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Multi-Stimulus Least-Squares Transformation
With Online Adaptation Scheme to Reduce
Calibration Effort for SSVEP-Based BCIs

Dandan Li , Xuedong Wang, Mingliang Dou, Yao Zhao, Xiaohong Cui , Jie Xiang , and Bin Wang

Abstract— Steady-state visual evoked potential (SSVEP),
one of the most popular electroencephalography (EEG)-
based brain-computer interface (BCI) paradigms, can
achieve high performance using calibration-based recog-
nition algorithms. As calibration-based recognition algo-
rithms are time-consuming to collect calibration data,
the least-squares transformation (LST) has been used to
reduce the calibration effort for SSVEP-based BCI. How-
ever, the transformation matrices constructed by current
LST methods are not precise enough, resulting in large
differences between the transformed data and the real data
of the target subject. This ultimately leads to the con-
structed spatial filters and reference templates not being
effective enough. To address these issues, this paper pro-
poses multi-stimulus LST with online adaptation scheme
(ms-LST-OA). Methods: The proposed ms-LST-OA consists
of two parts. Firstly, to improve the precision of the trans-
formation matrices, we propose the multi-stimulus LST
(ms-LST) using cross-stimulus learning scheme as the
cross-subject data transformation method. The ms-LST
uses the data from neighboring stimuli to construct a
higher precision transformation matrix for each stimulus to
reduce the differences between transformed data and real
data. Secondly, to further optimize the constructed spatial
filters and reference templates, we use an online adaptation
scheme to learn more features of the EEG signals of the
target subject through an iterative process trial-by-trial.
Results: ms-LST-OA performance was measured for three
datasets (Benchmark Dataset, BETA Dataset, and UCSD
Dataset). Using few calibration data, the ITR of ms-LST-OA
achieved 210.01±10.10 bits/min, 172.31±7.26 bits/min, and
139.04±14.90 bits/min for all three datasets, respectively.
Conclusion: Using ms-LST-OA can reduce calibration effort
for SSVEP-based BCIs.

Index Terms— Brain-computer interface, multi-stimulus
least squares transform, online adaptation scheme, steady-
state visual evoked potential, transfer learning.
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I. INTRODUCTION

ELECTROENCEPHALOGRAPHY (EEG)-based brain-
computer interfaces (BCIs) provide people with dis-

abilities a new approach to interact with the outside world
that does not rely on neural and muscular pathways, but
rather by decoding the brain activities [1], [2]. Steady-state
visual evoked potential (SSVEP) is one of the most popular
EEG-based BCI paradigms due to its high information transfer
rate (ITR) and signal-to-noise ratio (SNR) [3], [4]. In practice,
SSVEP-based BCI indicates different commands by displaying
visual stimuli flashing at different frequencies on a monitor.
The selected command is recognized by detecting the specific
frequency component of the EEG signal [5]. In the past
decades, SSVEP has been proven to have great application
potential, e.g., speller [6], [7], disability assistance [8], [9],
smart home [10], [11], and gaming [12], [13], etc.

In previous studies, calibration-based recognition algo-
rithms have received significant attention. With the con-
tinuous development of recognition algorithms, more and
more excellent calibration-based recognition algorithms have
been proposed, e.g., extended canonical correlation analy-
sis (eCCA) [14], ensemble task-related component analysis
(eTRCA) [15], and task-discriminant component analysis
(TDCA) [16], etc., all of which have achieved remarkable
performance. But calibration-based recognition algorithms
require a large amount of calibration effort, which results
in a significant amount of time consumption and user
fatigue [17].

Transfer learning is used as a common solution to reduce
calibration effort, in which cross-subject is a popular scenario
for transfer learning [18]. Least-squares transformation (LST),
a cross-subject transfer learning approach, uses a small amount
of calibration data from the target subject to reduce calibration
effort by transforming existing data from the source subjects
to calibration data for the target subject [19]. Small data LST
(sd-LST), a variant of LST, uses less calibration data than
LST. Unlike LST, sd-LST constructs a common transformation
matrix for all stimuli for each source subject. The data from
all stimuli are transformed using these common transformation
matrices [20]. Although these LST methods mentioned above
reduce a lot of calibration effort and achieve high performance,
there are still some problems. The transformation matrices
constructed by current LST methods are not precise enough.
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TABLE I
THE MAIN DIFFERENCES OF LST, SD-LST AND MS-LST

For LST, the effect of noise leads to imprecisely constructed
transformation matrices when the calibration data are small.
For sd-LST, the constructed common transformation matrix
may not be the most appropriate for each stimulus due to dif-
ferences between different stimuli. This results in differences
between the transformed data and the real data, ultimately
leading to the constructed spatial filters and reference tem-
plates not being effective enough.

