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Abstract— Alzheimer’s Disease (AD) accounts for the
majority of dementia, and Mild Cognitive Impairment (MCI)
is the early stage of AD. Early and accurate diagnosis of
dementia plays a vital role in more targeted treatments
and effectively halting disease progression. However, the
clinical diagnosis of dementia requires various examina-
tions, which are expensive and require a high level of
expertise from the doctor. In this paper, we proposed a
classification method based on multi-modal data including
Electroencephalogram (EEG), eye tracking and behavioral
data for early diagnosis of AD and MCI. Paradigms with
various task difficulties were used to identify different
severity of dementia: eye movement task and resting-state
EEG tasks were used to detect AD, while eye movement
task and delayed match-to-sample task were used to detect
MCI. Besides, the effects of different features were com-
pared and suitable EEG channels were selected for the
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detection. Furthermore, we proposed a data augmentation
method to enlarge the dataset, designed an extra ERPNet
feature extract layer to extract multi-modal features and
used domain-adversarial neural network to improve the
performance of MCI diagnosis. We achieved an average
accuracy of 88.81% for MCI diagnosis and 100% for AD
diagnosis. The results of this paper suggest that our clas-
sification method can provide a feasible and affordable way
to diagnose dementia.

Index Terms— Dementia, multi-modal, machine learning,
domain-adversarial neural network.

I. INTRODUCTION

CURRENTLY, more than 55 million people have dementia
worldwide, this number is expected to reach 139 mil-

lion by 2050 [1]. Alzheimer’s Disease (AD) accounts
for 60% - 70% of all dementia cases [2], it can cause irre-
versible cognitive damage such as memory, orientation and
reasoning, and even interfere with daily life activities. Cur-
rently, AD can be well treated only if the diagnostic and
treatment envelop fall back to the early prodromal stage [3],
[4]. The neurological state prodromal to AD is known as Mild
Cognitive Impaired (MCI). From the point of MCI diagnosis,
10% - 15% of patients will convert to AD per year [5]. Early
diagnosis of MCI has become a critical factor in predicting
the occurrence of AD in the long run [6]. However, the
diagnosis of MCI requires various examinations, including
examination based on scale measures, such as Mini-mental
State Examination (MMSE) and Montreal Cognitive Assess-
ment (MoCA) [7], which are comparably subjective and
requires a high degree of professional knowledge of the doctor;
and examinations based on neuroimaging, such as Functional
Magnetic Resonance Imaging (fMRI) and Positron Emission
Tomography (PET), which require expensive equipments. Due
to the high examination cost and the lack of medical resources,
many people who suffer from dementia cannot be diagnosed
in time and intervened effectively, which makes it easier for
mild symptoms to become worse. Therefore, it is necessary to
deploy a more affordable method to detect dementia.

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0002-9566-1383
https://orcid.org/0000-0002-1534-5840


1478 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 32, 2024

Electroencephalogram (EEG) is by far the most common
non-invasive method for measuring electrical brain activity [8],
and has become an important clinical tool for understanding
brain activity and diagnosing brain disorders. Many researches
used EEG to diagnose dementia, in which different fea-
tures of EEG data and different paradigms for collecting
EEG signals were used. Some researches [9], [10], [11],
[12], [13] collected EEG signals in resting-state with eyes
open or eyes closed. Siuly et al. [14] introduced piecewise
aggregate approximation for compressing massive volumes of
EEG data, and used permutation entropy and auto-regressive
model features to detect MCI. Mitsukura et al. [15] used
the ratio of power spectrum at each frequency to discrim-
inate among the three classes of dementia and achieved
an accuracy of 88.89%; Ieracitano et al. [10] evaluated the
average time-frequency map for each channel, extracted some
statistical coefficients from the main five conventional EEG
sub-bands, and used 5 different classifiers to distinguish AD.
Ieracitano et al. [9] developed a multi-modal features extrac-
tion methodology based on continuous wavelet transform and
bispectrum analysis for classifying AD, MCI and healthy con-
trols. Durongbhan et al. [13] extracted the frequency-based
and time-frequency-based features in resting-state EEG with
eyes open and closed and developed a classification framework
for AD detection. Others [7], [16], [17] collected EEG signals
with specific experimental paradigms. Khatun et al. [16] col-
lected single-channel EEG data when the participants were
stimulated by sound, extracted and ranked 590 features from
event-related potential, achieving 87.9% accuracy using Sup-
port Vector Machine (SVM) classifier. Zeng et al. [7] collected
EEG when the participants were doing a task-state experiment,
and proposed a workload index combining the EEG data of
subjects at α and β frequency bands to assess the mental
cognitive status of MCI. San-Martin et al. [18] recorded EEG
data during N-back working memory tasks, they performed
frequency domain analysis of current source density (CSD)
patterns in task-related EEG and extracted spectral CSD fea-
tures using SVM classifier to distinguish MCI and healthy
elderly. Timothy et al. [19] collected EEG data using short
term memory task and eyes closed resting-state, and classified
MCI by combining complexity and synchronization features
based on quantifiers from the common platform of recurrence
based analysis, the results reveal that the short term memory
task performed better than eyes closed condition.

