aid of
portable dry electrode devices [3].

EEG-based aBCIs have demonstrated their capability to
decode users’ intentions from brain recordings and have
showcased potential applications in neural rehabilitation
systems [4]. However, individual differences and the non-
stationary characteristic of EEG [5] render the development of
stable EEG-based emotion recognition models a challenging
task. Consequently, it is necessary to collect labeled samples
for each subject at each time to train new models, leading
to time-consuming and expensive labeling work. To mitigate
the reliance on the labeled data, in recent years, an increasing
number of researchers have turned their focus on applying
transfer learning methods to reduce individual differences [5],
[6], [7], [8], [9] and improve feature invariance representa-
tion [10], [11], [12].

Currently, the predominant transfer learning methods
employed in EEG-based aBCIs include domain adaptation
(DA) and domain generalization (DG). These methods are
designed to reduce the distribution discrepancy between the
source and target domains, thus resulting in an improved
recognition performance in the target domain. Nevertheless,
DA methods require utilizing the target domain during the
training stage and typically assume that the data distribution
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remains invariant or changes minimally between the source
domain and target domain. In scenarios where the data distri-
bution continuously evolves during real-time data acquisition,
DA methods cannot effectively adapt these variations. On the
other hand, DG generates domain-invariant representations
from the source domains without exposure to data from the
target domain, thus being more suitable for practical applica-
tions. However, DG methods require large numbers of source
domains to train the model and enhance its generalization
capabilities.

DA methods require access to target domains with data
distributions, while DG methods need large numbers of source
domains. These approaches are impractical for the following
cross-session emotion recognition scenario: when only one
session (i.e., one source domain) of labeled data is available
for a specific subject during the training stage. In this context,
the primary concern is effectively utilizing the limited labeled
data to train a subject-specific model for cross-session emotion
recognition.

Within the context of the brain-big-data center, real-time
EEG data from a vast group of individuals are continuously
transmitted, resulting in an abundance of unlabeled signals
from various subjects and sessions, potentially containing
some degree of corruption. Therefore, this situation presents
an intriguing challenge: Can these unlabeled data be combined
with the limited labeled data to train a subject-specific model
for cross-session emotion recognition? This paper addresses
this challenge by proposing Multi-Scale Masked Autoencoders
(MSMAE). The MSMAE model is based on a multi-scale
Vision-Transformer hybrid architecture, incorporating spec-
trum embedding, multi-head spatial attention, and multi-scale
feature fusion to capture channel and spatial information of the
EEG signals effectively. Specifically, MSMAE is pre-trained
using unlabeled EEG data from multiple subjects and sessions,
encoding and reconstructing channel-level and spatial-level
representations of EEG signals to extract noise-robust, subject-
invariant, and temporal-invariant features. Subsequently, only
a small amount of labeled data from specific subjects is
necessary to fine-tune the model for personalization. Under
this comprehensive training, the subject-specific model demon-
strates a remarkable ability to decode emotional states
from a different session of EEG data during the testing
phase.

The main contributions of this study can be summarized in
three aspects:

1) We introduce a unified multi-scale pre-training frame-
work aimed at addressing challenges related to missing EEG
channels and limited labeled data in emotion recognition.
This framework significantly enhances the practicality and
effectiveness of EEG-based emotion recognition in real-world
applications.

2) We present an innovative multi-scale fusion approach
that combines channel-level and spatial-level learning. Our
model aligns spatial-level correlations between pre-training
and fine-tuning data to mitigate inter-subject and inter-session
variations. Furthermore, it fine-tunes channel-level represen-
tation to ensure the exclusivity of subject-specific features.
These techniques enhance adaptability and robustness for
subject-specific cross-session emotion recognition tasks.

3) Our proposed model exhibits superior performance on
two publicly available datasets for cross-session emotion
recognition, even when only one session of labeled data is
accessible for training.

The organization of this paper is structured as follows:
Section II offers a brief review of related works. Section III
elaborates on the proposed method. Section IV conducts a
comprehensive evaluation of the proposed method. Finally,
Section V concludes the paper.