To solve these problems, we propose the multi-stimulus
LST with online adaptation scheme (ms-LST-OA) to reduce
calibration effort for SSVEP-based BCIs. This approach suc-
cessfully addresses the problems mentioned above: 1) [21]
shows that the SSVEP impulse responses elicited by stimuli of
neighboring frequencies are similar. Thus, the cross-stimulus
learning scheme using data from neighboring stimuli can
improve the transformation matrices constructed by LST and
the ability against insufficient calibration [22]. So, we can
use the cross-stimulus learning scheme to improve the current
LST, called ms-LST. Different from LST and sd-LST, ms-LST
not only uses the target stimulus, but also utilizes data from
neighboring stimuli (the stimuli which flash at the frequencies
nearby that of the target stimulus) to construct a more pre-
cise transform matrix for each stimulus. Each transformation
matrix is only applied to stimuli of specific frequency. This
improvement can result in better transformed data. The differ-
ences of LST, sd-LST and ms-LST are displayed in Table I.
2) Previous studies have suggested that an online adaptation
scheme can improve BCI performance [23], [24]. In this paper,
we modify the recognition algorithm to online learning mode
to recognize EEG signals, hence the method is named ms-
LST-OA. Using the online learning mode, spatial filters and
reference templates are continuously optimized by learning
more EEG signal features of the target object each time an
EEG signal is recognized. The experiment results show that
ms-LST-OA can reduce the calibration effort for SSVEP-based
BCI and achieve high ITR.

The remainder of this paper is organized as follows:
Section II introduces some preliminaries of SSVEP-based
BCIs. Section III presents the ms-LST-OA. Section IV
describes the details of the experiments, and the results
are presented in section V. Finally, Section VI concludes
this paper.

II. PRELIMINARIES

This section introduces some approaches, including
CCA-based approaches, TRCA-based approaches, and LST.

A. CCA-Based Approaches
CCA is a popular calibration-free recognition algorithm for

SSVEP-based BCIs, first introduced to SSVEP recognition by
Lin et al. [25]. For the unlabeled EEG signal X ∈ RNch×Ns and
the reference template Yk ∈ R2Nh×Ns , the CCA calculates the
correlation coefficient between them to extract the frequency
component of the EEG signal. Where Nch is the number of
EEG channels, Nh is the number of harmonics (Nh = 5 in
this paper), Ns is the number of sampling points, Yk is a
sine-cosine signal of the k-th stimulus, i.e.,

Yk =


sin(2π fk t + ϕk)

cos(2π fk t + ϕk)
...

sin(2π Nh fk t + Nhϕk)

cos(2π Nh fk t + Nhϕk)

 , (1)

where t =
[
1/Fs,2/Fs, · · · , Np/Fs

]
, Fs is the sampling rate.

fk and ϕk are the frequency and phase of the k-th stimulus,
respectively.

To compute the correlation coefficient between X and Yk ,
CCA finds two weight vectors wx ∈ RNch×1 and wYk ∈

R2Nh×1 by solving the following problem:

wX , wYk = arg max
u,v

E
[
uT XY T

k v
]√

E
[
uT X XTu

]
E

[
vTYkY T

k v
] . (2)

After that, the correlation coefficient between the EEG
signal X and the reference template Yk can be calculated as:

rk = corr(XTwX , Y T
k wYk ). (3)

Finally, the frequency of the EEG signal ft can be deter-
mined by the following:

ft = arg max
k

rk, k = 1, · · · , N f , (4)

where N f is the number of stimuli.
Chen et al. [26] proposed FBCCA as an extension of

CCA to improve the detection of EEG signal. It uses a
filter bank to decompose the EEG signal X into Nb sub-
bands (X1, · · · , X Nb ) with different passbands. Then, the
correlation coefficient r i

k between the sub-band component X i

and the reference template Yk can be calculated by CCA. After
that, the weighted square sum is applied to the correlation
coefficients of all sub-bands to calculate the final correlation
coefficient rk between the EEG signal X and the reference
template Yk :

rk =

Nb∑
i=1

(
i−1.25

+ 0.25
)

·

(
r i

k

)2
. (5)

B. TRCA-Based Approaches
TRCA is a method to extract task-relevant components

by maximizing reproducibility during the task periods, orig-
inally proposed by Tanaka et al. [27] and later introduced
by Nakanishi et al. [15] for SSVEP-based BCIs. For the
k-th stimulus, TRCA extracts spatial filters wk ∈ RNch×1by
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maximizing the inter-trial covariance to eliminate the influence
of task-unrelated signal as much as possible, i.e.,

wk = arg max
u

uTSku

= arg max
u

uT

Ncolk∑
i, j=1
i ̸= j

Cov
(
Xk,i , Xk, j

) u, (6)

where Sk ∈ RNch×Nch denotes the sum of inter-trial covariance
of the calibration data for the k-th stimulus, Ncali is the
number of calibration trials for each stimulus, Xk,i denotes
the i-th trial of the k-th stimulus.