There are some limitations in existing researches. Most
existing studies include 20 - 50 subjects, the accuracy varies
from 76% to 99% in different studies due to the effect of a
small sample size. Many studies did not introduce the details
about how their data samples are defined, and data leakage can
easily occur when dividing datasets. Besides, due to the great
individual differences in EEG signals, the model is easy to
overfit, the results of the same dataset but divided into different
train sets and test sets may vary a lot, many studies did not
divide the dataset multiple times to verify the generalization of
the model. Furthermore, most studies used only single-modal
EEG signals to feed to models, while different modalities
data can represent information about different aspects of the
subject, so using multi-modal data may be more effective

than spending a lot of effort tuning the parameters of the
model.

In this paper, we propose a classification method fusing
EEG data, eye movement data and behavioral data to detect
AD and MCI patients. The major contributions of this work
are as follows:

• Data from different paradigms and different modalities
are analyzed to obtain the basis for feature extraction,
and the performances of different features are compared
to obtain better features for the diagnosis of dementia.

• A data augmentation method is proposed to enlarge the
dataset, an extra ERPNet feature extract layer is designed
to extract multi-modal features and domain-adversarial
neural network is used to improve the performance
of MCI diagnosis, an average accuracy of 88.81% is
achieved for detecting MCI.

• The dataset is divided into different train sets and test
sets, and multiple experiments are conducted in different
dataset constructions to explore the generalization of the
model.

II. METHODOLOGY

A. Data Recording
In this paper, 69 participants were recruited at the

First People’s Hospital of Foshan, Guangdong Province,
China, consisting of 10 AD patients, 32 MCI patients and
27 healthy controls (HC). The Diagnostic and Statistical
Manual of Mental Disorders-Fifth Edition (DSM-5) [20]
and the 2018 Guidelines for Diagnoses and Treatments of
Dementias and Cognitive Impairments in China [21] were
followed to formulate the diagnosis of AD, MCI or HC. Before
the experiment, all the participants were informed about the
research and signed the Informed Consent Form. The EEG
signals were recorded by a dry electrode EEG device (DSI-24,
Wearable Sensing) with 19 channels, sampling at a frequency
of 300 Hz, and the eye movement signals were recorded by
an eye tracker (Eye Tracker 5L, Tobii).

1) Resting-State Task: The Resting-state task was chosen to
distinguish AD from non-AD (including healthy elderly and
MCI patients) because it is more difficult for AD patients
to understand and implement complicated paradigms, and
the resting-state task is the paradigm that requires the least
cooperation. In this task, participants were asked to sit in a
chair to relax in a quiet room for 3 - 4 minutes with their
eyes closed, but remain awake during the process.

2) Delayed Match-to-Sample (DMS) Task: The DMS task
was chosen to distinguish MCI from HC based on previous
work [22]. The schematic of the DMS task is shown in Fig. 1.
In this task, participants sat in front of the computer screen
with each hand on one button, respectively. At the beginning
of each block, a target image with a green border appeared on
the screen for 5 s, participants were asked to remember the
target image, and after a period of delay, 5 test images that
each lasted for 2 s appeared in sequence, during this time,
participants needed to judge whether these appearing images
were the same as the target image, if the test image was the
same as the target image (match stimulus), the participant
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Fig. 1. Schematic of the delayed match-to-sample (DMS) task.

needed to press the button on the right, if not (non-match
stimulus), press the button on the left. The test image and the
target image were the same or different were regarded as two
different stimuli to the participants.

3) Eye Movement Task: In this task, participants were asked
to sit in a chair and perform the following tasks as required,
four eye tracking experiments were performed:

• Fixation: The participants focus their gaze on the target
as accurately as possible.

• Pursuit: The participants follow a moving target as closely
as possible with their eyes.

• Pro-saccade: The participants first fixate on the fixation
point, and then when the visual stimulus point appears,
the participants need to make a rapid saccade towards the
visual stimulus point.

• Anti-saccade: The participants first fixate on the fixation
point, and then when the visual stimulus point appears,
the participants need to make a rapid saccade to the mirror
position of the visual stimulus point.

