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VSSI-GGD: A Variation Sparse EEG Source
Imaging Approach Based on Generalized

Gaussian Distribution
Ke Liu , Shu Peng, Chengzhi Liang, Zhuliang Yu , Member, IEEE, Bin Xiao ,
Guoyin Wang , Senior Member, IEEE, and Wei Wu , Senior Member, IEEE

Abstract— Electroencephalographic (EEG) source imag-
ing (ESI) is a powerful method for studying brain functions
and surgical resection of epileptic foci. However, accurately
estimating the location and extent of brain sources remains
challenging due to noise and background interference
in EEG signals. To reconstruct extended brain sources,
we propose a new ESI method called Variation Sparse
Source Imaging based on Generalized Gaussian Distribu-
tion (VSSI-GGD). VSSI-GGD uses the generalized Gaussian
prior as a sparse constraint on the spatial variation domain
and embeds it into the Bayesian framework for source esti-
mation. Using a variational technique, we approximate the
intractable true posterior with a Gaussian density. Through
convex analysis, the Bayesian inference problem is trans-
formed entirely into a series of regularized L2p-norm (0 <
p < 1) optimization problems, which are efficiently solved
with the ADMM algorithm. Imaging results of numerical sim-
ulations and human experimental dataset analysis reveal
the superior performance of VSSI-GGD, which provides
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higher spatial resolution with clear boundaries compared
to benchmark algorithms. VSSI-GGD can potentially serve
as an effective and robust spatiotemporal EEG source
imaging method. The source code of VSSI-GGD is available
at https://github.com/Mashirops/VSSI-GGD.git.

Index Terms— EEG source imaging, generalized
Gaussian distribution, variation sparsity, ADMM.

I. INTRODUCTION

ELECTROENCEPHALOGRAPHY (EEG) is widely
employed for brain imaging due to the millisecond-level

time resolution [1], [2]. However, EEG has limited spatial res-
olution because of the volume conduct effect [3]. EEG source
imaging (ESI) is widely recognized as an effective technique
for improving the spatial resolution of scalp EEG signals. It is
a technique that uses EEG signals and mathematical models
of human head tissues to derive the image of intracranial
neural activities, precisely reconstructing their locations and
extents [3], [4]. Previous studies on electrocorticography
(ECoG) and functional magnetic resonance imaging (fMRI)
have shown that brain activity exhibits spatial correlations,
indicating that EEG signals may originate from widespread
active regions of the cortex [5]. In other words, it requires
an activated brain area (usually no less than 6 cm2) to
generate a spike on the scalp [6]. Reconstructing the spatial
extent of cortical brain activity, along with the location,
is not only possible but also holds significant scientific
and medical importance [7], such as stroke recovery [8],
[9], as well as detection and surgical resection of epileptic
foci [10], [11]. Additionally, ESI provides signals with a
higher spatiotemporal resolution for brain-computer interfaces
(BCI) and related applications [12], [13].

For ESI problems, the distributed current density (DCD)
model is a widely employed source model [3], [14]. The
DCD model divides the cortex into several triangular grids,
where each triangle represents a source with a fixed location.
Typically, the number of sources is around several thousand
and much larger than the number of scalp electrodes (usually
32 to 256 electrodes) [14], [15]. Hence, ESI is a severely
ill-posed inverse problem, where countless potential source
configurations can fit the scalp measurements. It is similar to
compressed sensing, as it relies on utilizing a limited quantity
of observed data to reconstruct intricate signals. To obtain a
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unique and accurate solution, appropriate constraints need to
be applied to narrow the solution space.

Conventional ESI methods employ the L2-norm regularize
to constrain the potential sources. For example, the minimum
norm estimation (MNE) applies L2-norm regularization to
select the source configuration with the minimum energy that
matches the scalp measurement [14]. However, MNE is not
sensitive to deep sources because the electric fields generated
by superficial sources have less energy [3]. To address this
biased estimation, weighted MNE (wMNE) proposes to weight
the regularization term with the norms of each column of
the lead-field matrix [16]. To obtain spatial coherence and
smooth solutions, low-resolution electromagnetic tomogra-
phy (LORETA) proposes to minimize the L2-norm of the
second-order spatial derivative of the sources [17]. Nonethe-
less, the imaging results of these L2-norm based methods are
often blurry and cover most of the cortical regions [3], [18].
To improve spatial resolution, many studies have employed
sparse constraints such as the L1-norm further to narrow the
solution space [19], [20]. Other studies incorporate constraints
as prior information into the Bayesian framework. One such
method is sparse Bayesian learning (SBL) [21], [22]. Under
the SBL framework, the study in [23] combines the hyperpa-
rameters of the source variance along with the full-structure
multivariate Gaussian noise for joint estimation, leading to
promising outcomes. Cai et al. [24] utilize SBL to estimate
the model data covariance and reconstruct potential sources
with adaptive beamformers, effectively mitigating the effects
of correlated brain sources and yielding good results.