In order to have a finite solution to (6), the variable Qk ∈

RNch×Nch is defined as:

Qk = Cov (3k, 3k) , (7)

where 3k =
[
Xk,1, · · · , Xk,Ncali

]
is the concatenated matrix

of all calibration data for the k-th stimulus.
Then the above problem can be solved by the following

equation:

wk = arg max
u

uTSku
uT Qku

. (8)

After that, TRCA calculates the correlation coefficient based
on the EEG signal X and the subject-specific averaged refer-
ence template Xk ∈ RNch×Ns :

rk = corr(XTwk, Xk
T
wk), (9)

where

Xk =
1

Ncali

Ncali∑
i=1

Xk,i . (10)

Furthermore, Nakanishi et al. [15] proposed ensemble
TRCA as an extension of TRCA to further improve the
performance by integrating all spatial filters, i.e.,

W =
[
w1, w2, · · · , wN f

]
. (11)

After that (9) is modified as follows:

rk = corr(XTW, Xk
T

W ). (12)

Finally, the frequency of the EEG signal ft can be deter-
mined by (4).

C. Least-Squares Transformation
Chiang et al. [19] proposed LST used for SSVEP

cross-subject transfer learning to reduce calibration effort for
the target subject.

LST utilizes least squares regression to construct a trans-
formation matrix scr

j Pk,i ∈ RNch×Nch for the target subject as
follow:

scr
j

Pk,i = tar Xk scr
j

XT
k,i

(
scr

j
Xk,i scr

j
XT

k,i

)−1

, (13)

where tar Xk,i ∈ RNch×Ns and scr
j Xk,i ∈ RNch×Ns denote the

calibration data for the i-th trial of the k-th stimulus for the
target subject and the j-th source subject, respectively. tar Xk ∈

Fig. 1. The overall framework of multi-stimulus LST with online
adaptation scheme (ms-LST-OA).

RNch×Ns denotes the averaged calibration data for the k-th
stimulus of the target subject calculated as:

tar Xk =
1

tar Ncali

tar Ncali∑
i=1

tar Xk,i , (14)

tar Ncali is the number of calibration trials for each stimulus
of the target subject.

After that, the calibration data of the source subject can be
transformed into the calibration data of the target subject by
scr

j
X ′

k,i = scr
j

Pk,i scr
j

Xk,i . Finally, the calibration dataset of

the target subject tar D′ consists of the original calibration data
of the target subject and the transformed calibration data of
other source subjects, i.e.,

tar D′
=

{tar Xk,i
}

k∈[1,N f ], i∈[1,tar Ncali ]

⊕

{
scr
j X ′

k,i

}
j∈[1,Nsub], k∈[1,N f ], i∈

[
1,scr

j Ncali

], (15)

where Nsub is the number of the source subjects, scr
j Ncali is

the number of calibration trials for each stimulus of the j-th
source subject, ⊕ indicates data merging operation.

III. METHODS

In this study, we propose the ms-LST-OA to reduce the
calibration effort for SSVEP-based BCI, as displayed in Fig. 1.
This approach consists of two parts: ms-LST and online
adaptation scheme.

A. Multi-Stimulus LST
The SSVEPs of subjects elicited by stimuli of neigh-

boring frequencies have similar impulse responses that can
assist LST in constructing transformation matrices with higher
precision [21]. Furthermore, cross-stimulus learning scheme
using neighboring stimuli can also improve the ability against
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Fig. 2. The overall framework of multi-stimulus LST (ms-LST).

insufficient calibration [22]. Therefore, the proposed ms-LST
utilizes the data from neighboring stimuli to construct a trans-
formation matrix for each stimulus, which can improve the
precision of the transformation matrix. The overall framework
of ms-LST is shown in Fig. 2.

To transform the calibration data of the j-th source subject
for the target subject, we need to sort the dataset of the target
subject tar D and the dataset of the j-th source subjects scr

j D
according to the frequency of the stimuli:

tar D =

{
tar Xa1,i , · · ·

tar XaN f ,i

}
i∈[1,tar Ncali ]

, (16)

scr
j D =

{
scr
j Xa1,i , · · · ,scr

j XaN f ,i

}
i∈

[
1,scr

j Ncali

], (17)

where ai ∈
[
1, N f

]
is stimulus index and these indexes need

to satisfy:

fa1 < fa2 < · · · < faN f
. (18)

As in [20], the target subject can use data from only K stimuli
for calibration with K ⩽ N f . The K stimuli need to be
uniformly distributed over N f frequencies as:

ai = 1 +

⌊
N f × (2i − 1)

2K

⌋
. (19)

Then, we can average the data of these K stimuli according
to get K subject-specific templates, while the other N f − K
templates are filled with zero matrices.