B. Feature Extraction
Feature extraction can reduce the dimension of the raw

data while maintaining the integrity of the description of the
data. In this paper, we extracted the following features from
different modalities of data to train the model:

1) Eye Movement Features (EF): In the eye movement task,
gaze point, eye position and pupil diameter were recorded
by the eye tracker, and some metrics of specific events were
counted in each eye movement experiment. The Identification
by Velocity Threshold (IVT) method [23], [24] was used
to detect saccade. In the IVT model, the velocity value is
computed for every eye position sample, the eye position
sample was marked as a saccade if the sampled velocity
was greater than the manually set threshold. The numbers of
saccades were counted in the fixation and pursuit experiments.
Besides, the latencies of saccade in the saccade experiment and
antisaccade experiment were also used as extracted features.
The latency [25] refers to the time difference between the
visual stimulus point starting to move and the point of the
participant’s gaze starting to move, it can be defined as:

latency = t − tonset (1)

where t denotes the time when the first saccade occurred after
the event began; tonset denotes the time the visual stimulus
point started to move (in the saccade experiment and anti-
saccade experiment). In the anti-saccade experiment, some

participants made a saccade towards the visual stimulus point
or paused too long at the fixation point, the antisaccade
error rate was calculated to reflect how well the participant
completed the experiment, the error rate was the proportion
of times that the participant fail to saccade in the opposite
direction of the visual stimulus point. Thus, the EF are
normalized number of saccades in the fixation and pursuit
experiments, the latencies in the saccades and antisaccadic
experiment, and the error rates in the antisaccadic experiment.

2) Power Spectral Density Features (PSDF): Power spectral
density describes how the power of a signal is distributed
with frequency [26]. In this paper, Welch method was used
to estimate the PSD of each frequency band. Fast Fourier
Transform (FFT) was performed on all epochs, and the average
magnitudes of all FFT coefficients in a specific frequency band
were used as PSD features, it can be written as:

P SDi =

∑ f ei
k= f si

|Yk |

f ei − f si
(2)

where f si and f ei is the start and end frequency in the i-th
frequency band respectively, and Yk are the FFT coefficients.
In this paper, frequency-domain features are extracted accord-
ing to 4 conventional frequency bands.

3) Continuous Wavelet Transform Features (CWTF): The
wavelet transform represents the signal in terms of both time
and frequency, and can well express the changes of non-
stationary signals [27]. It can be defined as

Ci, j = C(τi , a j ) =
1

√a j

∞∑
−∞

x(t)ψ∗(
t − τ

a j
)dt (3)

where Ci, j are the wavelet transform coefficients at sample τi
and scale a j ; x(t) is the signal, and ψ denotes mother wavelet.
Morlet wavelet is used as the mother wavelet in this paper.

The average magnitudes of all wavelet transform coeffi-
cients in a specific frequency band over the signal length were
used as CWT features. it can be written as:

W Fi =

∑te
j=ts

∑ f e
k= f s Ci, j

(te − ts) ( f ei − f si )
(4)

where ts is the start of epoch in the resting-state task or the
time when the target image appears in the DMS task, and te
is the end of epoch in resting-state task or the time when the
next image appears in the DMS task.

4) ERP Features (ERPF): Event-related potentials (ERPs)
are obtained by extracting multiple time periods from an ongo-
ing EEG that define the event of interest and then averaging
them [28], [29]. In the experiment of this paper, the DMS task
was an ERP-triggered task, EEG was triggered differently in
match and non-match stimuli, and literature [30], [31], [32]
have showed that stable grand-average ERPs can be obtained
with 15 or fewer trials. We made differences between the
ERP waveforms of match stimuli and non-match stimuli at
specific time points, and extracted the following 6 time-domain
features within the period of 300 - 600 ms. The reason for
extracting these features is based on the data analysis.

• The mean of the maximum/minimum values between the
match stimuli and non-match stimuli.
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• The difference of the maximum/minimum values between
the match stimuli and non-match stimuli.

• The ERP latency differences of the maximum/minimum
values between the match stimuli and non-match stimuli.

5) Behavioral Features (BF): In the DMS task, the partici-
pant’s degree of concentration and ability to judge correctly in
the task also reflected important information. The information
about when each participant pressed the button at each epoch
and whether the participant made the correct action as the
task required were recorded by E-Prime software. BF are
the correct/error rate, missing rate (participant doesn’t press
any button within 2 s of the test image appearing) and the
average reaction time (RT) of the participant calculated by
these information.