The sparse constraint methods can accurately localize the
activated brain sources with high spatial resolution. However,
due to the sparsity enforcement on the source space, these
methods usually generate only one or a few points within the
active areas, thereby missing the extent information of source
activities [14], [25]. To remedy this issue, several studies
applied sparse constraints in the transform domains, such as
the variation domain [26], [27], [28], or a combination of
multiple domains [29]. These constraints can provide more
accurate estimates of source location and extent. Nonetheless,
most of these methods apply the L1-norm constraint in the
spatial transform domains, which tends to overestimate the
extent of the sources, especially for small ones [30]. To reduce
this bias, the study in [31] has pointed out that non-convex
constraints like L p-norm (0 < p < 1) can acquire more
accurate results in contrast to L1-norm-based methods, espe-
cially when measurements are noisy and restricted isometry
property (RIP) is violated, which is always the case for ESI.
Studies have indicated that the L p-norm is sparser than the L1-
norm, as the inclusion of p allows for more flexible balancing
between measurement data and sparsity [32]. In addition,
L p-norm-based methods require fewer measurements to yield
reliable results [33].

In the Bayesian probabilistic framework, the solution of
the typical L p-norm regularization methods is equivalent to
the maximum a posterior (MAP) estimation with the gener-
alized Gaussian prior. However, according to [34] and [35],
this non-convex MAP reconstruction often encounters many

shallow local optima. The posterior, which incorporates the
generalized Gaussian prior (L p-norm constraint with 0 <

p < 1), is asymmetric and exhibits multiple local modes. The
MAP estimation is unable to account for the overall mass of
the posterior and tends to become stuck in shallow optima.
To address this issue, Bayesian integration can be employed
to average out these shallow local optima and obtain the mean
of the posterior distribution [35], [36].

Similar to the mixed L21-norm [25], [37], this work used the
L2p-norm regularization to reconstruct the cortical extended
sources. As a matrix form extension of L p-norm, we define
this regularization operator to impose the L2-norm regulariza-
tion in the temporal domain and the L p-norm regularization in
the spatial variation domain. By formulating the ESI problem
within the Bayesian framework, we introduced a new EEG
source imaging algorithm called variation sparse source imag-
ing based on generalized Gaussian distribution (VSSI-GGD).
Using a variational technique, VSSI-GGD approximates the
intractable posterior density with a Gaussian distribution.
Through convex analysis, the approximated Gaussian posterior
distribution is obtained by solving a series of regularized L2p-
norm constraint problems. The alternating direction method
of multipliers (ADMM) algorithm [38] is employed to solve
each efficiently regularized L2p-norm constraint problem.
By combining the generalized Gaussian prior and variational
Bayesian inference technique, we anticipate that the proposed
method will yield more accurate reconstructions of cortical
sources compared to existing techniques. This is validated by
simulations using synthetic and experimental EEG data.

The rest of this paper is summarized as follows. Section II
provides a detailed description of VSSI-GGD. Section III
presents the simulation design, benchmark algorithms, and
performance metrics used to validate the performance of our
proposed method. Section IV presents the results obtained
using both simulated and real EEG data, followed by a
discussion in Section V and a brief conclusion in Section VI.

Matrices and vectors in this paper are denoted using upper-
case and lowercase boldface letters, respectively. N (µ,6)
represents a Gaussian distribution with mean µ and covariance
6. f ∗ and f −1 are the conjugate and inverse function of f ,
respectively. xi and x j,: denote the i th column and the j th
row of matrix X , respectively.

II. METHODS

A. Background
According to the quasi-static approximation of Maxwell’s

equations, the relationship of EEG signals and current sources
is described as [3], [14],

B = LS + ε (1)

where B ∈ RNb×Nt is the EEG data collected from Nb
electrodes at Nt time sampling points, and S ∈ RNs×Nt is
the cortical source of Ns potential brain sources at Nt time
points. L ∈ RNb×Ns is the lead-field matrix, which models
how potential brain activities, S, are related to scalp EEG
recordings. ε denotes the measurement noise which is assumed
to be drawn from N (0,6ε) independently, and 6ε is the
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covariance obtained from pre-stimulus data. For generality,
spatial whitening is applied to both the lead-field matrix and
EEG measurements based on the estimated 6ε, resulting in
ε ∼ N (0, I) [25].

Based on (1), ESI aims to estimate the appropriate potential
source configuration S from the EEG measurement data B
with a given lead-field matrix L. However, the number of suit-
able source configurations tends to approach infinity because
the number of EEG electrodes is much less than the number
of potential sources, i.e., Nb ≪ Ns . Thus, prior spatiotemporal
constraints are needed to narrow the solution space for the ill-
posed problem. For the temporal constraint, we assume that the
source matrix S is a linear combination of K temporal basis
functions (TBFs) [15], [25], 8 = [φ1, · · · ,φK ]

⊤
∈ RK×Nt ,

where φk ∈ RNt ×1 is the kth TBF. By projecting EEG
measurements B and sources S onto the subspace spanned
by the TBFs, we can capture the temporal properties of brain
sources through the projection coefficients B̃ = B8⊤

∈

RNb×K , and S̃ = S8⊤
∈ RNs×K . Hence, the data model

in (1) can be written as

B̃ = LS̃ + ε̃ (2)

where ε̃ = ε8⊤
∈ RNb×K . Here, we construct TBFs from

singular value decomposition (SVD) of EEG signals and
use the Kaiser criterion to determine the value of K [25].
For orthogonal TBFs, we obtain ε̃k ∼ N (0, I) [15]. After
obtaining S̃, we recover the potential source S as S = S̃8.
The use of TBFs not only reduces the dimension of the ESI
problem but also helps stabilize the source reconstruction. For
notation simplicity, we use S and B instead of S̃ and B̃
throughout the remainder of this paper.