Unlike LST, the ms-LST utilizes data not only from the tar-
get stimulus (which flashes at fak ) but also from neighboring
stimuli (which flash at the frequencies nearby fak ) to construct
transformation matrix for the target stimulus by solving the
following problem:

scr
j Pak = arg min

P

(∥∥∥P ·
scr
j χak −

tar χak

∥∥∥2

F

)
, (20)

where tarχak and scr
j χak denote the subject-specific templates

for the stimulus of frequency fak and its neighboring stimuli

for the target subject and the j-th source subject, respectively,
which can be calculated as:

tarχak =

[
tar Xak−p, · · · , tar Xak+q

]
, (21)

scr
j χak =

[
scr
j Xak−p, · · · , scr

j Xak+q

]
, (22)

tar Xak and scr
j Xak denote the subject-specific templates of

frequency fak for the target subject and the j-th source subject,
respectively, scr

j Xak can be calculated as follows:

scr
j Xak =

1
scr
j Ncali

scr
j Ncali∑

i=1

scr
j Xak ,i . (23)

As in [22], the range from p to q is the range of neighboring
stimuli s for the stimulus of frequency fak , and s = p+q +1.
To ensure that at least one template falls within the range
of neighboring stimuli, s ⩾

⌈
N f /K

⌉
. Setting the parameter

s0 = s/2 when s is even and s0 = (s − 1) /2 when s is odd,
the values of p and q can be determined as:{

p = 1,

q = s,
ak ∈ [1, s0]{

p = k − s0,

q = k + s − s0 − 1,
ak ∈

(
s0, N f − s0 + 1

)
.{

p = N f −s + 1,

q = N f ,
ak ∈

[
N f − s0 + 1, N f

]
(24)

Then the transformation matrix scr
j Pak for the ak-th stimulus

of the j-th source subject can be calculated as follows:

scr
j

Pak =
tar χak scr

j
χT

ak

(
scr

j
χak scr

j
χT

ak

)−1

. (25)

Finally, the transformation matrix is applied to each trial
data for the ak-th stimulus of the j-th subject:

scr
j

X ′

ak ,i = scr
j

Pak scr
j

Xak ,i , i = 1, · · · , scr
j

Ncali . (26)

After the transformation is completed for all trials for all
subjects, the final calibration data for the target subject tar D′

is expanded as:
tar D′

=
{tar Xak ,i

}
k∈[1,K ], i∈[1,tar Ncali ]

⊕

{
scr
j X ′

k,i

}
k∈[1,N f ], i∈

[
1,scr

j Ncali

]
, j∈[1,Nsub]

. (27)

We used the final calibration data tar D′ to calibrate the
eTRCA recognition algorithm. Since previous studies have
proven that the ensemble classifier has higher classification
performance, and the sine-cosine templates also contribute
to SSVEP signal recognition [14]. Therefore, we use the
ensemble classifier of eTRCA and FBCCA to determine the
classification results by combining the correlation coefficients
calculated by eTRCA and FBCCA:

rk = rk,1 + rk,2 (28)

where rk,1 and rk,2 denote the correlation coefficient of
FBCCA and eTRCA for the k-th stimulus, respectively.

After calculating the correlation coefficient rk , the frequency
of stimuli is determined according to (4).
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Fig. 3. The overall framework of the online adaptation scheme.

B. Online Adaptation Scheme
To further optimize the spatial filters and reference templates

constructed by eTRCA using tar D′, as in [24] and [23], this
paper uses an online adaptation scheme to modify the eTRCA
to online learning mode. The overall framework of the online
adaptation scheme is shown in Fig. 3.

We set the state after calibrating the recognition algorithm
using transformed data by ms-LST to the 0-th recognition.
Suppose that the test data X is recognized as the k-th stimulus
in the c-th recognition. So, the reference template and spatial
filter for the k-th stimulus need to be updated.

Firstly, the reference template Xk
[c]

and the num-
ber of calibration data N [c]

cali,k for the k-th stimulus are
updated:

Xk
[c]

=
N [c−1]

cali,k · Xk
[c−1]

+ X

N [c−1]
cali,k + 1

, (29)

N [c]
cali,k = N [c−1]

cali,k + 1, (30)

where N [c]
cali,k is the number of calibration trials for k-th stim-

ulus at the c-th recognition, Xk
[c]

denotes the subject-specific
averaged reference template for the k-th stimulus at the c-th
recognition.

Then, according to (8), in order to update the eTRCA-based
spatial filter, the values of the covariance matrices S[c]

k and
Q[c]

k at the c-th recognition need to be updated.
According to (6), for the test data X , S[c]

k can be updated as:

S[c]
k = S[c−1]

k +

N [c−1]
cali,k∑
i=1

Cov (Xk,i , X)+

N [c−1]
cali,k∑
i=1

Cov (X, Xk,i )

= S[c−1]
k + Cov

(
N [c]

cali,k · Xk
[c]

, X
)

+ Cov
(

X, N [c]
cali,k · Xk

[c]
)

− 2 · Cov (X, X) (31)

where S[c]
k denotes the covariance matrix of the k-th stimulus

Sk at the c-th recognition.
According to (7), Q[c]

k can be calculated as:

Q[c]
k = Cov

(
3

[c]
k , 3

[c]
k

)
(32)

where 3
[c]
k denotes the set of SSVEP data for the k-th stimulus

at the c-th recognition defined by.