C. Dataset Construction and Evaluation Methods
There are two ways to define samples, different sample

definition ways will affect the size of the data set.
A conventional way is to regard each subject as a sample,

in this way, the sample size is equal to the number of the
subjects. Because of the small sample size, the model can
only be trained with traditional classifiers with few parameters.
To use more samples when training the model, leave-one-out
method was used to evaluate the model. Thus, we built a
number of models equal to the number of subjects, and each
model was either correct or incorrect on its corresponding test
set. The ratio of the number of correctly classified models to
the total number of models was used as the evaluation index
of a specific classifier.

Another way of data augmentation is to regard each segment
signal of each subject as a sample, but in this case, each sample
is not independent, the different segments of the same subject
are strongly correlated (they are all from the same subject),
so it is necessary to restrict all samples of the same subject to
be in one of the train set or test set at the same time to avoid
data leakage from the train set to the test set. This restriction
will also ensure that the feature extraction method becomes
independent, thereby preventing the parameters of the feature
extraction module from being influenced by segments of the
same subjects in the test set. In this paper, all the subjects
were divided into 5 parts, and each time one part was used as
the test set, and the rest were used as the train set, we will
gain 5 models at the end. It is worth noting that the accuracy
directly calculated by the model is based on the segment in this
case, and they needed to be converted into the subject-level
accuracy at the end. The predicted label of a subject was
determined by majority voting of segment labels of the same
subject and compared with the real label of the subject to
obtain subject-level accuracy. The accuracy of the classifier is
defined as the average accuracy of the 5 models.

Data augmentation was only implemented in the EEG
modality in this paper, since the eye movement features and
behavioral features were fixed for the same subject. The
features of the sample in this way included the features
extracted from an EEG segment, the eye movement features
and behavior features extracted from the subject, the label of
the sample was the subject’s label. In the resting-state task,

Fig. 2. Structure of domain-adversarial neural network.

each 2 s interval EEG epoch is regarded as a segment. In the
DMS task, 30 epochs of the same stimuli (match stimuli or
non-match stimuli) were randomly selected to superimpose
to get the ERP waveforms as a segment. In this way, each
segment reflected information about the subject, and all input
samples were the real data on the subjects.

D. EEG Channel Selection
Feature selection is very important in machine learning,

it can reduce the computation cost and improve the perfor-
mance. Since the dimension of the features is high in the
experiment, using channel selection as a feature selection
method can not only eliminate some irrelevant interference,
but also reduce the requirements for EEG device, so cheaper
EEG devices that only measure a few channels can suffice for
identifying dementia. Channel selection is also physiologically
reasonable, because only some brain regions may better reflect
the changes in the EEG signal during the task, while the
EEG signals in other brain regions are more caused by other
interference factors. In this paper, random forest was used
to rank all the extracted features and get the weight of each
feature, and then the weight of each channel was calculated
according to the features contained in each channel. Several
channels with larger weights and spatially closer locations
were chosen to reduce the input data dimension.

E. Classification Model
In this paper, different classifiers were used for different

dataset construction:
1) Support Vector Machine (SVM): SVM is a classifier that

transforms the features into a higher dimensional space and
then constructs an optimal separating hyperplane in the trans-
formed space to separate the two classes [14], [33]. In the case
of regarding each subject as a sample, due to the small sample
size, it is advisable to utilize a classification model with a lim-
ited number of parameters. Consequently, SVM is well-suited
for such scenarios. This study explored both the linear kernel
and the radial basis function (RBF) kernel as options for SVM.
To identify the optimal hyperparameters associated with the
kernel, the grid search method was employed to select the best
hyperparameters corresponding to the kernel. The accuracy of
the validation set was also presented as a reference for the
accuracy of the test set.

2) Domain Adversarial Neural Networks (DANN): In the case
of data augmentation, the sample size is enough for us to use
some complex models. DANN [34] was used as the classifica-
tion model to distinguish MCI patients from healthy elderly.
The structure of DANN is shown in Fig. 2. It consists of
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Fig. 3. Structure of ERPNet feature extraction layer.

three parts: feature extraction layer, label predictor and domain
discriminator. The function of the feature extraction layer is to
learn another representation of the source domain and target
domain features to confuse the domain discriminator. Domain
discriminator is used to judge whether the features come from
the source domain or the target domain. Label predictor is
used to classify the sample label. The optimization strategy
is to minimize the loss of the label predictor and maximize
the loss of the domain discriminator, making the distribution
of the train set and the test set as consistent as possible. The
total loss function is defined as:

L =
batchsizes

batchsizet ∗ L t
d + Ls

d + β ∗ Ls
y

where Ls
d is the loss of domain classifier using the source

domain data; Ls
t is the loss of domain classifier using the

target domain data; Ls
y is the loss of label predictor using the

source domain data, and β is a parameter to adjust the weight
of domain classifier and label predictor.