II. RELATED WORK

A. EEG Emotion Recognition
EEG-based emotion recognition depends on extracting suf-

ficiently discriminative EEG features. The widely used EEG
features can be categorized into four groups: temporal-domain
features, frequency-domain features, time-frequency-domain
features, and brain connectivity features. The commonly
employed statistical information in the temporal domain
includes entropy, the fractal dimension, and higher-order
crossings [13], [14]. Within the frequency domain, power
spectral density (PSD) [15] and differential entropy (DE) [16]
stand out as two of the most frequently employed features.
Several approaches [17], [18], [19], [20] have demonstrated
excellent performance for time-frequency-domain features.
Nalwaya et al. [19] employed the Fourier-Bessel domain adap-
tive wavelet transform (FBDAWT) to analyze multi-sensor
EEG signals, accurately identifying emotional states. Bhat-
tacharyya et al. [20] integrated the empirical wavelet transform
(EWT) with Fourier–Bessel series expansion (FBSE), resulting
in enhanced time-frequency representation of multi-component
signals. For brain connectivity features, two crucial features,
namely the Phase Lag Index (PLI) and the Phase Lock
Value (PLV), were utilized to assess the phase synchroniza-
tion among electrode signals across various brain regions.
Liu et al. [21] employed the PLI feature to discern the
emotional states of individual subjects, highlighting its remark-
able discriminative capability. Chen et al. [22] integrated
frequency-domain features with brain connectivity features
for cross-subject emotion recognition, demonstrating superior
performance. Furthermore, with the widespread adoption of
deep learning methods, Alhagry et al. [23] utilized a two-
layer long short-term memory network to extract temporal
features. Zhang et al. [24] employed a recurrent neural net-
work (RNN) to capture spatial-temporal representations from
EEG signals. Zhong et al. [8] introduced a regularized graph
neural network that considers the topological structure of
EEG channels. Although these supervised approaches have
successfully enhanced emotion recognition performance based
on EEG signals, they require well-annotated and robust EEG
data, which is relatively challenging to obtain in practical
applications. Additionally, they often ignore the influence of
session differences, such as the variations in the duration and
content of the elicitation videos across different experiments,
which introduce emotional biases.

B. Transfer Learning
Transfer learning seeks to enhance the performance of a new

task by leveraging knowledge from a source task. DA, a subset
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Fig. 1. Mapping EEG electrode distribution map to a two-dimensional
plane. The left illustration depicts the spatial arrangement of channels on
the brain cap, while the right is the 2D converted feature matrix format.
The missing channels are filled with 0.

of transfer learning, has been extensively applied in EEG-
based emotion recognition, demonstrating promising results.
Chen et al. [25] introduced a multi-source marginal distri-
bution adaptation method that captures domain-invariant and
domain-specific features for emotion recognition. Li et al. [26]
developed an innovative domain adaptation method for emo-
tion recognition, which extracts generalized features across
different subjects and sessions by simultaneously adapting
both the marginal and conditional distributions to approximate
the joint distribution. However, these DA methods require
access to target domains with data distributions. Unlike DA,
DG aims to generate domain-invariant representations from
the source domains without utilizing data from the target
domain. Ma et al. [27] developed a domain residual net-
work that facilitated the separate learning of domain-specific
and domain-shared weights, with the latter being used to
classify emotion in unknown domains. Ozdenizci et al. [10]
proposed an adversarial inference approach to extend deep
learning models for EEG-based person identification, aiming
to learn session-invariant person-discriminative representa-
tions. However, this requirement becomes impractical when
only one source domain of labeled data is available. Recently,
Li et al. [28] utilized self-supervised learning for initial model
pre-training and subsequently fine-tuned the model on new
data, demonstrating notable performance in emotion recogni-
tion tasks, including scenarios where data may be incomplete
or corrupted. However, this model cannot handle complex
tasks such as cross-session analysis. Conducting cross-session
emotion recognition with limited training data still poses
significant challenges.

III. METHOD

A. Formulation
We transform the EEG channels into a two-dimensional

plane using the EEG electrode distribution map to improve
spatial information consistency among adjacent channels,
as depicted in Fig.1. Specifically, each channel is reposi-
tioned onto a two-dimensional electrode topology, with a
size of 9 × 9, and zero-padding is performed for missing
electrodes. We apply this transformation to frequency-domain
features, resulting in the EEG image x ∈ R9×9×C f , where C f
represents the number of frequency bands. The pre-training
dataset consists of unlabeled data from various subjects and
sessions, represented as XPre = {x(i)

Pre}
NPre

i=1 ∈ RNPre×9×9×C f ,
with NPre being the number of samples in this dataset. The
fine-tuning data contains a limited amount of labeled data

from a specific subject s, represented as Xs
F = {x

(i)
F }

NF

i=1 ∈

RNF×9×9×C f and Ys
F = {y

(i)
F }

NF

i=1, where NF is the number of
samples in this dataset. The test data and labels for the specific
subject s are denoted as Xs

T = {x
(i)
T }

NT

i=1 ∈ RNT×9×9×C f and

Ys
T = {y

(i)
T }

NT

i=1, with NT representing the number of samples
in the test dataset.

B. Overview
We propose a Multi-scale pre-training model based on mask

autoencoder (MAE) [29], as shown in Fig.2. The framework
consists of a multi-scale pre-training stage, a personalized fine-
tuning stage, and a personal testing stage.