For spatial constraint, to obtain locally smooth and globally
clustered cortical sources [5], [15], we enforce source sparsity
on the spatial variation domain and penalize the amplitude
differences between adjacent dipoles. Specifically, we apply
a linear transformation to the source through the variation
operator V to obtain the variation source U . V is defined
as [26], [39]

V =


v11 v12 · · · v1Ns

v21 v22 · · · v2Ns
...

...
. . .

...

vM1 vM2 · · · vM Ns


{
vmi = 1, vmj = −1, i < j; if source i, j share edgem
vmi = 0; otherwise

(3)

where M is the number of triangular edges in the source
model. Each row of V corresponds to two adjacent dipoles
that share the same edge in the triangular grid on the cerebral
cortex, indicated by the 1 and -1 values. Hence, each row
of variation sources U = V S ∈ RM×K represents the
amplitude difference between two adjacent sources. The use of
the variation transformation enforces sparsity on the variation
source, preventing the loss of spatial information caused by
enforcing sparsity in the original domain [7].

B. Inverse Solution
To reconstruct extended sources, we assume that the varia-

tion source U is sparse, and each row of U is independent of
each other. We achieve this by incorporating the generalized
Gaussian prior for each row of U [40]

p(ui,:) =
p

2λ0(1/p)
exp

[
−

(
∥ui,:∥2

λ

)p]
(4)

where λ and p are the scale and shape parameters of the
generalized Gaussian distribution, and 0(·) is the Gamma
function. Then the prior of U can be expressed as

p(U) =

M∏
i=1

p(ui,:) (5)

Based on the data model (1) and prior (5), the posterior
distribution of S is derived as

p(S|B) = Z−1 p(B|S)p(U), U = V S

Z = p(B) =

∫
p(B|S)p(U)d S (6)

where Z is the model evidence. However, due the the non-
Gaussian prior, the integration of Z is intractable. To efficiently
leverage information from the posterior distribution, we utilize
a variational technique to find a Gaussian density Q(S|B) to
fit the true posterior p(S|B).

According to the convex analysis, the prior p(ui,:) can be
approximated as [41]

p(ui,:) = max
γi
N (0, γ−1

i I) f (γi ) (7)

where f (γi ) =

√
2π
γi

exp
(
g∗

( γi
2

))
, g∗ is the concave conjugate

of g, g(x) = log λ + λ−px p/2
+ C, and C is a constant.

Therefore, we have

p(U) =

M∏
i=1

p(ui,:) = max
γ

K∏
t=1

N (ut |0,0−1)

M∏
i=1

f (γi ) (8)

in which ut denotes the t th column of U and 0 = diag(γ ),
where γ = [γ1, . . . , γM ]

⊤ is a vector comprising M unknown
nonnegative hyperparameters that govern the prior covari-
ance of U . If γ is known, p(U) is lower bounded by
C1

∏K
t=1N (ut |0,0−1), where C1 =

∏M
i=1 f (γi ) is a constant.

With this Gaussian-form lower bound, the approximated Gaus-
sian posterior are obtained as

Q(S|B; γ ) ∝ p(B|S)
K∏

t=1

N (ut |0,0−1) (9)

Given a value of γ , the mean µ and covariance 6 of
Q(S|B; γ ) are represented as follows

µ = 6L⊤ B
6 = A−1, A = L⊤L + V⊤0V

(10)

As a result, we aim to determine the optimal value of γ that
makes Gaussian density Q(S|B; γ ) the tightest to p(S|B).
A natural way to fit p(S|B) by Q(S|B; γ ) is to maximize the
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model evidence Z in (6). Since Q(S|B; γ ) = N (S|µ, A−1),
we have maxS Q(S|B) = |2π A−1

|
−

K
2

∫
Q(S|B)d S. Hence,

max
S

p(B|S)p(U) = |2π A−1
|
−

K
2

∫
p(B|S)p(U)d S

⇒ Z =

∫
p(B|S)p(U)d S = |2π A−1

|
K
2 max

S
p(B|S)p(U)

(11)

The inference problem falls to maximize the right hand of
Eq. (11) w.r.t. S and γ . Combining (8) and taking the negative
logarithm of (11), we have

(γ̂ , Ŝ) = arg min
γ ,S

ψ(γ , S)

= arg min
γ ,S,λ

[
K log |A| − 2

M∑
i=1

g∗(
γi

2
)+ R(γ , S)

]
,

R(γ , S) = ∥B − LS∥
2
F +

K∑
t=1

u⊤
t 0ut (12)

For computationally convenience, we construct auxiliary func-
tions using convex analysis to form an alternative objective
function for log |A|. Since it is concave in γ , by Fenchel
duality, it can be expressed as a minimum over upper-bounding
hyperplanes [21], [39]

log |A| = min
ξ

ξ⊤γ − f ∗(ξ) (13)

where f ∗(ξ) is the concave conjugate of log |A| with ξ =

[ξ1, · · · , ξM ]
⊤ as auxiliary variables [21], [25], [39], which is

obtained from simple geometric considerations as the slope at
the current γ of log |A|

ξ = ▽γ log |A| = diag(V A−1V⊤) (14)

In this work, we utilize the Lanczos algorithm to provide a
scalable low-rank approximation of the covariance A−1 [42].