There are two ways to feed EEG signals as inputs into the
classifiers: one is to extract various features in advance through
the feature extraction method, and then feed the extracted
features to the model; the other is to directly feed the original
EEG signal or ERP waveform to the model, and use an extra
feature extract layer to extract features. The latter way is
to train the feature extractor through a neural network. The
features extracted by the neural network have no practical
meaning compared with the time-domain or frequency-domain
features extracted based on theoretical knowledge, but it would
not lose some information about the original signals and can
extract the features of all aspects of the original signal to
improve the performance. The results of both ways of feeding
input data will be presented for comparison in this paper.

An ERPNet module was designed to extract EEG features
and fused with other features in the DMS task, the structure of
ERPNet is shown in Fig. 3. Since the behavioral features and
eye movement features are not suitable for convolution, they
were concatenated with the convolved EEG features to get the
fused features. In the ERPNet, the ERPs of the match stimuli
and non-match stimuli were extended to another dimension,
and a depthwise convolution was used on the ERPs during
the 950 ms post-stimulus period. The kernel size of the first

dimension was set to 2 so that the difference between the
match stimuli ERP and the non-match stimuli ERP can be
obtained. The kernel size of the second dimension was set to
30 so that the ERP information of every 10 ms can be captured
during the convolution process (the device samples at 300 Hz).
Depthwise convolution can ignore the relationship between the
ERPs of different channels, focus more on the information
of two different stimuli in the specific channel, and reduce
the number of trainable parameters to fit. The purpose of
average pooling operation is to smooth the feature map, reduce
dimension, and eliminate the influence of noise. Pointwise
convolution can learn how to optimally mix the features
of different channels and reduce the dimension. The main
difference between ERPNet and EEGNet [35] is that the object
of convolution in ERPNet is the ERPs of different stimuli, and
the convolution operation emphasizes time-domain features
and the difference between different stimuli, and reduces the
number of parameters by depthwise convolution in the channel
dimension. While the object of convolution in EEGNet is
EEG signal at different band-pass frequencies, the convolution
operation reduces the number of parameters by depthwise
convolution in frequency dimension.

III. RESULTS

A. Data Analysis
1) Resting-State Task: In the resting-state task, a frequency

domain analysis of the AD group and non-AD group is
performed, the result is shown in Fig. 4. It can be found that
the EEG power of the AD group was lower than that of the
non-AD group in the frequency band of α and β, but higher
than that of the non-AD group in the frequency band of δ. The
conclusion is similar to the study [36], but the same conclusion
that θ rhythm is increased in the AD group was not reached
in this paper. No similar differences were found between HC
group and MCI group.

2) Eye Movement Task: In the eye movement task, EF were
calculated, the results are shown in Table. I. It can be found
that the number of saccades in fixation experiment was more
frequent as dementia becomes more severe, Two-Sample T-test
revealed that significant differences (p<0.05) were found in
the number of saccades in fixation experiment between the
AD and HC groups. No significant differences were found in
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Fig. 4. Differences in spectrograms maps of four frequency bands
between AD group and non-AD group.

TABLE I
MEAN VALUE OF EYE MOVEMENT DATA IN THREE GROUPS

the number of saccades in pursuit experiment between any
two groups. In addition, AD group had a higher error rate in
antisaccade experiment, and significant differences (p<0.05)
were found in the error rate between the AD and HC groups.
Furthermore, significant differences (p<0.01) were found in
the latency in antisaccade experiment between the MCI group
and the HC group, but the same result was not found between
AD group and HC group, this might be because AD group
has a higher error rate in antisaccade experiment, which leads
to the fact that AD group did not do the same experiment as
other group.

3) DMS Task: In the DMS task, a frequency domain analysis
of MCI group and HC group was performed, the result is
shown in Fig. 5. It can be found that the EEG powers of
the MCI group were higher than or equal to that of HC
group at the frequency band of α on all channels. On the
contrary, the EEG powers of the MCI group were lower than
or equal to that of HC group at the frequency band of β on all
channels. The phenomenon suggests that MCI is likely due to
insufficient power at the frequency band of β on F4-C4-T6-
O1-O2 channels, while the power at the frequency band of α
on the other channels makes up for this deficiency. This finding
is consistent with the conclusion in [37], [38], and [39].