In the multi-scale pre-training stage, both the channel-level
feature extractor EPre_1 and the spatial-level feature extractor
EPre_3 are employed to extract general information, which is
shared by all subjects. Specifically, the unlabeled EEG data
xPre is initially convolved with different scales of kernels
(1×1 and 3×3), which are represented by Conv1 and Conv3,
resulting in channel-level representation x̃Pre_1 and spatial-
level representation x̃Pre_3. For channel-level representation
x̃Pre_1, considering the presence of missing data in some
channels, we avoid encoding these channels with missing data
to preserve complete information and prevent the introduction
of noise. We reconstruct the masked portions to learn the
encoder E1 and obtain zPre_1. For spatial-level representation
x̃Pre_3, which include multiple channel information, we apply
the attention feature extractor, denoted by Attn, to align
the features of pre-training data and fine-tuning data based
on brain region correlations, resulting in the aligned feature
x̄Pre_3. We subsequently employ masking and reconstruction
on x̄Pre_3 to learn the encoder E3 and obtain zPre_3. The
formulas are as follows:

zPre_1 = EPre_1(xPre) = E1(Conv1(xPre)) (1)
zPre_3 = EPre_3(xPre) = E3(Attn(Conv3 (xPre))) (2)

In the fine-tuning calibration stage, only a limited amount
of labeled data from a specific subject is employed to fine-
tune channel-level feature extractor EPre_1 for the personal
emotion predictor. Simultaneously, we freeze the parameters
of the pre-trained spatial-level feature extractor EPre_3 for the
generalized emotion predictor. Finally, we fuse the channel-
level representation with the spatial-level representation to
perform the final emotion classification. Through this com-
prehensive training, the subject-specific model demonstrates
an exceptional capability to decode emotional states from a
different session of EEG data during the test phase. We elab-
orate on each stage as follows.

C. Multi-Scale Pre-Training
To use more corrupted EEG data and enhance the learning

capacity of the model, we adopt the MAE framework with
a transformer-based backbone network [30]. The model splits
images into equal blocks and uses transformer encoders to
extract features, with an asymmetric encoder-decoder design
for image reconstruction. It leverages transformers for global
information, masking for robustness, and self-supervised train-
ing for generalizability.
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Fig. 2. Overall structure of MSMAE. The framework consists of a multi-scale pre-training stage, a personalized fine-turning stage, and a personal
testing stage.

In our study, we employ convolutional kernels for patch
embedding. The size of the convolutional kernel offers
different interpretations for partitioning in two-dimensional
EEG images, where 1 × 1 convolutions partition individ-
ual electrodes to learn inter-channel relationships, and 3 ×
3 convolutions are utilized to learn about broad spatial fea-
tures. We conduct multi-scale feature fusion to enhance data
utilization and model representation capacity, enabling the
extraction of deeper emotional representations from the fre-
quency domain channel features and spatial features of the
EEG.

1) Channel-Level Representation: By employing 1 × 1 con-
volution, we map each EEG electrode to a patch, enabling
the vision-transformers framework to encode channel rela-
tionships and capture specific feature information. However,
the challenge of partially missing channels and zero-padding,
combined with random masking, risks losing valuable data.
To address this, we have improved our approach by ensuring
all zero-padded patches are masked, preserving meaningful
channel information in our feature extraction process. More
specifically, given the input pre-training data xPre, we embed
patches using C1 convolutional kernels of size 1 × 1 with
added positional embeddings, obtaining x̃Pre_1 ∈ R9×9×C1 :

x̃Pre_1 = Conv1(xPre, kernel_si ze = (1, 1) , stride = 1)

(3)

where Conv1 represents a convolution operation. Assuming
that out of the 81 (9×9) patches, there are p non-zero padded
patches (e.g., p = 62 as illustrated in Fig.1). To ensure the
effectiveness of subsequent feature encoding, we randomly

mask these p non-zero padded patches in addition to masking
all zero-padded patches. The formula is as follows:

M(1)
i, j =

{
0, i f posi tion(i, j)should be masked
1, otherwise

(4)

qi, j =
∑C f

k=1
xi, j,k (5)

Qi, j =

{
1, i f qi, j ̸= 0
0, otherwise

(6)

M̃(1)
=M(1)

◦Q (7)

where xi, j,k ∈ xPre, M(1)
=

{
M(1)

i, j

}9

i=1, j=1
∈ R9×9 represents

the original random mask, Q =
{

Qi, j
}9

i=1, j=1 ∈ R9×9

represents the matrix corresponding to the 2D EEG images

with missing channels, M̃(1)
=

{
M̃

(1)

i, j

}9

i=1, j=1
represents the

updated mask, and ◦ denotes the element-wise multiplication.
2) Spatial-Level Representation: When using a 3 × 3 con-

volution for partitioning, each patch contains more electrode
channel information. The neighboring channels in EEG sig-
nals influence each other and reflect the corresponding brain
region’s signal characteristics. The connectivity between these
brain regions is closely related to their spatial positions.
The spatial features of EEG signals reflect the coordination
and interaction among different areas of the brain, which is
crucial for analyzing the spatial distribution and temporal vari-
ations of neural activity. In cross-session emotion recognition
experiments, factors, like induced emotional stimuli, exter-
nal environments, and physiological expressions contribute to
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variability. However, the regional influence of EEG signals
remains more objective and stable. Therefore, we consider
further encoding and decoding the spatial features. By using
large-scale convolutions for weighted average partitioning,
we not only incorporate spatial features of brain regions
to some extent but also exhibit universality across all EEG
data with missing channels, reducing the workload of data
preprocessing. Specifically, given the input pre-training data
xPre, C3 convolutional kernels of size 3 × 3 are applied to
obtain x̃Pre_3 ∈ R3×3×C3 :

x̃Pre_3

= Conv3(xPre, kernel_si ze = (3, 3) , stride = 3) (8)
x̃Pre_3 (i, j)