Combining (12) with (13) and removing the minimizations,
the modified cost function is derived as

ψ(γ , S, ξ) = K ξ⊤γ − 2
M∑

i=1

g∗(
γi

2
)+ R(γ , S)− K f ∗(ξ)

(15)

The hyperparameter γ is obtained by minimizing the cost
function ψ(γ , S, ξ) with other variables fixed

γi = arg min
γi

K ξiγi + γi∥ui,:∥
2
2 − 2g∗(

γi

2
)

= arg min
γi

2
[γi

2
(K ξi + ∥ui,:∥

2
2)− g∗(

γi

2
)
]

(16)

Taking the derivation of γi , we have

K ξi + ∥ui,:∥
2
2 −

g∗(
γi
2 )

∂γi
= 0

⇒ g∗′
(
γi

2
) = K ξi + ∥ui,:∥

2
2 (17)

Note that g(x) is concave, so the inverse function of its
concave conjugate is itself [41]. Thus

γi = 2g∗′−1
(K ξi + ∥ui,:∥

2
2) = 2g′(K ξi + ∥ui,:∥

2
2)

= pλ−px
p−2

2
i |xi =K ξi +∥ui,:∥

2
2

(18)

Considering the terms related to S in ψ(γ , S, ξ), the source
S is updated as

S=arg min
S

∥B − LS∥
2
F +

M∑
i=1

{
γi [K ξi + ∥ui,:∥

2
2] − 2g∗(

γi

2
)
}

(19)

Since

g(x) = min
γ

γ ⊤x − g∗(γ ) (20)

we have,

γi

[
K ξi + ∥ui,:∥

2
2

]
− 2g∗(

γi

2
) = 2g(K ξi + ∥ui,:∥

2
2) (21)

Hence, S is obtained by solving the following regularized
optimization problem

S = arg min
S

∥B − LS∥
2
F + 2λ−p

M∑
i=1

(√
K ξi + ∥ui,:∥

2
2

)p

= arg min
S

1
2
∥B − LS∥

2
F + λ−p

M∑
i=1

(√
K ξi + ∥ui,:∥

2
2

)p

(22)

Eq. (22) can be fully solved by ADMM algorithm w.r.t. the
augmented Lagrangian function of (22)

L(S,U, Z) =
1
2
∥B − LS∥

2
F + λ−p

M∑
i=1

(K ξi + ∥ui,:∥
2
2)

p/2

+ tr[Z⊤(V S − U)] +
ρ

2
∥V S − U∥

2
F (23)

where Z ∈ RM×K is the Lagrangian multiplier and ρ > 0 is
penalty parameter. S, U , and Z are updated alternately as

Sk+1
= (L⊤L + ρV⊤V )−1

[
L⊤ B + ρV⊤

(
Uk

−
1
ρ

Zk
)]

Uk+1
= arg min

U

ρ

2
∥V Sk+1

+
1
ρ

Zk
− U∥

2
F + f (U)

Zk+1
= Zk

+ ρ(V Sk+1
− Uk+1) (24)

where Sk , Uk , and Zk are the corresponding output of the kth
ADMM iteration, and f (U) = λ−p∑M

i=1
(
K ξi + ∥ui,:∥

2
2
)p/2.

Here, the optimization problem of Uk+1 is solved using
iteratively reweighted least squares (IRLS) algorithm [43]

Uk+1
= arg min

U

ρ

2
∥Y − U∥

2
F + tr(U⊤WU)

s.t. Y = V Sk+1
+

1
ρ

Zk (25)

where W = diag(w1, w2, · · · , wM ), and wi =

λ−p (
K ξi + ∥ui,:∥

2
2
) p−2

2 .
Here, the scale parameter λ is chosen using cross-validation.

The ADMM penalty parameter ρ is selected using adaptive
residual balancing strategy [44], and the update for ρ is
performed after every 10 ADMM iterations. To determine
the value of p, according to prior studies [31], [32], [33]
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TABLE I
LIST OF SYMBOLS IN THIS PAPER

and our numerical results provided in the supplementary
materials, we experimentally set p = 0.8. The proposed
algorithm was conducted on a standard PC (Corei9-10980XE
CPU 3 GHz and 128GB RAM). During our numerical
simulation, VSSI-GGD converges after ten cycles, where
each cycle consists of 400 ADMM iterations which takes
about 30 seconds. A schema of VSSI-GGD above is pre-
sented in Algorithm 1, and the code of it is offered at
https://github.com/Mashirops/VSSI-GGD.git.

Algorithm 1 VSSI-GGD Algorithm

Input: EEG data B ∈ RNb×Nt , lead-field matrix L ∈ RNb×Ns ,
TBF matrix 8 ∈ RK×Nt , variation operator V ∈ RM×Ns ,
hyperparameters λ, p.