Fig. 6 shows the ERP waveforms of the MCI group and the
HC group under the match stimuli and the non-match stimuli.
It could be seen that the ERP waveforms under both match and
non-match stimuli tend to be stable at about 1000 ms after the
test image appears. But the maximum amplitude of the match
stimuli was higher than that of the non-match stimuli, and the
difference was largest in the right brain area, it is consistent
with the conclusion in [40] that the HC group has a typical
P300 match enhancement phenomenon. The ERP waveforms’

Fig. 5. Differences in spectrograms maps of four frequency bands
between MCI group and HC group.

Fig. 6. ERP waveforms under match stimuli and non-match stimuli in
MCI group and HC group.

TABLE II
BEHAVIORAL DATA IN THREE GROUPS IN DMS TASK

amplitude of the HC group dropped more than that of MCI
group at about 300 ms after the test image appeared, and the
latency of the non-match stimuli was slower. The occurrence
time of the extremely large and extremely small amplitudes
was concentrated around 300 - 600 ms. Thus, these differences
were used to extract features during this period.

The behavioral data of the participants in the DMS task
are shown in Table. II. It can be seen that the error
rates and reaction times increase as dementia becomes more
severe. Two-Sample T-test revealed that significant differences
(p<0.001) were found either in the correct rate, error rate,
non-response rate and reaction time between AD and non-AD
groups. Although the average error rate and reaction time of
the MCI group were higher than those of the HC group, we did
not find any features that were significantly different between
HC and MCI groups.

B. The Result of EEG Channel Selection

When random forest was used to calculate the weight of
channels, due to the different selection of random seeds, the
weight order of channels was not fixed, but after averaging the
weights calculated by the random forest more than 10 times,
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Fig. 7. Results of EEG channel selection: (a) The weights of each
channel in the resting-state task; (b) The weights of each channel in the
DMS task.

the order became stable and the channels with the largest
weight tended to be the fixed channels.

1) Resting-State Task: The weights computed by random
forest for each channel in the resting-state task are plotted in
a topographic map in Fig. 7(a). It can be seen that the weights
of the occipital lobe were relatively higher, which means that
the channels in the occipital lobe region had a larger role in
distinguishing AD, it may be because the occipital lobe is
related to visual function [41], and AD patients have poor
compliance and cannot help but open their eyes occasionally
after closing their eyes for a long time. In this paper, the EEG
signals of O1-O2 channels were used in the resting-state to
distinguish AD.

2) DMS Task: The weights of each channel in the DMS
task are plotted in a topographic map in Fig. 7(b). Unlike the
resting-state task, the channels with relatively larger weights
in the DMS task were concentrated in the frontal lobes, which
is consistent with existing research [42], [43], [44] showing
that the frontal area is related to the cognitive function of the
brain. In this paper, the EEG signals of F3-Fz-F4 channels
were used in the DMS task to distinguish MCI.

C. The Result of Distinguishing Between AD and
Non-AD

1) The Effect of Different Features Without Data Augmen-
tation: Table III shows the results of different features to
distinguish AD from non-AD. The accuracy can reach 92.21%
when using only eye movement features, accompanied by high
specificity and low sensitivity. The accuracy obtained by using
the EEG data in the resting-state can reach 94.44%, with
higher sensitivity than using eye movement features. More-
over, to reduce the cross-subject differences in EEG signals,
the ratios of frequency domain features at each frequency band
were tried in this paper, and it was found that the performance
of the ratio of frequency domain features performed better
than directly using frequency domain features. It can also be
seen that the accuracy of using only BF features in the DMS
task is 98.48%, but DMS task is more complicated than eye
movement task and resting-state task. It is more efficient to use
eye movement data and resting-state EEG data to distinguish
AD, and an accuracy of 100% was achieved after fusing
CWTF2 with EF.

2) The Results With Data Augmentation: Table IV shows the
results of regarding an epoch as a sample. In this case, the
ratio of extracted features (CWTF2) still had better results than

TABLE III
RESULTS OF DIFFERENT FEATURES (AD VS NON-AD)

TABLE IV
RESULTS WITH DATA AUGMENTATION (AD VS NON-AD)

commonly used extracted features (CWTF1). The accuracy
was improved when it was finally converted into subject-level
accuracy compared to epoch-level accuracy. Compared with
the results of no data augmentation, the results became worse.
This means that after data augmentation, the model did not
necessarily gain more useful information, and the correlation
between different segments was still too strong, so the purpose
of improving performance hasn’t been achieved. The reason
for the higher accuracy of regarding each subject as a sample
might be that the EEG signal itself is unstable, and the EEG
signal obtained after the average superposition of multiple
epochs is more accurate in that case.