3
[c]
k =

[
Xk,1, · · · , Xk,N [c−1]

cali,k
, X

]
. (33)

To facilitate the use of Xk
[c]

to update Q[c]
k , the variable

Z [c]
k is defined as:

Z [c]
k =

N [c]
cali,k∑
i=1

Xk,i ·
(
Xk,i

)T
. (34)

For the test data X , Z [c]
k can be updated as:

Z [c]
k = Z [c−1]

k + X · XT. (35)

Thus, Q[c]
k can be updated as:

Q[c]
k = Cov

(
3

[c]
k , 3

[c]
k

)
= Z [c]

k − 9
[c]
k · N [c]

cali,k ·

(
Xk

[c]
)T

− N [c]
cali,k · Xk

[c]
·

(
9

[c]
k

)T
+ 9

[c]
k ·

(
9

[c]
k

)T
, (36)

where 9
[c]
k = mean

(
Xk

[c]
, 2

)
· I1×Ns , I1×Ns denotes a vector

of 1× Ns filled by 1. The mean
(

Xk
[c]

, 2
)

function represents

the mean value on the matrix Xk
[c]

in the dimension of the
sampling points and results in a vector of RNch×1.

Finally, we can update the spatial filter w
[c]
k :

w
[c]
k = arg max

u

uTS[c]
k u

uT Q[c]
k u

. (37)

In this way, the c-th update of the spatial filter and the
reference template is completed.

Additionally, in order to reduce the effect of noise and
improve the performance of the online adaptation scheme,
the data from source subjects is averaged across trials before
transforming the data using ms-LST.

IV. EXPERIMENTS

To evaluate the performance of ms-LST-OA, we conduct
experiments for three datasets using the leave-one-out cross-
validation approach, i.e., one subject is used as the target
subject while the others are used as source subjects. Fur-
thermore, part of the data of the target subject was used as
calibration data and the other part as test data.

A. SSVEP Datasets
A total of three SSVEP datasets are used in this paper for

method performance testing:

1) Dataset I: Benchmark Dataset was presented by
Wang et al. [28]. This dataset contains EEG data from
35 healthy subjects. For each subject, the data contains
6 blocks. Each block contains 40 trials corresponding to
40 stimuli from 8.0 Hz to 15.8 Hz with an interval of
0.2 Hz.
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TABLE II
THE PARTIAL PARAMETERS OF THESE THREE DATASETS

2) Dataset II: BETA Dataset was presented by
Liu et al. [29]. This dataset contains EEG data
from 70 healthy subjects. For each subject, the data
contains 4 blocks. Each block contains 40 trials
corresponding to 40 stimuli from 8.0 Hz to 15.8 Hz
with an interval of 0.2 Hz.

3) Dataset III: UCSD Dataset was presented by Nakan-
ishi et al. [30]. This dataset contains EEG data from
10 healthy subjects. For each subject, the data contains
15 blocks. Each block contains 12 trials corresponding
to 12 stimuli from 9.25 Hz to 14.75 Hz with an interval
of 0.5 Hz.

The partial parameters of these three datasets are presented
in Table II, which denotes the number of channels, the number
of stimuli, the number of trials for each stimulus, and the
number of subjects in the dataset, respectively.

B. Data Preprocessing
Considering the latency in SSVEP response, we used data

segment [Tl , Tl + Tw] after stimulus onset for the analysis,
where Tl is the SSVEP latency (Tl = 0.14 s in this paper) and
Tw denotes time windows (Tw ∈ {0.4 s, 0.5 s, · · · , 1.0 s}).
In addition, for Dataset I and II, nine electrodes (Pz, PO5,
PO3, POz, PO4, PO6, O1, Oz, and O2) were used for analysis.
For Dataset III, all electrodes were selected for data analysis.
After data formatting, the EEG data for each trial was removed
from the power-line noise using a 50 Hz notch filter. Finally,
the EEG data for each trial was decomposed into Nb = 5 sub-
bands using different bandpass filters, where the upper and
lower cut-off frequencies of the i-th sub-band were set to
(i × 8 − 2)Hz and 90 Hz, respectively.

C. Performance Evaluation
We use the averaged classification accuracy (ACC) and

averaged ITR to measure the performance of the involved
methods. In particular, the ITR is calculated as:

ITR = [log2
(
N f

)
+ Plog2(P)

+ (1 − P) log2

(
1 − P
N f − 1

)
] ×

60
T

, (38)

where P is the ACC, T denotes the time required to complete
a recognition, and T = Tw + 0.5s, 0.5s is the gaze shifting
time.

D. Data Analysis
The following experiments were conducted to test the

performance of ms-LST-OA. All LST-based methods use the
final calibration data tar D′ to train the ensemble classifier of
eTRCA and FBCCA to recognize SSVEP data based on (29).

1) Parameter Exploration of ms-LST: According to (25)
there are many parameters that affect the performance of
ms-LST, such as the range of neighboring stimuli s, the
number of data channels Nch , the time window Tw, the amount
of calibration data tar Ncali , and so on. As the LST-based
methods are used to reduce the calibration effort, only a very
small amount of calibration data was used in the experiment
(tar Ncali = 1 and K = N f ). So, this section explores the
influence of other parameters for the performance of ms-LST
(s, Nch , and Tw). Where, since Dataset III has only 8 channels,
the experiment was conducted only for Dataset I and II when
exploring the effect of the number of data channels.