Output: Potential source S ∈ RNs×Nt .
1: Project EEG data onto TBFs, i.e. B = B8⊤.
2: Initialize S = 0, U = 0, Z = 0, ξ = 1, ρ = 1.
3: repeat
4: repeat
5: update Sk , Uk , Zk with (24).
6: until ∥Sk

−Sk−1
∥F

∥Sk
∥F

is smaller than a specific
value, e.g. 1e-4.

7: update ξ and γ using (14) and (17), respectively.
8: until relative change of the cost function (12) is smaller

than a tolerance, e.g. 1e-4.
9: S = S8⊤

III. SIMULATION PROTOCOL AND PERFORMANCE
METRICS

This section provides a detailed description of the bench-
mark algorithms, Monte Carlo numerical simulations, and
performance metrics used to validate the performance of the
proposed method.

A. Benchmark ESI Algorithms

The performance of the proposed method, VSSI-GGD, was
compared with the following algorithms: (1) wMNE [16],
(2) LORETA [17], which are two widely-employed L2-
norm based methods with the regularization parameter learned
by Bayesian Minimum-Norm [4], (3) SBL [21], (4) VSSI-
MAP [26], [39], the temporal extension of VB-SCCD, which

reconstructs the sources by solving

S = arg min
S

1
2
∥B − LS∥

2
F +

M∑
i=1

λ∥ui,:∥2 (26)

(5) VSSI-CM [39], and (6) VSSI-L2p, which solves the
following formula

S = arg min
S

1
2
∥B − LS∥

2
F + λ∥U∥

p
2,p (27)

where we define

∥U∥
p
2,p =

M∑
i=1


√√√√√ N∑

j=1

u2
i j


p

=

M∑
i=1

(∥ui,:∥2)
p (28)

The regularization parameter λ for VSSI-MAP and VSSI-
L2p was derived by cross-validation on the EEG sensors [25].

B. Simulation Design
We conducted a series of Monte Carlo numerical simula-

tions to verify the performance of these ESI algorithms due to
the lack of ground truth. In this work, we utilized Brainstorm
with the default ICBM 152 magnetic resonance imaging
(MRI) to generate the head model [45]. The cortex surface
was divided into 6006 triangular grids, with each triangle
representing a potential brain source. The lead-field matrix
was calculated based on the 64-channel Neuroscan Quik-cap
sensor system and the OpenMEEG [46] (with two non-EEG
channels abandoned). To construct a simulated cortical source,
a seed point was randomly selected on the cortical triangular
grids, and adjacent triangles were added to the cluster until
the source region reached a specified value. The time series
of the simulated ground truth, denoted as Sreal , was divided
into pre- and post-stimulus parts. The post-stimulus parts were
simulated by applying several Gaussian-damped sinusoidal
signals to the activated source region. Interference noise,
labeled as Snoise, was added to mimic background source
activities. Specifically, five clusters outside the real sources
were randomly chosen as interference sources with an extent
of 3-5 cm2. Pink noise with 1/ f power was applied to these
interference sources. The final simulated source signals S were
obtained by the weighted sum of normalized Sreal and Snoise
under a specific signal-to-noise/interference ratio (SNIR),

S =
Sreal

∥Sreal∥F
+ ϕ

Snoise

∥Snoise∥F
(29)

Here, ϕ is the ratio of real brain source signals to interference
noise, and SNIR is defined as 10 lg 1

ϕ
[15]. Gaussian white

noise was added as the measurement noise under a specified
SNR defined as SNR = 10 lg ∥LS∥F

∥ε∥F
. Consequently, the

simulated observed EEG data, denoted as B, was obtained
through the forward model.

The performance of ESI methods was compared under
various scenarios

1) Various extents - we tested the influence of sources
with different extents on ESI. Specifically, we considered
source extents of 2 cm2, 5 cm2, 10 cm2, 18 cm2, and
32 cm2 for a single source;
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2) Various SNRs - similarly, we evaluated the performance
of the proposed methods under different measurement
noise levels (0, 3, 5, and 10 dB) with a single patch source
of 8 cm2;

3) Various numbers of channels - we investigated the effect
of varying amounts of data on the algorithm results by
considering different numbers of channels with SNR and
SNIR set to 5 dB. Specifically, we down-sampled the
EEG channels and analyzed cases with 100% (62 chan-
nels), 75% (46 channels), 50% (32 channels), and 25%
(16 channels) of the data. In each simulation, channels
were manually selected for non-complete cases (refer to
the supplement document for detailed information).

In the aforementioned scenarios, unless specified otherwise,
the SNR and SNIR were set to 5 dB with a single source of
8 cm2. In the supplement document, we also present the results
of different ESI methods with various SNIR levels. Each case
involved 50 Monte Carlo simulations.

C. Performance Metrics
Four performance metrics are employed to evaluate the

performance of ESI algorithms.
1) The area under the receiver operating characteristic

(ROC) curve (AUC) [4], [47] evaluates the detection
accuracy and sensitivity of the reconstructed sources.

2) Spatial dispersion (SD) [29], [48] measures the spatial
blurring of the estimated sources compared with the
ground truth.

3) The distance of localization error (DLE) [29], [48] mea-
sures the localization error of the reconstructed sources.