D. The Results of Distinguishing Between MCI and HC
1) The Results Without Data Augmentation: Table V shows

the results of different features to distinguish MCI from HC
without data augmentation. It can be seen that eye movement
features and behavioral features were not effective in distin-
guishing MCI. From the analysis in the previous section, it can
also be seen that there were no significant differences between
these features between the MCI group and the HC group,
so lower accuracy rates for these two features were to be
expected. The performances were much better using features
extracted from EEG, especially with ERPF, the accuracy
reached 74.58%.

By comparing the validation set accuracy and test set
accuracy in Table V, it can be seen that the accuracy of the
validation set was not always higher than the accuracy of
the test set. This means that the hyperparameters adjusted on
the validation set were more suitable for the test set in these
cases. The reason for this phenomenon is that the feature
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TABLE V
RESULTS OF DIFFERENT FEATURES WITHOUT DATA

AUGMENTATION (MCI VS HC)

distribution of validation set was inconsistent with that of
the test set due to the large individual differences of EEG
signal. Among these features, the accuracy of validation set
and the accuracy of the test set were the closest when using
ERPF, which means ERPF was affected least by individual
differences among these features.

It can also be seen that the performance improves by
fusing different features, fusing ERPF with PSD can improve
the accuracy, which indicates that although both ERPF and
PSDF were features extracted from EEG signals, they had
good complementarity, because ERPF focused on time domain
information, and PSDF focused on frequency domain infor-
mation. In addition, EF and BF can also provide some help
for classification. After fusing the ERPF, PSDF, EF and BF
features, the model achieved the highest average accuracy of
81.35%.

2) The Results Using EEG Single-Modal Data With Data
Augmentation: In the case of data augmentation, DANN was
used as the classifier of the model. Table VI shows the results
of different features to distinguish MCI from HC with data
augmentation. For the way of directly inputting the extracted
features, it can be seen that ERPF is still the most effective
feature for a single feature, the average accuracy at epoch-level
was 71.36%, and the accuracy at subject-level was 80.55%.
Although the average accuracy using PSDF or CWTF was
still not as good as ERPF, it was better than using SVM
model, which was because the feature extract layer of DANN
makes the distributions of the training set features and the
test set features tend to be consistent, reducing the individual
difference.

For the way of using ERPNet as the extra feature extraction
module, the average accuracy at epoch-level increased to
74.89%. That means the features extracted from ERPNet
modules can also represent the difference between MCI group
and HC group well. Comparing the results with and without
data augmentation, it was found that the results were better
with data augmentation, which is contrary to the previous
conclusion that the accuracy of resting-state with data aug-
mentation was lower than that without data augmentation. The
phenomenon can be explained as that the “epoch” in the DMS
task was not an original EEG segment, but an ERP waveform
was obtained by superimposing a certain number of segments,
which played a role in denoising. Conversely, the “epoch”
in the resting-state task was simply a segment of the EEG,
so the noise was larger and the signal was more unstable,

TABLE VI
RESULTS USING EEG SINGLE-MODAL DATA WITH DATA

AUGMENTATION (MCI VS HC)

TABLE VII
RESULTS OF DIFFERENT EEG CHANNELS USING MULTI-MODAL DATA

WITH DATA AUGMENTATION (MCI VS HC)

making the extracted features inaccurate. It is worth noting
that the average accuracy using ERPF was higher than using
the ERPNet module at subject-level, but with lower accuracy
at epoch-level, which shows the performance at epoch-level
and the performance at subject-level were not completely
uniform. The performance at the epoch-level can better reflect
the quality of the model or features since the optimization
goal of the model is at the epoch-level, and the performance
at the subject-level can better reflect the possibility of practical
application.

From the results of the 5 experiments, it can be seen that
there are some differences between different experiments, the
results of the 4th experiment performed poorly under any
feature or feature extraction module. This shows that the
selection of the train set and test set had a great influence
on the accuracy of the model. The lower accuracy of the 4th
experiment may be due to the poor EEG signals of specific
subjects, or in other words, the EEG signals of some subjects
may not be suitable to be used to distinguish whether he/she
is MCI or HC.