←
x̃Pre_3(i, j)∑3

a=1
∑3

b=1 I(xPre((i − 1)× 3+a, ( j − 1)× 3+b) ̸= 0)

(9)

Here, Conv3 represents a convolution operation, and I(·)
denotes the indicator function that returns 1 if the condition
is true and 0 otherwise. x̃Pre_3(i, j) ∈ RC3 (for i = 1,2,3
and j = 1,2,3) represents the patch obtained through 3×3
convolution, and it is then normalized by dividing by the
number of existing channels in each corresponding patch.

3) Invariance Learning for Region Correlation: We align pre-
training and fine-tuning data features based on brain region
correlations to obtain subject-invariant and temporal-invariant
features. Considering that each individual’s emotional fluctu-
ations are unique and represent their distinct characteristics,
we choose to align the shared features based on brain
region correlations instead of directly aligning the pre-
training spatial-level representation data x̃Pre_3 and fine-tuning
spatial-level representation data x̃F_3.This approach partially
attenuates the differences in data distribution while preserv-
ing the unique characteristics of EEG signals. Specifically,
x̃Pre_3 ∈ R3×3×C3 and x̃F_3 ∈ R3×3×C3 are first rearranged
into x̃R

Pre_3 ∈ R9×C3 and x̃R
F_3 ∈ R9×C3 , respectively. Subse-

quently, an attention mechanism is employed to capture the
correlations between patches:

APre =
Q Pre K T

Pre
√

dk
∈ R9×9, AF =

QF K T
F

√
dk
∈ R9×9 (10)

Here, Q Pre ∈ R9×dk and K Pre∈R9×dk refer to the queries
and keys for x̃ R

Pre_3, respectively, obtained by performing
linear transformations on x̃ R

Pre_3, while QF and K F are the
corresponding queries and keys for x̃ R

F_3; the dimension of
the keys (queries), denoted as dk , is used for scaling the dot
product.

Then, the similarity between APre in the pre-training data
and AF in the fine-tuning data is measured using Maximum
Mean Discrepancy (MMD):

Lmmd =

∥∥∥∥ 1
B

∑B

i=1
∅(A(i)

Pre)−
1
B

∑B

j=1
∅(A( j)

F )

∥∥∥∥2

H
(11)

where B stands for the number of samples in a training mini-
batch, i and j are the indexes within the batch, A(i)

Pre represents
the correlation matrix of the i-th pre-training sample, A( j)

F

represents the spatial correlation matrix of the j-th fine-turning
sample, and ∅(·) denotes the mapping function.

By doing so, we can quantify the distribution differences
in attention representations between the impaired pre-training
data and the fine-tuning data. Introducing this type of loss mit-
igates the feature disparities between different subjects while
preserving the emotional characteristics inherent to the subject,
thereby enhancing the model’s classification performance and
generalization ability. The attention mechanism is further used
to obtain the aligned feature x̄Pre_3:

x̄R
Pre_3 = Attn(x̃R

Pre_3) = Sof tmax(APre)V Pre (12)

where V Pre is the values obtained by performing a linear
transformation on x̄R

Pre_3, and Attn is the attention feature
extractor. Finally, x̄R

Pre_3 is rearranged into x̄Pre_3 ∈ R3×3×C3

for the subsequent 2D masking with the size of 3× 3.
At this point, x̄Pre_3 has better spatial features and prior

knowledge compared to the initial data, and it also has some
complementary relationship with the channel-level representa-
tion.

4) Encoder, Decoder, and Reconstruction: Based on the
aforementioned embedding using different scales, we obtain
the data x̃Pre_1 and x̄Pre_3. We apply masks to these data
based on different meanings of scale features. Then, we utilize
a multi-layer Transformer encoder to extract features, followed
by a decoder to reconstruct the images. The formula is shown
below:

zPre_1 = E1(x̃Pre_1 ⊙ M̃(1)), x′Pre_1 = D1(zPre_1) (13)

zPre_3 = E3(x̄Pre_3 ⊙ M̃(3)), x′Pre_3 = D3(zPre_3) (14)

where M̃(3)
∈ R3×3 represents the random mask for x̄Pre_3,

⊙ denotes the element-wise masking operation, and the mask
values are broadcasted correspondingly. zPre_1 and zPre_3 are
the masked data obtained through the encoder E1 and E3.
x′Pre_1 and x′Pre_3 are the reconstructed data obtained through
the decoders D1, D3. Then, we use the mean squared error
(MSE) to measure the quality of the masked reconstruction.
The reconstruction loss is computed only from masked non-
zero patches to avoid introducing noise. Specifically, the
formulas are as follows:

Lrecon_1

=
1

|�1| × C f

∑
(i, j)∈�1

∥∥xPre(i, j)− x′Pre_1(i, j)
∥∥2 (15)

Lrecon_3

=
1

|�3| × C3

∑
(i, j)∈�3

∥∥x̄Pre_3(i, j)− x′Pre_3(i, j)
∥∥2 (16)

where �1 represents the index set of the masked non-zero
patches for xPre, �3 represents the index set of masked
patches for x̄Pre_3, | · | denotes the number of elements in the
set, (i, j) is the index of the masked patches, x′Pre_1(i, j) ∈
RC f , and x′Pre_3(i, j) ∈ RC3 . We obtain the reconstruction
losses, Lrecon_1 and Lrecon_3, for two segments of different
scales. For a mini-batch training dataset, the reconstruction
losses can be expressed as L B

recon_1 and L B
recon_3.
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D. Fine-Tuning Stage and Test Stage
After pre-training, generalized feature extractors EPre_1 and

EPre_3 are obtained, which can be fine-tuned to obtain a
personalized feature extractor Ê , adapting it to a new task.
However, certain modifications have been made when it comes
to model transfer for EEG data.

In channel-level representation learning, in order to address
the issue of zero-padding when mapping EEG data to two-
dimensional brain images, we use channel masking during
the pre-training stage to minimize the impact of zero-padding
on the pre-training data. Similarly, during the fine-tuning
stage, in the self-attention mechanism, a masking matrix
can be used to assign a weight of 0 to the contribution of
the padded regions in the attention weights. This effectively
removes the influence of missing data on the attention weights
and prevents the padded regions from interfering with the
results.

Specifically, given the input xF , we obtain x̃F_1 through
the patch and positional embedding. Afterward, we calculate
the corresponding attention matrix Achan ∈ R81×81 within the
encoder E1, where each element Achan

i, j is defined as:

Achan
i, j =

exp(ei, j + M (F)
i, j )∑n

k=1 exp(ei,k + M (F)
i,k )

(17)

where n represents the number of patches, ei, j represents the
similarity score between the i-th and j-th patches, determined
through the dot product of two vectors, and M (F)

i, j serves
as a padding patch indicator. If either the value of the i-th
or the j-th patch is missing (i.e., represented by a padding
value), then M (F)

i, j is set to -∞ to eliminate their contribution
to the attention matrix (i.e., lim

M(F)
i, j →−∞

exp(ei, j+M (F)
i, j )= 0);

otherwise, M (F)
i, j is set to 0.

In the pre-training phase for spatial-level representation,
spatial feature alignment has already been performed through
fine-tuning data. Therefore, the aligned data can be directly
used for feature extraction in the encoder. To reduce the
number of tuning parameters and enhance model stability,
in this stage, we choose to freeze the pre-trained parameters of
spatial-level representation without adjustments. This approach
allows us to effectively leverage the previous pre-training
results while avoiding issues such as overfitting during fine-
tuning, thus improving the model’s generalization ability.
Finally, the features extracted from the channel-level repre-
sentations and spatial-level representations, denoted as zF_1
and zF_3, respectively, are concatenated together and passed
through a Batch Normalization layer to enhance the model’s
robustness and generalization ability. A classification layer
is then incorporated into the fused features zF for emotion
classification, and we compute the classification loss using
cross-entropy.

In the test stage, we employ a new session of EEG data
from the specific subject, denoted as xs

T and ys
T , to validate

the effectiveness of the subject-specific model. The details of
our proposed method are shown in Algorithm 1.

Algorithm 1 Multi-scale Masked Autoencoders

Input: Pre-training data XPre= {x
(i)
Pre}

NPre

i=1 , fine-tuning data Xs
F =

{x(i)
F }

NF
i=1 and labels Ys

F = {y
(i)
F }

NF
i=1 for a specific subject s; test

data Xs
T = {x

(i)
T }

NT
i=1 for the specific subject s; the number of epochs

Epoch and the batch size B.
Output: The generalized feature extractors EPre_1 and EPre_3
(include Conv3, Attn, and E3); the personalized emotion predictor
Ê ; and the predicted emotion class Ŷs

T = {ŷ
(i)
T }

NT
i=1.

Pre-training Stage for Channel-level Representation:
1: Randomly initialize EPre_1.
2: for i = 1: Epoch do
3: repeat
4: Draw one batch of pre-training data xB

Pre.
5: Embed the pre-training data xB

Pre to obtain x̃B
Pre_1.