4) The shape error (SE) [25], [39] quantifies the relative
squared error between the normalized reconstructed and
simulated sources.

For the details of each performance metric, please refer
to [4] and [39]. In general, higher AUC values and lower SD,
DLE, and SE values indicate better performance of the ESI
methods. To assess the statistical significance, we utilized the
Kruskal-Wallis test. If the statistic from this test is signifi-
cant, we then conducted Wilcoxon rank sum tests, which are
adjusted by the false discovery rate (FDR), within VSSI-GGD
against each benchmark algorithm. Moreover, we employed
Otsu’s threshold to visualize the imaging results as in [25].

IV. RESULTS

A. Results of Monte Carlo Simulations
1) Influence of Various Extents: We first evaluated the influ-

ence of different source extents (2, 5, 10, 18, and 32 cm2) for
ESI methods with a single patch. The performance metrics
of the results are displayed in Fig. 1. For very small size
sources (i.e., 2 cm2), all methods except SBL show poor
performance with lower AUC and higher SD, DLE, and SE
values. SBL demonstrates exceptional performance, indicated
by nearly one AUC and zero SD, DLE, and SE values. This
is attributed to SBL over-enforcing sparsity, which always
produces point estimations. As the source extents increase, the
SD and DLE values of SBL consistently remain low, but the
AUC values significantly decrease. On the contrary, LORETA

Fig. 1. Performance metrics of various extents. This figure presents
the Mean ± SEM of the results for 50 Monte-Carlo simulations. * and
** indicate that the corresponding performance metric of VSSI-GGD
is significantly different from those of the compared methods with
pcorrect < 0.05 and pcorrect < 0.01 respectively.

often generates diffuse estimations, as evidenced by the high
SD values. For source extents greater than 18 cm2, LORETA
shows the highest AUC values, indicating it is highly proficient
at detecting large-scale sources, which aligns with the findings
of [39] and [47]. In most cases, VSSI-GGD achieves larger
AUC values and smaller SD (except that of SBL), DLE, and
SE values than the compared methods. The results demonstrate
the superior performance of VSSI-GGD in reconstructing the
location and extent of extended sources.

One example of source imaging of different extents is pre-
sented in Fig. 2, in which all imaging results are thresholded
by Otsu’s method. The results of both wMNE and LORETA
are diffused across all extents. While the results of SBL
always shrink to several points, in the case of extended cortical
activities, SBL loses most of the extent information. Four
VSSI-based methods provide appropriate extents estimation,
while VSSI-L2p, VSSI-CM, and VSSI-MAP generate some
spurious sources around the ground truth. Overall, the esti-
mated results from VSSI-GGD are closer to the simulated
sources in terms of localization and extent among seven
ESI algorithms, which is also supported by the performance
metrics provided in the supplementary document.

2) Influence of Various SNRs: We next assessed the per-
formance of each ESI method against different SNR levels
(0 dB, 3 dB, 5 dB, 10 dB), and the performance metrics
are shown in Fig. 3. As SNR increases, all algorithms show
improved performance, as evidenced by increased AUC and
decreased SD, DLE, and SE values. Since SBL always pro-
duces focal estimations, the SD and SE values of SBL are
not sensitive to noise. However, as found in the previous
scenarios, SBL provides little information on source extents.
VSSI-GGD outperforms the other benchmark methods under
various measurement noise levels, indicated by higher AUC
and lower SD and SE values.
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Fig. 2. One imaging example of the simulated and estimated sources by ESI algorithms under various extents, and the performance metrics of the
results corresponding to this instance are listed below. The thresholds of each estimated source are determined by Otsu’s method.

Fig. 3. Performance metrics of various SNRs. This figure shows the
Mean ± SEM of the results for 50 Monte-Carlo simulations. * and
** indicate that the corresponding performance metric of VSSI-GGD
is significantly different from those of the compared methods with
pcorrect < 0.05 and pcorrect < 0.01 respectively.

3) Influence of Various Number of Channels: To evaluate the
influence of data volume, we down-sampled the 62 EEG chan-
nels to 46, 32, and 16 channels. In the supplement document,
we provide the electrode distribution map in 4 cases. Most
methods show a declined performance as the number of chan-
nels decreases, indicated by the decreased AUC and increased
SD, DLE, and SE values. However, the performance metrics of
SBL remain almost unchanged. This stability can be attributed
to its focal estimations. Except for the SD values of SBL,

VSSI-GGD achieves larger AUC, and lower SD, DLE, and SE
values than the compared methods in all conditions, suggesting
the superior performance and robustness of VSSI-GGD in the
presence of missing data.

B. Results of Experimental EEG Data Analysis
We further apply these ESI algorithms on two real human

EEG datasets to assess the practical efficacy of each method.
1) Analysis of Localize-MI Dataset: The Localize-MI dataset

is an open dataset that includes high-density EEG data
recorded from 61 sessions of 7 subjects with drug-resistant
epilepsy to evaluate source location methods [49], which is
available at. This dataset includes the spatial locations of
stimulating contacts within the brain. These contacts were used
to precisely deliver electrical currents during the presurgical
evaluation of patients with drug-resistant epilepsy. Hence,
Localize-MI provides the stimulation site as the ground truth.
The EEG data were recorded at a sampling rate of 8000 Hz
across 256 channels. We re-referenced the data to the average
of all good channels and clipped the time window from
−2 to 2 ms. The dataset also provides the surface model
with 8196 sources and a corresponding lead-field matrix.
We applied those ESI methods to the averaged EEG data of
each session to reconstruct the potential sources and compare
them with the ground truth. The MNE is used to visualize the
results [50].