3) The Results Using Multi-Modal Data With Data Augmen-
tation: Table VII shows the results using multi-modal data.
It can be seen that in each experiment, the accuracy of
ERPNet-DANN was higher than that of using DANN directly.
That means the features extracted by ERPNet module were
indeed more effective than the features we extracted in
advance. Furthermore, after fusing various modal features,
none of the 5 experiments had a particularly poor performance.
Compared with using single-modal EEG data, the accuracy of
the 4th experiment had been greatly improved, which shows
that the features of other modalities play a role in the 4th
experiment and improve the performance. We can conclude
that by using multi-modal features in various paradigms, the
model has better generalization ability and performs better.
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It can also be seen that the channel selection step is
beneficial to the model. No matter which model was used,
the accuracy of only using 3 channels was higher than that of
using all channels. For different models, it can be seen that
channel selection had less impact on ERPNet-DANN, but can
greatly improve the performance on DANN. It is because the
pointwise convolution operation in ERPNet-DANN reduced
the dimension of the EEG channels, while the input of
DANN were the features of all channels. which expanded the
dimension of EEG signal features, after being fused with the
features of other modalities, the effectiveness of other modal
features would be greatly “diluted”, and at the same time, the
increase of the feature dimension did not provide more useful
information, resulting in feature redundancy, so the model
performance dropped a lot on DANN.

IV. DISCUSSION

In this work, eye movement task and resting-state task
are used to distinguish AD patients, because they are not
complicated and do not require too much cooperation from
the participants, they are particularly suitable for AD patients
with severe symptoms. Referring to the results of this paper,
almost all AD patients can be screened out. The detection of
MCI requires participants to do another DMS task. By fusing
the data collected in the DMS task and eye movement task,
we achieved a reference accuracy of 88.81%. Compared with
other studies, the accuracy of detection MCI in this paper is
not the most outstanding, but data leakage was avoided in
the dataset construction and model evaluation, and the final
accuracy was close to the unbiased performance estimates.
Although the EEG device had 19 channels in this paper, only
3 channels of the EEG data were used in the ERPNet-DANN
model, the scenarios in which we collected the data are well
suited for community screening.

The results show that EEG data had great advantages in
detecting MCI compared to other modalities. Although the
features extracted from other modalities had poor performance,
they can indeed contribute to the detection of MCI after fusing
with EEG data. Besides, we found that feeding only specific
channels of EEG signals to the model could improve the
performance, in future work, a cheaper device with fewer EEG
channels can be used.

The results also show that the performance of the same
dataset with different train sets and test sets differed a lot. This
is a problem caused by small size data. So in this paper, the
dataset was divided multiple times, and the average accuracy
was used to evaluate the performance of the classification
method. After using multi-modal data, the effect of different
divide methods on the result became smaller, which alleviated
this overfitting phenomenon.

Some prior analyses for feature extraction and feature selec-
tion were done in this paper, the features were selected based
on this prior knowledge. The final results verified that the
ERPF had the best classification performance and were least
affected by individual differences. Besides, the results show
that data augmentation helped improve the MCI classification
model, and the structure of ERPNet feature extract layer we

proposed can also extract EEG features and fuse them with
other modality features well to detect MCI.

All above, this paper improved performance mainly in three
ways:

• Find features that are suitable for the classification
demand and less affected by individual differences, and
discard irrelevant features at the same time.

• Use a more complex classification model. But a complex
model means a larger sample size, the solution is usually
to use a reliable and effective data augmentation method.

• Use multi-modal data. Some patients may not be sensitive
to certain modality data, so using multi-modal data can
make the classification model more stable.

A shortcoming of this work is that when we distinguished
MCI from HC with data augmentation, the optimization goal
of the model was inconsistent with the practical goal. The
goal of the model training process was to find the model
with the best epoch-level accuracy, but actually, the selected
model was not optimal at subject-level, which made the model
not necessarily the best model for classifying MCI patients.
Since the accuracy at epoch-level is strongly correlated with
the accuracy at subject-level, the final model also achieved
ideal results.

V. CONCLUSION

In this work, a novel dementia classification method based
on multi-modal data was proposed. The purpose of this work
is to find a non-invasive, low-cost and more accurate solution
for dementia diagnosis. Three paradigms of various task
difficulties (eye movement task, resting-state task, and DMS
task) were used to collect the data of the subjects. We achieved
an accuracy of 100% for distinguishing AD patients using
eye movement task and resting-state task, and an accuracy of
88.81% for distinguishing MCI patients using eye movement
task and DMS task. Different features were analyzed and their
performances were compared, we found that ERP in the DMS
task had an advantage in distinguishing MCI patients. Based
on this finding, we designed an ERPNet module to extract
the features of ERP in the DMS task and fused it with other
modality features. The results show that using multi-modal
data can improve the model performance and the ERPNet
module can extract features effectively to distinguish MCI
patients. SVM and DANN were used as classification models
under different dataset construction. The performance was
improved using specific EEG channels, we found that O1-O2
were suitable for resting-state task to detect AD, while F3-
Fz-F4 were suitable for DMS task to detect MCI. Our work
provides a potential for the future diagnosis of dementia using
EEG and eye movement signals. In the future, we will try
different paradigms with more features of different modalities
for dementia diagnosis.
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