6: Mask the pre-training data and encode:
zB

Pre_1 = E1(x̃B
Pre_1 ⊙ M̃(1)).

7: Reconstruct the input data: x′BPre_1 = D1(zB
Pre_1).

8: Optimize EPre_1 by minimizing the reconstruction loss
L B

recon_1.
9: until all samples in XPre have been drawn.
10: Return EPre_1.
Pre-training Stage for Spatial-level Representation:
11: Randomly initialize EPre_3.
12: for i = 1: Epoch do
13: repeat
14: Draw one batch of pre-training data xB

Pre and one batch
of fine-tuning data xB

F .
15: Embed the input data xB

Pre
and xB

F to obtain x̃B
Pre_3 and x̃B

F_3, and calculate their
corresponding spatial correlation matrix AB

Pre and AB
F .

16: Align the space feature by minimizing the MMD loss
Lmmd = M M D(AB

Pre, AB
F ).

17: Optimize Conv3and Attn by minimizing the reconstruction loss
Lmmd .

18: until all samples in XPre have been drawn.
19: Return Conv3and Attn.
20: Calculate x̄B

Pre_3 based on Attn: x̄B
Pre_3 = Attn(x̃B

Pre_3).
21:for i = 1: Epoch do
22: repeat
23: Mask the pre-training data and encode:

zB
Pre_3 = E3

(
x̄B

Pre_3 ⊙ M̃(3)
)

.

24: Reconstruct the input data: x′BPre_3 = D3(zB
Pre_3).

25: Optimize E3 by minimizing the reconstruction loss L B
recon_3.

26: until all samples in XPre have been drawn.
27: Return EPre_3.
Personalized Calibration Stage:
28: Initialize Ê with EPre_1, EPre_3, and frozen EPre_3.
29: for i = 1: Epoch do
30: repeat
31: Draw one batch of fine-tuning data xB

F .
32: Calculate zB

F_1, zB
F_3 based on EPre_1 and EPre_3.

33: Calculate the fused feature:
zB

F = BatchNorm([zB
F_1, zB

F_3]).
34: Predict the emotion class ŷB

F based on zB
F .

35: Optimize Ê by minimizing the classification loss:
Lcls = Cross Entropy( ŷB

F , yB
F ).

36: until all samples in Xs
F have been drawn.

37: Return Ê .
Test stage:
38: Predict the emotion class: Ŷ

s
T = Ê(Xs

T ).
39: Return Ŷ

s
T .



PANG et al.: MULTI-SCALE MASKED AUTOENCODERS FOR CROSS-SESSION EMOTION RECOGNITION 1643

TABLE I
PARAMETER DETAILS OF THE MODEL

E. Implementation
Due to the different number of blocks in the channel-level

and spatial-level representation learning stages, 9 × 9 and
3 × 3, respectively, different mask rates are established for
each stage. Specifically, the mask rate for the channel-level
representation learning stage is set as 0.75, in accordance with
the original MAE [29], and for the spatial-level representation
learning stage, it is adjusted to 0.5, due to the limited number
of blocks.

The encoder and decoder parameters for channel-level and
spatial-level representation learning are set identically for
simplicity. Specifically, the dimensions for the encoder and
decoder are chosen from {128, 256, 512, 1024}, with the
number of layers selected from {1, 2, 3, 4}, and the number of
self-attention heads from {2, 4, 6, 8}. MSMAE is optimized
using the SGD optimizer with a learning rate of 0.001,
50 epochs, and a batch size of 32. The parameter settings
are detailed in Table I.

IV. EXPERIMENT

A. Datasets
Experiments are performed on two publicly available

datasets, namely SEED and SEED-IV. The SEED dataset
includes EEG signals from 15 subjects, which are recorded
using an ESI NeuroScan System with 62 channels [31].
Each subject participates in three sessions, with an interval
of approximately one week between sessions. During these
sessions, the subjects’ data are collected while watching
emotion-eliciting movies designed to evoke three different
emotional states: negative, positive, or neutral. The signals
are initially recorded at a sampling rate of 1000Hz and are
subsequently downsampled to 200Hz for analysis. They are
further segmented into non-overlapping 1-second segments,
with each segment treated as a sample. Consequently, for each
subject and each session, there is a total of 3,394 samples.

The SEED-IV dataset consists of EEG signals of 15 subjects
recorded using the same recording device as SEED [32].
Similar to the SEED dataset, each subject participates in
three separate sessions with intervals between them. In this
case, four emotional states are collected: happiness, sadness,
fear, and neutral. The signals are divided into 4-second non-
overlapping segments, and each segment is regarded as an
individual sample. Consequently, for Sessions I, II, and III,
there are 851, 832, and 822 samples per subject, respectively.