The source reconstruction results for the average time course
of session 1 of subject 01 are depicted in Fig. 5. Imaging
results of other subjects are provided in the supplementary
material due to space limitations. In each imaging result,
the green point indicates the ground truth. As shown in
Fig. 5, the reconstructed source of VSSI-MAP misses the
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TABLE II
SPATIAL DISPERSION (MM) OF SEVEN ESI ALGORITHMS FOR ALL SESSIONS OF EACH SUBJECT (MEAN±STD). PERFORMANCE STATISTICAL

SIGNIFICANCE LEVEL IS DENOTED BY *pCORRECT < 0.05 AND **pCORRECT < 0.01 RESPECTIVELY

Fig. 4. Performance metrics of various number of channels. This figure
shows the Mean ± SEM of the results for 50 Monte-Carlo simulations. *
and ** indicate that the corresponding performance metric of VSSI-GGD
is significantly different from those of the compared methods with
pcorrect < 0.05 and pcorrect < 0.01 respectively.

ground truth point, whereas SBL estimates some point sources
around the ground truth. Among the other six methods, VSSI-
GGD provides more compact estimated sources with clear
boundaries. To quantitatively assess the performance of each
algorithm, we computed the spatial dispersion defined in [49]
for all 61 sessions, and results are presented in Table II. VSSI-
GGD provides the lowest SD values across all subjects in line
with the imaging results.

2) Analysis of Public Epilepsy Dataset: We further applied
the proposed method to the public epilepsy EEG dataset that
belongs to the Brainstorm tutorial. The dataset is available
at https://neuroimage.usc.edu/brainstorm/DatasetEpilepsy. The
EEG data was recorded from a patient suffering from focal
epilepsy and various types of seizures. Besides, this dataset
was fully analyzed and reported in [27] and [51]. Here,
we follow the Brainstorm tutorial to derive the head model,
lead-field matrix, and averaged EEG data for ESI analysis.
Source estimation results at the peak of averaged EEG data (0
ms) are presented in Fig. 6. All methods locate the source on
the left frontal lobe, while wMNE and LORETA are widely
spread, covering a large area. In contrast, SBL provides a focal
estimation that consists of only one point source. Results of
four VSSI-based methods are highly similar and consistent

with the clinical findings in [51] and the results in [27]. Among
all, VSSI-GGD provides the clearest boundary between active
and non-active sources.

V. DISCUSSIONS

We proposed an EEG extended source imaging algorithm,
VSSI-GGD, within the Bayesian framework. VSSI-GGD
employs the generalized Gaussian prior in the variation
domain to enforce the sparsity of brain sources. Using vari-
ational inference, we obtained the approximated posterior
by solving a series of regularized L2p-norm regularization
problems, which can be efficiently solved using the ADMM
method. Both Monte Carlo numerical simulations and real
EEG data analysis have revealed the superior performance
of VSSI-GGD in estimating the location and extent of brain
sources.

ESI plays a crucial role in stroke rehabilitation and resection
of epileptic foci, as previous studies have confirmed the
capability of EEG to capture potential neural activities [1],
[7]. However, it is limited by its low spatial resolution due
to the volume conduction effect. Furthermore, the number of
potential sources is much larger than the number of EEG elec-
trodes, making this problem inherently ill-posed. To improve
the spatial resolution, appropriate constraints are necessary to
narrow the source space.

The L2-norm constraint is a widely used method in source
estimation techniques such as wMNE and LORETA due to
its computational convenience [3], [14], [30]. However, one
drawback of this method is its tendency to produce diffuse
estimations, as shown in Fig. 2, where the results of wMNE
and LORETA cover a large portion of the cortical areas with
low spatial resolution. Ideally, an activated potential brain
source is expected to be a patch of moderate size with clear
boundaries. Unfortunately, the information on source location
and extent provided by wMNE and LORETA is often too
blurred. To improve spatial resolution, some studies have
employed sparse constraint methods such as L1-norm and
sparse Bayesian learning [19], [22], [24]. However, as depicted
in Fig. 2, the results of these methods often collapse to a single
point within the ground truth due to the direct imposition
of sparse constraints in the original domain [7], [25], [39].
Several studies have shown that potential brain sources are
sparse in certain transform domains, such as the variation
domain, rather than the original domain [19], [25], [27], [39].
Therefore, enforcing sparsity in the original domain can lead
to information loss.
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Fig. 5. Source reconstruction results for the first session of subject 01 from the Localize-MI dataset. The green point is the sEEG simulation site.

Fig. 6. Reconstructed sources of the Brainstorm epilepsy tutorial data.