2) Effectiveness of ms-LST-OA: To verify the effectiveness
of ms-LST-OA, the following experiments are conducted in
this section: 1) To demonstrate that the cross-stimulus learn-
ing scheme can improve the performance of LST, ms-LST
is compared with LST and sd-LST. 2) To prove that the
online adaptation scheme can further optimize the spatial
filters and reference templates, ms-LST-OA is compared with
ms-LST. All experiments were conducted at tar Ncali = 1 and
K ∈

[
1, N f

]
.

3) Ablation Experiment: Compared to the LST method, the
proposed ms-LST-OA adopts cross-stimulus learning scheme
that uses data from neighboring stimuli to construct the trans-
formation matrices and utilizes an online adaptation scheme
to optimize spatial filters and reference templates. So, the
ablation experiment was conducted to explore the effects of
these improvements. In the experiment, only one calibration
data was used per stimulus, i.e., tar Ncali = 1 and K = N f .

4) The Ability of ms-LST-OA to Reduce Calibration Effort:
In this section, to explore the ability of ms-LST-OA to
reduce calibration effort, only a small amount of data is
used for calibration. The calibration-based approach uses
as much data as possible and makes its ITR compara-
ble to ms-LST-OA. The ability of ms-LST-OA to reduce
the calibration effort is reflected by comparing the ITR
and the number of calibration data at different time win-
dows Tw ∈ {0.4s,0.5s, · · · , 1.0s} . Among the approaches
that participate in the comparison besides ms-LST-OA
are OACCA [24], eCCA [14], eTRCA [15], TDCA [16],
stCCA [31] and sd-LST [20]. Where OACCA is the state-
of-the-art calibration-free algorithm, eCCA and eTRCA are
the classical calibration-based algorithms, TDCA is the state-
of-the-art calibration-based algorithm, and stCCA and sd-LST
are the state-of-the-art transfer learning methods.

V. RESULTS

A. Parameter Exploration of ms-LST
The ITR of ms-LST for Dataset I, II, and III at the number

of templates K = N f with different ranges of neighboring
stimuli s are shown in Fig. 4. The ITR peaked at s = 11
(213.15 ± 10.86 bits/min), s = 14 (181.33 ± 7.51 bits/min),
and s = 7 (137.20 ± 13.45 bits/min) for the three datasets,
respectively. In addition, at N f = 40 and K = N f , we aver-
aged the ITR of ms-LST for Dataset I and II at each s and
obtained the optimal s = 11 (which maximizes the ITR),
ITR = 197.05 ± 9.23 bits/min. At N f = 12 and K = N f ,
the optimal s is 7 according to the results of Dataset III.
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Fig. 4. The ITR of ms-LST-OA was tested for Dataset I (a), II (b) and III
(c) under different ranges of neighboring frequencies at K = Nf. In the
plots, the curves indicate the average ITR of ms-LST across subjects,
and the shaded areas indicate standard errors.

Fig. 5. Averaged ITR across subjects for Dataset I (a) and II (b) for
ms-LST at different number of channels. Error bars indicate standard
errors.

To get a more general scenario, we repeated the experiment at
different numbers of templates K and ranges of neighboring
stimuli s. Then, we obtained the optimal s at different K for
N f = 40 and N f = 12, respectively. After that, polynomial
fitting was used to fit the optimal s and K . Finally, the fitting
result showed that the optimal s can be obtained according to
for Dataset I and II, and according to for Dataset III.

s =

⌊
40 × K −0.34

+ 1/2
⌋

, (39)

s =

⌊
12 × K −0.2

+ 1/2
⌋

, (40)

The averaged ITR across subjects of ms-LST for
Dataset I and II at different numbers of channels is shown
in Fig. 5. In this part of the experiment, the experiment was
performed only for Dataset I and II because Dataset III has
only 8 channels. In the experiment, we measured the ITR of
the ms-LST method when only the SSVEP-related channels
were used (when the number of channels is 8 and 9) and when
the SSVEP-unrelated channels were used (when the number of
channels is greater than 9). When only SSVEP-related chan-
nels were utilized, the average ITR was maximized with all
SSVEP-related channels being used (213.15 ± 10.86 bits/min
for Dataset I and 180.94 ± 7.60 bits/min for Dataset II at
Nch = 9). When a small number of SSVEP-unrelated channels

Fig. 6. Averaged ACC and ITR across subjects for ms-LST for
Dataset I (a), II (b) and III (c). Error bars indicate standard errors.

were used, the ITR was not far from the ITR when all
SSVEP-related channels were used (213.60 ± 10.86 bits/min
for Dataset I and 180.30 ± 7.64 bits/min for Dataset II at
Nch = 12, only a very slight difference from Nch = 9).
However, as the number of SSVEP-unrelated channels contin-
ued to increase, the ITR decreased (204.80 ± 11.74 bits/min
for Dataset I and 156.83 ± 8.64 bits/min for Dataset II at
Nch = 64). There is a large decrease compared to that at
Nch = 9. Therefore, utilizing the SSVEP-unrelated channels
was not helpful for ms-LST, so only all SSVEP-related chan-
nels were used in the following experiments.