B. Data Preprocessing
To construct a unified pre-training model, it is necessary to

preprocess all the data in a consistent manner. Firstly, based on

TABLE II
AVERAGE ACCURACIES (%) AND STANDARD DEVIATIONS (%) ON

SEED AND SEED-IV DATASETS USING WITHIN-SUBJECT

CROSS-SESSION CROSS-VALIDATION

the structure of the EEG cap, the EEG channels of each frame
are mapped into a two-dimensional EEG image to preserve the
spatial location of the electrodes, as shown in Fig. 1. This
transformation is applied to frequency-domain features for
each sample. We employ Differential Entropy (DE) for the
frequency-domain feature, which is widely used in emotion
recognition [31]. Specifically, DE features are derived from
five predefined frequency bands, which include Delta (1-3
Hz), Theta (4-7 Hz), Alpha (8-13 Hz), Beta (14-30 Hz), and
Gamma (31-50 Hz). Additionally, min-max normalization is
performed at the sample level to address the issue of varying
feature ranges, improve the convergence performance of the
model, and eliminate the dimensional differences between
different features.

C. Cross-Session Evaluation
Compared to other datasets, the SEED and SEED-IV

datasets possess unique characteristics in that each sub-
ject completed the experiment in three different sessions.
We utilize this distinctive feature to investigate the gen-
eralization of models across sessions, specifically assessing
whether the models can consistently deliver satisfactory per-
formance when training and testing data come from different
sessions. When receiving the same stimuli, the recognition
accuracy of various methods for predicting the emotions
of the same subject at different times will show temporal
stability variations. However, up to the present, there have
been limited studies on cross-session experiments, most of
which involve the acquisition of test data to minimize the
data distribution discrepancy with the training data during
the training process. In contrast, our experimental setups do
not require the inclusion of test data during training. This
approach, while more challenging, offers enhanced practical
value. Specifically, we use one session’s EEG data as training
data and another as testing data. The pairs of sessions used
for validation encompass session1-session3, session2-session1,
session3-session2, session1-session2, session2-session3, and
session3- session1.Through a comprehensive six-fold cross-
validation, we calculate the average recognition accuracy,
along with the standard deviation, for all 15 subjects.

D. Method Comparisons
We compare the proposed MSMAE with several relevant

models on the SEED and SEED-IV datasets to demonstrate
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Fig. 3. Comparison between MSMAE and other algorithms in various cross-session scenarios within SEED and SEED-IV.

TABLE III
ABLATION STUDY OF OUR MODEL WITHIN SEED AND SEED-IV

its effectiveness. We select models focusing on spatial fea-
tures to ensure a more meaningful comparison, including
Vit [37], SimpleVit [33], FBCCNN [34], STNET [35], and
DGCNN [36]. Furthermore, we implement these models using
TorchEEG, a PyTorch-based library for EEG signal analysis.
We search the parameter space of these compared mod-
els following the descriptions outlined in their respective
papers. The average accuracies (± standard deviation) for
each method are reported in Table II. The experimental results
demonstrate that our method significantly outperforms exist-
ing methods. Specifically, as shown in Table II, our model
achieves a recognition accuracy of 80.86% on the SEED
dataset with a standard deviation of only 6.21%. On the
SEED-IV dataset, our model achieves a recognition accuracy
of 59.33%, accompanied by a standard deviation of 12.61%.
Furthermore, according to the results in Fig. 3, our method
exhibits performance improvement across different session-
to-session transfers. Even without utilizing the target domain,
our model can reduce the influence between different domains
by aligning regional features. Additionally, as illustrated in
Fig. 4, our model demonstrates advantages for each subject,
indicating the generalization and stability of our model.

E. Ablation Study
To evaluate the effectiveness of each module in the MSMAE

model, we conduct ablation experiments with the MAE model
and the Vit model at different scales, namely (1 × 1) and (3 ×
3). We also compare the results with the feature fusion of both
methods at scale (1 × 1&3 × 3), which are listed in Table III.
By comparing the experimental results at different scales,
it is observed that the results at the 3 × 3 scale consistently
outperform those at the 1× 1 scale, indicating the advantage
of spatial frequency features in EEG emotion recognition
tasks. Furthermore, by comparing the results of the Vit and

MAE models on 1 × 1 scale on the SEED-IV dataset with
relatively limited pre-training and fine-tuning data, we find
that using MAE for pre-training a large model tends to lead
to overfitting and a decrease in accuracy compared to Vit
without pre-training. However, such pre-trained models are
highly dependent on the volume of data, as the performance
of the model largely relies on the quality and diversity of
the data used during the training process. Building upon
this foundation, we further enhance the model’s performance
by fusing multi-scale features and conducting pre-training.
Importantly, our model achieves higher stability and gen-
eralization performance by aligning the region correlations
between the pre-training and fine-tuning data. Through these
ablation experiments, we validate the importance of scale
selection, pre-training, and multi-scale feature fusion in our
model. These results provide strong support for our research
and application in complex EEG emotion recognition tasks
and offer valuable directions for future improvements and
optimizations.