Keeping these factors in mind, in this work, we project
the sources onto the variation domain to obtain sparse vari-
ation sources, following the strategy as prior studies [25],
[26], [39]. Previous studies have demonstrated that variation
sparsity-based methods are effective in providing clear infor-
mation about source location and extent [7], [25], [26], [27],
[39]. For VSSI-GGD, we assume that each row of the variation
source follows the generalized Gaussian distribution. This
statistical model is more flexible and suitable for non-Gaussian
distribution variables like EEG signals, compared to the com-
mon Gaussian model [40]. The source sparsity is ensured
by limiting the shape parameter p range from 0 to 1. The
generalized Gaussian prior is then embedded into the Bayesian
framework for statistical inference. It’s important to note that
our objective is not to directly maximize the posterior distribu-
tion, but rather to obtain the posterior’s mean by maximizing
the model evidence’s lower bound. This is because the MAP
estimation only gives the mode of p(S|B) and is blind to
the mass, especially for the multimodal asymmetric posterior
distribution [39], [42].

The Bayesian framework provides a flexible framework
where many ESI algorithms can be derived and explained.

There is a direct connection between many classical distribu-
tions and norms within this framework. For instance, when the
prior is assumed to be a Gaussian distribution, the L2-norm
based method MNE corresponds to the MAP estimation
of this prior [21]. Compared to regularization methods, the
Bayesian framework is powerful because it allows for explicit
modeling of prior assumptions using probability distributions
and hyper-parameters in a fully data-driven manner. In the
case of VSSI-GGD, the generalized Gaussian prior we use
corresponds to the L p-norm (0 < p < 1). The L p-norm
is also a sparse constraint similar to the L1-norm. Both
norms are approximations of the NP-hard L0-norm. However,
as suggested by [30], methods based on the L1-norm on the
variation domain tend to overestimate the extent of sources,
particularly for small-sized sources. On the other hand, the
more sparse mathematical nature of the L p-norm allows it
to better fit the measurement and source signals. This is also
confirmed in the study of [31], where they compared these two
sparse constraint-based methods and revealed that L p-norm
can mitigate the bias caused by L1-norm.

VSSI-GGD is novel as we transform the generalized
Gaussian prior source estimation problem into a regularized
L2p-norm optimization problem through convex analysis. The
L2p-norm combines the L2-norm in the temporal domain
and the L p-norm in the spatial domain, similar to the L21-
norm. This allows for effective localization of active sources
and improved estimation of their spatial extent compared
to traditional single-norm methods. However, the L21-norm
also suffers from the mathematical properties of the L1-norm
we mentioned above. To overcome this limitation, the L2p-
norm employs the L p-norm to constrain the spatial domain of
the potential sources for better spatial sparsity. VSSI-GGD
outperforms VSSI-CM in reconstructing extended sources,
as suggested by the higher AUC values and lower SD, DLE,
and SE values achieved by VSSI-GGD shown in Fig. 1.
Similarly, this conclusion holds for VSSI-L2p and VSSI-MAP.

In general, the proposed VSSI-GGD narrows the solution
space through temporal and spatial constraints in order to
obtain a unique solution like most state-of-the-art methods.
Specifically, VSSI-GGD utilizes a better sparse generalized
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Gaussian prior and performs variational inference within the
Bayesian framework, transforming the intractable posterior
estimation problem into a regularized optimization problem.
Besides, efficient solutions can be achieved using existing
methods such as ADMM and IRLS. The results of both
simulation experiments and real data analysis show that it
is precisely because of the sparser constraint and Bayesian
variation inference that, for extended source reconstruction,
VSSI-GGD outperforms other ESI methods in terms of
accuracy in localization and precision in extent estimation.
Nevertheless, there are certain areas where improvements can
be made to this method. Firstly, similar to other optimization
methods, the computation time of VSSI-GGD is not short.
It takes several minutes to complete the source estimation
using our method, which does not meet the requirement
of real-time systems, where millisecond-level response is
expected. Secondly, determining an appropriate value of the
shape parameter (referred to as the value of p) of the gen-
eralized Gaussian prior is crucial for accurately fitting the
measurements in our proposed ESI algorithm. Based on our
experiments (result is provided in the supplementary material)
and previous studies [31], [32], [33], we finally set p = 0.8.
An advanced approach to handle this problem is to utilize
the algorithm unrolling theory [52] to build a deep neural
network (DNN) using the iteration framework of VSSI-GGD.
Algorithm unrolling is a powerful tool to connect existing
iterative algorithms with DNN, where all parameters in the
original algorithms can be learned through end-to-end training.
Our future work will combine the Bayesian update rules and
the algorithm unrolling technique to derive a full data-driven
interpretable neural network for ESI. Hence, both the value
of p and λ can be determined in a fully data-driven way.
Moreover, by changing the iterative methods into DNN form,
we can derive the output at the millisecond level, which is
crucial in real-time source imaging applications.

VI. CONCLUSION

This paper presents a novel algorithm for EEG extended
source imaging within the Bayesian framework. Our method
exhibits robustness against noise and interference from numer-
ical simulation perspectives, delivering high spatial resolution
results for reconstructing extended sources, which outperforms
other benchmark algorithms. Moreover, the results of the
human epilepsy dataset also suggest the potential of our
method in real human EEG processing. In addition, in future
work, our method can be further elucidated in neural net-
works through algorithm unrolling techniques to generate fully
data-driven interpretable neural networks.
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