Fig. 6 illustrates the performance of the ms-LST method
under different time windows. Generally, high ITR can be
achieved by getting a higher ACC in a shorter time. For
Dataset I and II, the ms-LST method reaches the highest ITR
at 0.6s (213.15±10.86 bits/min and 180.94±7.60 bits/min),
and at 0.5s for Dataset III (137.85 ± 15.82 bits/min). This
shows that shorter time windows (e.g., 0.6s or 0.7s) can be
chosen to get a higher performance.

B. Effectiveness of ms-LST-OA
To demonstrate that the cross-stimulus learning scheme can

improve the performance of LST, we compared the ITR of
ms-LST with that of LST and sd-LST at Tw = 0.6s with
different K . The results of the comparison are displayed in
Fig. 7. For all three datasets, ms-LST was able to obtain
an ITR that exceeded that of LST using data from only a
small number of templates. Furthermore, when the number
of templates was small, the ITR of ms-LST was comparable
to that of sd-LST. But as the number of templates increased,
the ITR of sd-LST increased only slightly, whereas that of
ms-LST increased more significantly. In addition, we calcu-
lated significant differences between the ITR of ms-LST and
sd-LST at different templates numbers using paired t−test
and corrected the t−test result using the Bonferroni method.
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Fig. 7. The averaged ITR of the ms-LST compared to LST and sd-LST
at different numbers of templates (K) for Dataset I (a), II (b) and III (c).
Shaded areas indicate standard errors. Significant differences between
ms-LST and sd-LST are also calculated using paired t−test and the
results are corrected using the Bonferroni method. Asterisks indicate
significant difference between ms-LST and sd-LST (∗: p < 0.05, ∗∗: p <
0.01, ∗∗∗: p < 0.001).

Fig. 8. The averaged ITR of ms-LST-OA compared to ms-LST at
different numbers of templates (K) for Dataset I (a), II (b) and III (c).
Shaded areas indicate standard errors. Significant differences are also
calculated using paired t−test and the results are corrected using the
Bonferroni method. Asterisks indicate significant difference between ms-
LST-OA and ms-LST (∗: p < 0.05, ∗∗: p < 0.01, ∗∗∗: p < 0.001).

The results show that the difference between the performance
of ms-LST significantly outperforms sd-LST as K increases
for all three datasets (for Dataset I, p < 0.05 when K ⩾ 10,
for Dataset II, p < 0.05 when K ⩾ 13 and p < 0.05 when
K ⩾ 10 for Dataset III). Thus, as the number of templates
increases, ms-LST can achieve a higher ITR than sd-LST, and
the performance difference becomes increasingly significant.
These results suggest that the cross-stimulus learning scheme
can greatly improve LST performance.

To prove that the online adaptation scheme can further
optimize the spatial filters and reference templates, we com-
pared the ITR of ms-LST-OA and ms-LST at Tw = 0.6s
with different K . The results of comparison are displayed in
Fig. 8. For all three datasets, ITR was higher for ms-LST-OA
than for ms-LST at different numbers of templates. Further-
more, we also calculated the significant difference between
ms-LST-OA and ms-LST at different numbers of templates
using paired t−test and corrected the t−test result using the
Bonferroni method. For Dataset I and II, the ITR of ms-
LST-OA was significantly higher than that of ms-LST for all
K ∈ [1, 40] (p < 0.001). For Dataset III, the performance

Fig. 9. The averaged performance changes of the ms-LST-OA with the
number of trials at K=5 for Dataset I (a), II (b) and III (c). The shaded
areas indicate the standard error across subjects.

Fig. 10. Results of ablation experiment for Dataset I (a), II (b)
and III (c). Error bars indicate standard errors. Significant differences
are also calculated using paired t−test and the paired t−test results
are corrected using the Bonferroni method. Asterisks indicate significant
difference (∗: p < 0.05, ∗∗: p < 0.01, ∗∗∗: p < 0.001). Blue, grey and
pink indicate the significant differences between LST and ms-LST, LST
and LST with online adaptation scheme (LST-OA), ms-LST and LST-OA,
respectively.

difference between ms-LST-OA and ms-LST decreased as K
increased (p < 0.01 at K = 1, p < 0.05 at K = 6,
and when K = 12, there is no significant difference). Fig. 9
illustrates the averaged performance changes of the ms-LST-
OA with the number of trials at K = 5. The result shows
that the performance difference between ms-LST-OA and
ms-LST became gradually larger. Therefore, these experiment
results demonstrate that the online adaptive scheme can further
optimize the spatial filters and reference templates constructed
from ms-LST transformed data to improve performance.