We randomly select one subject from the SEED dataset for
visualization. The t-SNE visualization of different methods is
presented in Fig.5. In comparison to other methods, MSMAE
demonstrates a reduction in data distribution discrepancy to
some extent, even without utilizing target domain information.

F. Interpretability
To validate the interpretability of our proposed method,

we conduct EEG topographic visualization using adjacency
matrices at a scale of 1× 1 learned from MSMAE. Followed
by [38] and [39], we visualize the degree centrality of each
scalp EEG electrode based on the adjacency matrices. Suppose
Ã = { Ãi, j }

p
i, j=1 is the submatrix of Achan ∈ R81×81, where p

represents the number of non-zero padded patches in channel-
level representation (with p = 62 in the SEED dataset). In this
matrix, the i-th row and i-th column values correspond to
the connection weights associated with the i-th electrode. The
degree centrality of the i-th EEG electrode, denoted as DCi ,
can be derived by

DCi =
∑p

n=1
Ãi,n +

∑p

m=1
Ãm,i − 2 Ãi,i (i= 1, . . . .,p)

(18)

Fig. 6 presents the EEG topographic maps of positive, neutral,
and negative emotions in the SEED dataset. The values of DC
are scaled to the interval of [0, 1]. Through scalp mapping
visualization, we can gain a direct and intuitive understanding
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Fig. 4. Comparison of MSMAE and other algorithms on different subjects within SEED and SEED-IV.

Fig. 5. Feature visualization by different methods and at different scales
within SEED dataset.

Fig. 6. Topographic maps learned from the MSMAE model within the
SEED dataset.

of the spatial distribution of the emotion recognition task,
which reflects the intercorrelation analysis of EEG signals
between electrodes in our method. By examining Fig. 6,
we observe that the regions of emotional activity are primarily
concentrated in the frontal and temporal areas. These findings
from saliency maps have been validated and are consistent
with existing research on emotions [40], [41], [42]. Further-
more, we note that in neutral emotions, the neural patterns
are relatively smoother compared to positive and negative
emotions. Positive emotions are more readily activated in
the lateral temporal areas compared to negative and neutral
emotions, consistent with the finding in [31]. In addition,
we observe that the activation range of negative emotions is
larger in the frontal regions.

G. Cross-Dataset Generalization
We perform cross-dataset experiments to assess the gener-

alization ability of our model. We chose the unlabeled data
from the latest publicly available dataset, FACED [43], as the
pre-training data. This dataset contains EEG signals from
123 subjects with 32 channels. Given that the SEED and
SEED-IV datasets lack the A1 and A2 electrodes, we exclude
these channels and remain 30 channels for our analysis.
We fine-tune the model with data from one session of a specific
subject from the SEED or SEED-IV dataset and test the model
on another session of the same subject. The challenge of cross-
dataset experiments is that pre-training is conducted using

Fig. 7. Comparison of cross-dataset and within-dataset accuracy.

unlabeled data with 30 channels, whereas fine-tuning used
62-channel data from the SEED or SEED-IV dataset, which
resulted in missing channels and differences between devices.
Notably, in our cross-dataset and with-dataset settings, the only
difference lies in whether the pre-training data originates from
the same dataset as the fine-tuning data.

We compare the performance of MSMAE under the cross-
dataset and within-dataset settings. Additionally, Vit (1 × 1)
and MAE (1 × 1) under the within-dataset setting are also
included for comparison, as depicted in Fig. 7. Based on
the experimental results, our model demonstrates consistent
and stable generalization ability in the cross-dataset setting.
Furthermore, it confirms our model’s capability to address
the issue of missing channels, validating the robustness and
portability of our model.

V. CONCLUSION

This paper introduces a unified, multi-scale pre-training
framework to overcome challenges related to missing EEG
channels and limited labeled data in emotion recognition.
We propose a novel multi-scale fusion approach combin-
ing channel-level and spatial-level representation learning
with an improved masking mechanism to preserve electrode
relationships and invariance learning for regional correla-
tions. Compared to the Vit (1 × 1) without pre-training,
MSMAE significantly improves accuracy by 10.76% on the
SEED dataset and 11.9% on the SEED-IV dataset. Moreover,
MSMAE surpasses the original MAE (1 × 1) in accuracy
by 9.13% on the SEED dataset and by 15.31% on the
SEED-IV dataset. MSMAE also demonstrates superiority over
current state-of-the-art methods, outperforming the second-
best method by 2.84% and 1.26% on the SEED and SEED-IV
datasets.

In summary, the proposed model significantly elevates the
performance of cross-session emotion recognition in a self-
supervised fashion. MSMAE is a general framework that can
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be easily extended to other EEG-based learning tasks, offering
promising directions for future research. However, the current
implementation of MSMAE relies on handcrafted features as
input, potentially resulting in the loss of valuable information
in the original signals. Consequently, our future efforts will
explore MSMAE’s potential for directly extracting information
from raw signals, addressing this constraint, and enhancing the
framework’s utility.
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