Consequently, the ms-LST-OA, which uses cross-stimulus
learning scheme and online adaptation scheme, can achieve
higher performance than the current LST method.

C. Ablation Experiment
In the ablation experiment, we compared the performance of

LST, ms-LST, LST with online adaptation scheme (LST-OA),
and ms-LST-OA at K = 40 with different time windows.
The results are displayed in Fig. 10. These methods achieve
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Fig. 11. The averaged ITR across subjects of the different approaches for Dataset I (a), II (b) and III (c) at different time windows. Error bars
indicate standard errors.

Fig. 12. The paired t− test results of ms-LST-OA and other methods corrected by the Bonferroni method. Where blue (red) color indicates that
the ITR of ms-LST-OA is lower (higher) than that of the compared method. And the color depth indicates the level of significant difference between
ms-LST-OA and the compared method, with the darker color indicating the more significant difference.

the highest averaged ITR at different Tw (LST: 187.65 ±

9.73 bits/min at 0.8s; ms-LST: 213.15 ± 10.86 bits/min at
0.6s; LST-OA: 197.44 ± 9.30 bits/min at 0.8s; ms-LST-OA:
218.33 ± 11.23 bits/min at 0.6s). Furthermore, the significant
differences were calculated using paired t−test and corrected
by the Bonferroni method (between LST and ms-LST, LST
and LST-OA, ms-LST and LST-OA). Firstly, the averaged
ACC and ITR of ms-LST and LST-OA were significantly
higher than those of LST for all three datasets (p < 0.001 for
all three datasets). The results show that the performance of the
LST method can be improved using both the cross-stimulus
learning scheme and the online adaptation scheme. Secondly,
ms-LST had a higher averaged ACC and ITR than LST-OA
for all three datasets (p < 0.001 at most time windows for
Dataset I and II, p < 0.05 at time windows from 0.4s to
0.6s for Dataset III, and no significant difference at other time
windows). This demonstrates that using the cross-stimulus
learning scheme leads to a larger performance improvement
than using the online adaptation scheme. Moreover, ms-LST-
OA uses online adaptation scheme on the base of ms-LST to
gradually optimize the spatial filters and reference templates,
which is able to enhance ITR further.

D. The Ability of ms-LST-OA to Reduce Calibration Effort
To measure the ability of ms-LST-OA to reduce the cal-

ibration effort, the experiment was conducted to compare
the performance of ms-LST-OA with other methods. The
averaged ITR across subjects for the different methods are
displayed in Fig. 11. Table III shows the highest averaged ITR
of the different approaches. It can be found that: 1) In con-
trast to OACCA, a calibration-free online adaptive method,
ms-LST-OA required only a small amount of calibration
data to achieve a higher ITR. 2) Comparing eCCA, eTRCA,
and TDCA, which are calibration-based methods that require

TABLE III
THE HIGHEST AVERAGED ITR OF THE DIFFERENT APPROACHES

a large amount of calibration data, ms-LST-OA achieved high
performance for all three datasets using only a smaller amount
of calibration data. 3) Compared to stCCA, sd-LST, which are
transfer learning methods, ms-LST-OA achieved a higher ITR
for all three datasets using the same amount of data.

Fig. 12 shows the paired t−test results of ms-LST-OA and
other methods corrected by the Bonferroni method. It can
be known that: 1) ms-LST-OA significantly outperformed
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OACCA for the three datasets (p < 0.001). 2) For all three
datasets, ms-LST-OA used less calibration data, but in most
cases, there were no significant differences compared to eCCA,
eTRCA, and TDCA, which use a large amount of data. This
demonstrates the ability of ms-LST-OA to reduce a large
calibration effort. 3) For the three datasets, ms-LST-OA was
superior to stCCA (p < 0.001 for Dataset I and II as well
as p < 0.05 for Dataset III in most cases). And ms-LST-OA
performed better than sd-LST for Dataset I and II, whereas
there was essentially no significant difference for Dataset III
(p < 0.01 mostly for Dataset I and p < 0.05 mostly for
Dataset II). This indicates that ms-LST-OA is an excellent
method for transfer learning.

All results indicate that ms-LST-OA can significantly reduce
calibration effort and achieves higher ITR.

VI. CONCLUSION

To reduce the calibration effort for high-speed SSVEP-
based BCIs, this study proposes the ms-LST-OA, which
uses cross-stimulus learning scheme and online adaptation
scheme to make improvements to the LST. Our experiment
results indicate that ms-LST-OA requires only a small amount
of calibration data to achieve comparable performance to
calibration-based recognition algorithms. This means that ms-
LST-OA can reduce a large amount of calibration and achieve
a high ITR, which is helpful for the application of SSVEP-
based BCI.

Furthermore, the proposed method could be improved. Due
to the restricted specifications of the public datasets, more
online experiments are needed to determine the relationship
between the range of neighboring stimuli (s) and the number
of templates (K ) at different numbers of stimuli (N f ). Future
research will focus on improving the applicability of the
proposed method.
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